Skip to content
2000
Volume 20, Issue 8
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Background

Prodrugs represent a strategically designed category of medicinal compounds aimed at optimizing drug pharmacokinetics. By modifying the pharmacological action of the drug within a prodrug, subsequent enzymatic bioconversion in the human body facilitates the release of the active drug. This strategy has been highly effective, as demonstrated by the substantial number of prodrugs found in commercial pharmaceutical products. Prodrugs have emerged as a recognized strategy for augmenting the physical, chemical, biological, or pharmacokinetic attributes of pharmacologically active molecules in the realm of drug research and development.

Objectives

This systematic review intended to offer insights into the recent developments in the prodrug approach used in drug research and development, with a focus on highlighting its effectiveness. The objective was to illustrate the diverse applications of prodrugs and their impact on enhancing drug properties and therapeutic outcomes.

Methods

This review is centered on the most recent developments in the prodrug approach used for drug development and research. The prodrug concept has a wide range of practical uses, some of which are illustrated in this review article. These illustrations are categorized based on the intention behind their creation.

Results

Prodrugs have been designed to address challenges, such as poor water solubility and low bioavailability. Strategies, like using neutral or charged promoieties, have been reported to be successful in enhancing solubility. For permeability and bioavailability, prodrugs have been employed to mask polar groups, enabling better absorption. Prolonged half-life prodrugs have been developed to extend drug action, while tissue-targeted delivery prodrugs have shown promise in enhancing drug delivery to specific sites.

Conclusion

Prodrug design offers promising strategies to optimize drug delivery and efficacy. Despite challenges, ongoing clinical trials and research efforts indicate the potential of prodrugs in improving therapeutic outcomes. Addressing formulation challenges and understanding pharmacokinetic variability are essential for successful prodrug development.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855303949240827051824
2024-08-30
2025-12-18
Loading full text...

Full text loading...

References

  1. RautioJ. KumpulainenH. HeimbachT. Prodrugs: Design and clinical applications.Nat. Rev. Drug Discov.20087325527010.1038/nrd2468 18219308
    [Google Scholar]
  2. EttmayerP. AmidonG.L. ClementB. TestaB. Lessons learned from marketed and investigational prodrugs.J. Med. Chem.200447102393240410.1021/jm0303812 15115379
    [Google Scholar]
  3. PerezO.D. LoggC.R. HiraokaK. Design and selection of Toca 511 for clinical use: Modified retroviral replicating vector with improved stability and gene expression.Mol. Ther.20122091689169810.1038/mt.2012.83 22547150
    [Google Scholar]
  4. DahanA. KhamisM. AgbariaR. KaramanR. Targeted prodrugs in oral drug delivery: The modern molecular biopharmaceutical approach.Expert Opin. Drug Deliv.2012981001101310.1517/17425247.2012.697055 22703376
    [Google Scholar]
  5. HuttunenK.M. RaunioH. RautioJ. Prodrugs--from serendipity to rational design.Pharmacol. Rev.201163375077110.1124/pr.110.003459 21737530
    [Google Scholar]
  6. KaramanR. FattashB. MeccaG. BaderM. Computationally designed atovaquone prodrugs based on Bruice’s enzyme model.Curr. Computeraided Drug Des.2014101152710.2174/15734099113096660049 24138416
    [Google Scholar]
  7. DahanA. ZimmermannE. Ben-ShabatS. Modern prodrug design for targeted oral drug delivery.Molecules20141910164891650510.3390/molecules191016489 25317578
    [Google Scholar]
  8. AbetV. FilaceF. RecioJ. Alvarez-BuillaJ. BurgosC. Prodrug approach: An overview of recent cases.Eur. J. Med. Chem.201712781082710.1016/j.ejmech.2016.10.061 27823878
    [Google Scholar]
  9. WermuthC.G. GanellinC.R. LindbergP. and MitscherL.A. Glossary of Terms Used in Medicinal Chemistry (IUPAC Recommendations 1998).Pure and Applied. Chemistry.1998701129114310.1351/pac199870051129
    [Google Scholar]
  10. Choi-SledeskiY.M. WermuthC.G. Designing Prodrugs and Bioprecursors.The Practice of Medicinal Chemistry.AmsterdamElsevier201565769610.1016/B978‑0‑12‑417205‑0.00028‑6
    [Google Scholar]
  11. TestaB. Prodrugs.Drug Bioavailability: Estimation of Solubility, Permeability, Absorption and Bioavailability.Hoboken, New JerseyWiley200810.1002/9783527623860.ch20
    [Google Scholar]
  12. ValentinoJ. Prodrugs.New York, NYSpringer New York2007
    [Google Scholar]
  13. de Albuquerque SilvaA. ChungM. CastroL. Carvalho GuidoR. FerreiraE. Advances in prodrug design.Mini Rev. Med. Chem.200551089391410.2174/138955705774329528 16250833
    [Google Scholar]
  14. FleisherD. BongR. StewartB.H. Improved oral drug delivery: Solubility limitations overcome by the use of prodrugs.Adv. Drug Deliv. Rev.199619211513010.1016/0169‑409X(95)00103‑E
    [Google Scholar]
  15. KriseJ.P. NarisawaS. StellaV.J. A novel prodrug approach for tertiary amines. 2. Physicochemical and in vitro enzymatic evaluation of selected N‐phosphonooxymethyl prodrugs.J. Pharm. Sci.199988992292710.1021/js9803813 10479355
    [Google Scholar]
  16. González-MéndezI. SolanoJ.D. PorcuP. RuiuA. Rojas-AguirreY. RiveraE. Optimized synthesis, characterization and in vitro systematic evaluation of adamantane-doxorubicin prodrugs sensitive to pH in breast cancer cells.J. Mol. Struct.2019117714315110.1016/j.molstruc.2018.09.044
    [Google Scholar]
  17. KokilG.R. RewatkarP.V. Bioprecursor prodrugs: Molecular modification of the active principle.Mini Rev. Med. Chem.201010141316133010.2174/138955710793564179 20937026
    [Google Scholar]
  18. ProkaiL. NguyenV. SzarkaS. The prodrug DHED selectively delivers 17β-estradiol to the brain for treating estrogen-responsive disorders.Sci. Transl. Med.20157297297ra11310.1126/scitranslmed.aab1290 26203081
    [Google Scholar]
  19. DhaneshwarS. JainA. TewariK. Design and applications of bioprecursors: A retrometabolic approach.Curr. Drug Metab.201415329132510.2174/1389200215666140318101432 24655105
    [Google Scholar]
  20. ChoudharyD. GoykarH. KalyaneD. SreeharshaN. TekadeR.K. Prodrug design for improving the biopharmaceutical properties of therapeutic drugs.The Future of Pharmaceutical Product Development and Research.AmsterdamElsevier202017922610.1016/B978‑0‑12‑814455‑8.00006‑2
    [Google Scholar]
  21. LipinskiC.A. DiscoveryM. Poor aqueous solubility-an industry wide problem in ADME screening.American. Pharmaceut. Rev.2002538285
    [Google Scholar]
  22. StellaV.J. Nti-AddaeK.W. Prodrug strategies to overcome poor water solubility.Adv. Drug Deliv. Rev.200759767769410.1016/j.addr.2007.05.013 17628203
    [Google Scholar]
  23. FosphenytoinL.M. Neurol. Res.199820217818210.1080/01616412.1998.11740502 9522355
    [Google Scholar]
  24. DugganD.E. HareL.E. DitzlerC.A. LeiB.W. KwanK.C. The disposition of sulindac.Clin. Pharmacol. Ther.197721332633510.1002/cpt1977213326 300048
    [Google Scholar]
  25. DugganD.E. HookeK.F. NollR.M. HuckerH.B. Van ArmanC.G. Comparative disposition of sulindac and metabolites in five species.Biochem. Pharmacol.197827192311232010.1016/0006‑2952(78)90137‑5 103551
    [Google Scholar]
  26. ShenTY Chemical and biological studies on indomethacin, sulindac and their analogs.Adv Drug Res 1977:12:90-245 19771290245
    [Google Scholar]
  27. DaviesN.M. WatsonM.S. Clinical pharmacokinetics of sulindac. A dynamic old drug.Clin. Pharmacokinet.199732643745910.2165/00003088‑199732060‑00002 9195115
    [Google Scholar]
  28. WireM.B. SheltonM.J. StudenbergS. Fosamprenavir.Clin. Pharmacokinet.200645213716810.2165/00003088‑200645020‑00002 16485915
    [Google Scholar]
  29. ChapmanT.M. PloskerG.L. PerryC.M. Fosamprenavir.Drugs200464182101212410.2165/00003495‑200464180‑00014 15341507
    [Google Scholar]
  30. FurfineE.S. BakerC.T. HaleM.R. Preclinical pharmacology and pharmacokinetics of GW433908, a water-soluble prodrug of the human immunodeficiency virus protease inhibitor amprenavir.Antimicrob. Agents Chemother.200448379179810.1128/AAC.48.3.791‑798.2004 14982766
    [Google Scholar]
  31. XuG. ZhangW. MaM.K. McLeodH.L. Human carboxylesterase 2 is commonly expressed in tumor tissue and is correlated with activation of irinotecan.Clin. Cancer Res.20028826052611 12171891
    [Google Scholar]
  32. VierlingP. GreinerJ. Prodrugs of HIV protease inhibitors.Curr. Pharm. Des.20039221755177010.2174/1381612033454441 12871195
    [Google Scholar]
  33. GreigN.H. DalyE.M. SweeneyD.J. RapoportS.I. Pharmacokinetics of chlorambucil-tertiary butyl ester, a lipophilic chlorambucil derivative that achieves and maintains high concentrations in brain.Cancer Chemother. Pharmacol.199025532032510.1007/BF00686230 2306791
    [Google Scholar]
  34. BrassE.P. Pivalate-generating prodrugs and carnitine homeostasis in man.Pharmacol. Rev.200254458959810.1124/pr.54.4.589 12429869
    [Google Scholar]
  35. BeaumontK. WebsterR. GardnerI. DackK. Design of ester prodrugs to enhance oral absorption of poorly permeable compounds: Challenges to the discovery scientist.Curr. Drug Metab.20034646148510.2174/1389200033489253 14683475
    [Google Scholar]
  36. ToddP.A. HeelR.C. Enalapril.Drugs198631319824810.2165/00003495‑198631030‑00002 3011386
    [Google Scholar]
  37. EhrneboM. NilssonS.O. BoréusL.O. Pharmacokinetics of ampicillin and its prodrugs bacampicillin and pivampicillin in man.J. Pharmacokinet. Biopharm.19797542945110.1007/BF01062386 529016
    [Google Scholar]
  38. JuskoW.J. LewisG.P. Comparison of ampicillin and hetacillin pharmacokinetics in man.J. Pharm. Sci.1973621697610.1002/jps.2600620112 4630199
    [Google Scholar]
  39. Vere HodgeR.A. SuttonD. BoydM.R. HarndenM.R. JarvestR.L. Selection of an oral prodrug (BRL 42810; famciclovir) for the antiherpesvirus agent BRL 39123 [9-(4-hydroxy-3-hydroxymethylbut-l-yl)guanine; penciclovir].Antimicrob. Agents Chemother.198933101765177310.1128/AAC.33.10.1765 2589844
    [Google Scholar]
  40. SimpsonD. Lyseng-WilliamsonK.A. Famciclovir.Drugs200666182397241610.2165/00003495‑200666180‑00016 17181386
    [Google Scholar]
  41. McClellanK. PerryC.M. Oseltamivir.Drugs200161226328310.2165/00003495‑200161020‑00011 11270942
    [Google Scholar]
  42. RooseboomM. CommandeurJ.N.M. VermeulenN.P.E. Enzyme-catalyzed activation of anticancer prodrugs.Pharmacol. Rev.20045615310210.1124/pr.56.1.3 15001663
    [Google Scholar]
  43. KearneyB.P. FlahertyJ.F. ShahJ. Tenofovir disoproxil fumarate: Clinical pharmacology and pharmacokinetics.Clin. Pharmacokinet.200443959561210.2165/00003088‑200443090‑00003 15217303
    [Google Scholar]
  44. PavanB. DalpiazA. CilibertiN. BiondiC. ManfrediniS. VertuaniS. Progress in drug delivery to the central nervous system by the prodrug approach.Molecules20081351035106510.3390/molecules13051035 18560328
    [Google Scholar]
  45. ChilkotiA. DreherM.R. MeyerD.E. RaucherD. Targeted drug delivery by thermally responsive polymers.Adv. Drug Deliv. Rev.200254561363010.1016/S0169‑409X(02)00041‑8 12204595
    [Google Scholar]
  46. HarrisJ.M. ChessR.B. Effect of pegylation on pharmaceuticals.Nat. Rev. Drug Discov.20032321422110.1038/nrd1033 12612647
    [Google Scholar]
  47. MurthyN. CampbellJ. FaustoN. HoffmanA.S. StaytonP.S. Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs.Bioconjug. Chem.200314241241910.1021/bc020056d 12643752
    [Google Scholar]
  48. LinJ.H. Role of pharmacokinetics in the discovery and development of indinavir.Adv. Drug Deliv. Rev.1999391-3334910.1016/S0169‑409X(99)00018‑6 10837766
    [Google Scholar]
  49. HanH.K. AmidonG.L. Targeted prodrug design to optimize drug delivery.AAPS PharmSci200021485810.1208/ps020106 11741222
    [Google Scholar]
  50. DubowchikG.M. WalkerM.A. Receptor-mediated and enzyme-dependent targeting of cytotoxic anticancer drugs.Pharmacol. Ther.19998326712310.1016/S0163‑7258(99)00018‑2 10511457
    [Google Scholar]
  51. BegleiterA. Clinical applications of quinone-containing alkylating agents.Front. Biosci.200051e15310.2741/begleit 11056078
    [Google Scholar]
  52. ChenL. WaxmanD. Cytochrome P450 gene-directed enzyme prodrug therapy (GDEPT) for cancer.Curr. Pharm. Des.20028151405141610.2174/1381612023394566 12052216
    [Google Scholar]
  53. MillerC.R. WilliamsC.R. BuchsbaumD.J. GillespieG.Y. Intratumoral 5-fluorouracil produced by cytosine deaminase/5-fluorocytosine gene therapy is effective for experimental human glioblastomas.Cancer Res.2002623773780 11830532
    [Google Scholar]
  54. AndersonB.D. Prodrugs for improved CNS delivery.Adv. Drug Deliv. Rev.199619217120210.1016/0169‑409X(95)00106‑H
    [Google Scholar]
  55. NuttJ.G. WoodwardW.R. Levodopa pharmacokinetics and pharmacodynamics in fluctuating parkinsonian patients.Neurology198636673974410.1212/WNL.36.6.739 3703280
    [Google Scholar]
  56. ErionM.D. BulloughD.A. LinC.C. HongZ. HepDirect prodrugs for targeting nucleotide-based antiviral drugs to the liver.Curr. Opin. Investig. Drugs200672109117 16499280
    [Google Scholar]
  57. MauroV.F. Clinical pharmacokinetics and practical applications of simvastatin.Clin. Pharmacokinet.199324319520210.2165/00003088‑199324030‑00002 8343198
    [Google Scholar]
  58. JärvinenT. JärvinenK. Prodrugs for improved ocular drug delivery.Adv. Drug Deliv. Rev.199619220322410.1016/0169‑409X(95)00107‑I
    [Google Scholar]
  59. HussainA. TrueloveJ.E. Prodrug approaches to enhancement of physicochemical properties of drugs IV: Novel epinephrine prodrug.J. Pharm. Sci.197665101510151210.1002/jps.2600651023 978412
    [Google Scholar]
  60. AndersonJ.A. Systemic absorption of topical ocularly applied epinephrine and dipivefrin.Arch. Ophthalmol.198098235035310.1001/archopht.1980.01020030346024 7352887
    [Google Scholar]
  61. MandellA.I. StentzF. KitabchiA.E. Dipivalyl epinephrine: A new pro-drug in the treatment of glaucoma.Ophthalmology197885326827510.1016/S0161‑6420(78)35668‑2 662280
    [Google Scholar]
  62. KabackM.B. PodosS.M. HarbinT.S.Jr MandellA. BeckerB. The effects of dipivalyl epinephrine on the eye.Am. J. Ophthalmol.197681676877210.1016/0002‑9394(76)90360‑3 180809
    [Google Scholar]
  63. KohnA.N. MossA.P. HargettN.A. RitchR. SmithH.Jr PodosS.M. Clinical comparison of dipivalyl epinephrine and epinephrine in the treatment of glaucoma.Am. J. Ophthalmol.197987219620110.1016/0002‑9394(79)90142‑9 373450
    [Google Scholar]
  64. SloanK.B. WasdoS. Designing for topical delivery: Prodrugs can make the difference.Med. Res. Rev.200323676379310.1002/med.10048 12939791
    [Google Scholar]
  65. SloanK.B. WasdoS.C. RautioJ. Design for optimized topical delivery: Prodrugs and a paradigm change.Pharm. Res.200623122729274710.1007/s11095‑006‑9108‑0 17109215
    [Google Scholar]
  66. RautioJ. NevalainenT. TaipaleH. Piperazinylalkyl prodrugs of naproxen improve in vitro skin permeation.Eur. J. Pharm. Sci.200011215716310.1016/S0928‑0987(00)00090‑7 10915963
    [Google Scholar]
  67. RautioJ. NevalainenT. TaipaleH. Synthesis and in vitro evaluation of novel morpholinyl- and methylpiperazinylacyloxyalkyl prodrugs of 2-(6-methoxy-2-naphthyl)propionic acid (Naproxen) for topical drug delivery.J. Med. Chem.20004381489149410.1021/jm991149s 10780905
    [Google Scholar]
  68. ChandraratnaR.A.S. Tazarotene-first of a new generation of receptor-selective retinoids.Br. J. Dermatol.1996135Suppl. 49182510.1111/j.1365‑2133.1996.tb15662.x 9035701
    [Google Scholar]
  69. DandoT.M. WellingtonK. Topical Tazarotene.Am. J. Clin. Dermatol.20056425527210.2165/00128071‑200506040‑00006 16060713
    [Google Scholar]
  70. FosterR.H. BrogdenR.N. BenfieldP. Tazarotene.Drugs199855570571110.2165/00003495‑199855050‑00008 9585866
    [Google Scholar]
  71. MarksR. Clinical safety of tazarotene in the treatment of plaque psoriasis.J. Am. Acad. Dermatol.1997372S25S3210.1016/S0190‑9622(97)80397‑0 9270553
    [Google Scholar]
  72. GrootF. DamenE. ScheerenH. Anticancer prodrugs for application in monotherapy: Targeting hypoxia, tumor-associated enzymes, and receptors.Curr. Med. Chem.2001891093112210.2174/0929867013372634 11472243
    [Google Scholar]
  73. SinhababuA.K. ThakkerD.R. Prodrugs of anticancer agents.Adv. Drug Deliv. Rev.199619224127310.1016/0169‑409X(95)00109‑K
    [Google Scholar]
  74. QuinneyS.K. SanghaniS.P. DavisW.I. Hydrolysis of capecitabine to 5′-deoxy-5-fluorocytidine by human carboxylesterases and inhibition by loperamide.J. Pharmacol. Exp. Ther.200531331011101610.1124/jpet.104.081265 15687373
    [Google Scholar]
  75. DamenEW de GrootFM ScheerenHW Novel anthracycline prodrugs.Expert Opin Therapeut Patents200111465166610.1517/13543776.11.4.651
    [Google Scholar]
  76. BagshaweK.D. Antibody-directed enzyme prodrug therapy (ADEPT) for cancer.Expert Rev. Anticancer Ther.20066101421143110.1586/14737140.6.10.1421 17069527
    [Google Scholar]
  77. DachsG.U. TupperJ. TozerG.M. From bench to bedside for gene-directed enzyme prodrug therapy of cancer.Anticancer Drugs200516434935910.1097/00001813‑200504000‑00001 15746571
    [Google Scholar]
  78. ChesterK. PedleyB. TolnerB. Engineering antibodies for clinical applications in cancer.Tumour Biol.2004251-2919810.1159/000077727 15192316
    [Google Scholar]
  79. FrancisR.J. SharmaS.K. SpringerC. A phase I trial of antibody directed enzyme prodrug therapy (ADEPT) in patients with advanced colorectal carcinoma or other CEA producing tumours.Br. J. Cancer200287660060710.1038/sj.bjc.6600517 12237768
    [Google Scholar]
  80. van MontfoortJ. HagenbuchB. GroothuisG. KoepsellH. MeierP. MeijerD. Drug uptake systems in liver and kidney.Curr. Drug Metab.20034318521110.2174/1389200033489460 12769665
    [Google Scholar]
  81. ErionM.D. ReddyK.R. BoyerS.H. Design, synthesis, and characterization of a series of cytochrome P(450) 3A-activated prodrugs (HepDirect prodrugs) useful for targeting phosph(on)ate-based drugs to the liver.J. Am. Chem. Soc.2004126165154516310.1021/ja031818y 15099098
    [Google Scholar]
  82. ShitaraY. SugiyamaY. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: Drug–drug interactions and interindividual differences in transporter and metabolic enzyme functions.Pharmacol. Ther.200611217110510.1016/j.pharmthera.2006.03.003 16714062
    [Google Scholar]
  83. AltamuraA.C. SassellaF. SantiniA. MontresorC. FumagalliS. MundoE. Intramuscular preparations of antipsychotics: Uses and relevance in clinical practice.Drugs200363549351210.2165/00003495‑200363050‑00004 12600227
    [Google Scholar]
  84. SvenssonL. TunekA. The design and bioactivation of presystemically stable prodrugs.Drug Metab. Rev.198819216519410.3109/03602538809049622 3069421
    [Google Scholar]
  85. TunekA. LevinE. SvenssonL.Å. Hydrolysis of 3H-bambuterol, a carbamate prodrug of terbutaline, in blood from humans and laboratory animals in vitro.Biochem. Pharmacol.198837203867387610.1016/0006‑2952(88)90068‑8 3190733
    [Google Scholar]
  86. PerssonG. PahlmO. gnosspelius Y. Oral bambuterol versus terbutaline in patients with asthma.Curr. Ther. Res. Clin. Exp.199556545746510.1016/0011‑393X(95)85078‑3
    [Google Scholar]
  87. StellaV.J. Prodrugs: Some thoughts and current issues. J Pharm Sci 99:4755–4765.J. Pharm. Sci.201110010456010.1002/jps.22692
    [Google Scholar]
  88. NajjarA. NajjarA. KaramanR. Newly developed prodrugs and prodrugs in development; an insight of the recent years.Molecules202025488410.3390/molecules25040884 32079289
    [Google Scholar]
  89. PaoL.H. HsiongC.H. HuO.Y.P. WangJ.J. HoS.T. In vitro and in vivo evaluation of the metabolism and pharmacokinetics of sebacoyl dinalbuphine.Drug Metab. Dispos.200533339540210.1124/dmd.104.002451 15608131
    [Google Scholar]
  90. MeunierB. de VisserS.P. ShaikS. Mechanism of oxidation reactions catalyzed by cytochrome p450 enzymes.Chem. Rev.200410493947398010.1021/cr020443g 15352783
    [Google Scholar]
  91. LeppänenJ. HuuskonenJ. SavolainenJ. Synthesis of a water-soluble prodrug of entacapone.Bioorg. Med. Chem. Lett.200010171967196910.1016/S0960‑894X(00)00384‑X 10987428
    [Google Scholar]
  92. FengX. YuanY.J. WuJ.C. Synthesis and evaluation of water-Soluble paclitaxel prodrugs.Bioorg. Med. Chem. Lett.200212223301330310.1016/S0960‑894X(02)00694‑7 12392737
    [Google Scholar]
  93. SafadiM. OliyaiR. StellaV.J. Phosphoryloxymethyl carbamates and carbonates--novel water-soluble prodrugs for amines and hindered alcohols.Pharm. Res.19931091350135510.1023/A:1018934200343 8234176
    [Google Scholar]
  94. GuL. StrickleyR.G. A profound solvent effect on the diketopiperazine formation of the new dipeptide angiotensin-converting enzyme inhibitor, Moexipril.Int. J. Pharm.19906029910710.1016/0378‑5173(90)90295‑F
    [Google Scholar]
  95. GallantJ.E. DeresinskiS. Tenofovir disoproxil fumarate.Clin. Infect. Dis.200337794495010.1086/378068 13130407
    [Google Scholar]
  96. VariaS.A. SchullerS. SloanK.B. StellaxV.J. Phenytoin prodrugs III: Water-soluble prodrugs for oral and/or parenteral use.J. Pharm. Sci.19847381068107310.1002/jps.2600730812 6491911
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855303949240827051824
Loading
/content/journals/cdth/10.2174/0115748855303949240827051824
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test