Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Females of reproductive age can develop endometriosis, an inflammatory gynecological illness that is hormone-dependent. The variable lesions that make up the functional endometrium outside of the uterus cavity are what set this disorder apart in terms of its clinical and pathological aspects. Around 10% of women in their reproductive years have endometriosis worldwide, which significantly lowers their quality of life overall. Infertility and chronic pelvic discomfort are the two main symptoms that significantly affect women's reproductive health and general well-being. The pathophysiological underpinnings of endometriosis remain unclear despite years of intensive research. Understanding the fundamental mechanisms that produce endometriosis is crucial, as demonstrated by the substantial public and private health consequences. This article offers an overview of recent advancements in biomarkers regarding endometriosis treatment options, based on a thorough literature study.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855310120240819062459
2024-08-23
2025-12-03
Loading full text...

Full text loading...

References

  1. OrrN.L. SutherlandJ.L. BoardE.P.R.A. HuangA. WahlK.J. NogaH. BrottoL.A. MaherC. BedaiwyM.A. WilliamsC. AllaireC. A patient-oriented workshop on sexual pain and endometriosis: Preliminary evidence for improvements in painful intercourse self-efficacy.J. Endometr. Pelvic Pain Disord.20232100027
    [Google Scholar]
  2. SymonsL.K. MillerJ.E. KayV.R. MarksR.M. LiblikK. KotiM. TayadeC. The immunopathophysiology of endometriosis.Trends Mol. Med.201824974876210.1016/j.molmed.2018.07.00430054239
    [Google Scholar]
  3. WangY. NicholesK. ShihI.M. The origin and pathogenesis of endometriosis.Annu. Rev. Pathol.2020151719510.1146/annurev‑pathmechdis‑012419‑03265431479615
    [Google Scholar]
  4. KecksteinJ. BeckerC.M. CanisM. FekiA. Recommendations for the surgical treatment of endometriosis. Part 2: deep endometriosis.Hum. Reprod. Open20201002
    [Google Scholar]
  5. AhnS.H. SinghV. TayadeC. Biomarkers in endometriosis: Challenges and opportunities.Fertil. Steril.2017107352353210.1016/j.fertnstert.2017.01.00928189296
    [Google Scholar]
  6. BuppasiriP. KleebkaowP. TharanonC. Aue-aungkulA. KietpeerakoolC. Clear cell carcinoma arising in vulvar endometriosis.Case Rep. Pathol.201820181510.1155/2018/426310430147978
    [Google Scholar]
  7. AllaireC. BedaiwyM.A. YongP.J. Diagnosis and management of endometriosis.CMAJ202319510E363E37110.1503/cmaj.22063736918177
    [Google Scholar]
  8. AnastasiuC.V. MogaM.A. Elena NeculauA. BălanA. ScârneciuI. DragomirR.M. DullA.M. ChiceaL.M. Biomarkers for the noninvasive diagnosis of endometriosis: State of the art and future perspectives.Int. J. Mol. Sci.2020215175010.3390/ijms2105175032143439
    [Google Scholar]
  9. FassbenderA. BurneyR. O. Update on biomarkers for the detection of endometriosis.Biomed Res Int2015
    [Google Scholar]
  10. ChoS.H. OhY.J. NamA. KimH.Y. ParkJ.H. KimJ.H. ParkK.H. ChoD.J. LeeB.S. Evaluation of serum and urinary angiogenic factors in patients with endometriosis.Am. J. Reprod. Immunol.200758649750410.1111/j.1600‑0897.2007.00535.x17997748
    [Google Scholar]
  11. GueyeN.A. StanhiserJ. ValentineL. KotlyarA. GoodmanL. FalconeT. Biomarkers for endometriosis in saliva, urine, and peritoneal fluid.Biomarkers Endometr State Art201714116310.1007/978‑3‑319‑59856‑7_8
    [Google Scholar]
  12. TokushigeN. MarkhamR. CrossettB. AhnS.B. NelaturiV.L. KhanA. FraserI.S. Discovery of a novel biomarker in the urine in women with endometriosis.Fertil. Steril.2011951464910.1016/j.fertnstert.2010.05.01621168580
    [Google Scholar]
  13. ThambisettyM. LovestoneS. Blood-based biomarkers of Alzheimer’s disease: Challenging but feasible.Biomarkers Med.201041657910.2217/bmm.09.8420387303
    [Google Scholar]
  14. OthmanE.E.D.R. HornungD. Al-HendyA. Biomarkers of endometriosis.Expert Opin. Med. Diagn.20082774175210.1517/17530059.2.7.74123495814
    [Google Scholar]
  15. MartínezS. GarridoN. CoperiasJ.L. PardoF. DescoJ. García-VelascoJ.A. SimónC. PellicerA. Serum interleukin-6 levels are elevated in women with minimal–mild endometriosis.Hum. Reprod.200722383684210.1093/humrep/del41917062580
    [Google Scholar]
  16. PizzoA. SalmeriF.M. ArditaF.V. SofoV. TripepiM. MarsicoS. Behaviour of cytokine levels in serum and peritoneal fluid of women with endometriosis.Gynecol. Obstet. Invest.2002542828710.1159/00006771712566749
    [Google Scholar]
  17. WickiewiczD. ChrobakA. GmyrekG.B. HalbersztadtA. GabryśM.S. GoludaM. Chełmońska-SoytaA. Diagnostic accuracy of interleukin-6 levels in peritoneal fluid for detection of endometriosis.Arch. Gynecol. Obstet.2013288480581410.1007/s00404‑013‑2828‑623553197
    [Google Scholar]
  18. GallinelliA. ChiossiG. GiannellaL. MarsellaT. GenazzaniA.D. VolpeA. Different concentrations of interleukins in the peritoneal fluid of women with endometriosis: Relationships with lymphocyte subsets.Gynecol. Endocrinol.200418314415110.1080/0951359031000165304415255283
    [Google Scholar]
  19. BedaiwyM.A. FalconeT. Laboratory testing for endometriosis.Clin. Chim. Acta20043401-2415610.1016/j.cccn.2003.10.02114734195
    [Google Scholar]
  20. WangX.Q. YuJ. LuoX.Z. ShiY.L. WangY. WangL. LiD.J. The high level of RANTES in the ectopic milieu recruits macrophages and induces their tolerance in progression of endometriosis.J. Mol. Endocrinol.201045529129910.1677/JME‑09‑017720732991
    [Google Scholar]
  21. HadisaputraW. PrayudhanaS. Serum biomarker profiles of interleukin-6, tumor necrosis factor alpha, matrix-metalloproteinase-2, and vascular endothelial growth factor in endometriosis staging.Med. J. Indones.201322768210.13181/mji.v22i2.532
    [Google Scholar]
  22. XavierP. BeloL. BeiresJ. RebeloI. Martinez-de-OliveiraJ. LunetN. BarrosH. Serum levels of VEGF and TNF-α and their association with C-reactive protein in patients with endometriosis.Arch. Gynecol. Obstet.2006273422723110.1007/s00404‑005‑0080‑416208475
    [Google Scholar]
  23. NirgianakisK. McKinnonB. MaL. ImbodenS. BersingerN. MuellerM.D. Peritoneal fluid biomarkers in patients with endometriosis: A cross-sectional study.Horm. Mol. Biol. Clin. Investig.202142211312210.1515/hmbci‑2019‑006432926606
    [Google Scholar]
  24. LimaA.P. MouraM.D. Rosa e SilvaA.A.M. Prolactin and cortisol levels in women with endometriosis.Braz. J. Med. Biol. Res.20063981121112710.1590/S0100‑879X200600080001516906287
    [Google Scholar]
  25. IlleraJ.C. SilvánG. IlleraM.J. MunroC.J. LesseyB.A. IlleraM. Measurement of serum and peritoneal fluid LH concentrations as a diagnostic tool for human endometriosis.Reproduction2001121576176910.1530/rep.0.121076111427164
    [Google Scholar]
  26. ShahD.K. CorreiaK.F. HarrisH.R. MissmerS.A. Plasma adipokines and endometriosis risk: A prospective nested case-control investigation from the Nurses’ Health Study II.Hum. Reprod.201328231532110.1093/humrep/des41123188112
    [Google Scholar]
  27. GreenbaumH. GalperB.E.L. DecterD.H. EisenbergV.H. Endometriosis and autoimmunity: Can autoantibodies be used as a non-invasive early diagnostic tool?Autoimmun. Rev.202120510279510.1016/j.autrev.2021.10279533722753
    [Google Scholar]
  28. RandallG.W. GanttP.A. Poe-ZeiglerR.L. BergmannC.A. NoelM.E. StrawbridgeW.R. Richardson-CoxB. HerefordJ.R. ReiffR.H. Serum antiendometrial antibodies and diagnosis of endometriosis.Am. J. Reprod. Immunol.200758437438210.1111/j.1600‑0897.2007.00523.x17845208
    [Google Scholar]
  29. OzhanE. KokcuA. YanikK. GunaydinM. Investigation of diagnostic potentials of nine different biomarkers in endometriosis.Eur. J. Obstet. Gynecol. Reprod. Biol.201417812813310.1016/j.ejogrb.2014.04.03724813083
    [Google Scholar]
  30. YiY.C. WangS.C. ChaoC.C. SuC.L. LeeY.L. ChenL.Y. Evaluation of serum autoantibody levels in the diagnosis of ovarian endometrioma.J. Clin. Lab. Anal.201024535736210.1002/jcla.2041520872572
    [Google Scholar]
  31. NabetaM. AbeY. TakaokaY. KusanagiY. ItoM. Identification of anti-syntaxin 5 autoantibody as a novel serum marker of endometriosis.J. Reprod. Immunol.2011911-2485510.1016/j.jri.2011.04.01221715015
    [Google Scholar]
  32. Olkowska-TruchanowiczJ. BocianK. MaksymR.B. BiałoszewskaA. WłodarczykD. BaranowskiW. ZąbekJ. Korczak-KowalskaG. MalejczykJ. CD4+ CD25+ FOXP3+ regulatory T cells in peripheral blood and peritoneal fluid of patients with endometriosis.Hum. Reprod.201328111912410.1093/humrep/des34623019301
    [Google Scholar]
  33. ChoS. AhnY.S. ChoiY.S. SeoS.K. NamA. KimH.Y. KimJ.H. ParkK.H. ChoD.J. LeeB.S. Endometrial osteopontin mRNA expression and plasma osteopontin levels are increased in patients with endometriosis.Am. J. Reprod. Immunol.200961428629310.1111/j.1600‑0897.2009.00692.x19260859
    [Google Scholar]
  34. ScutieroG. IannoneP. BernardiG. BonaccorsiG. SpadaroS. VoltaC.A. GrecoP. NappiL. Oxidative stress and endometriosis: A systematic review of the literature.Oxid. Med. Cell. Longev.201720171710.1155/2017/7265238
    [Google Scholar]
  35. VeritF.F. ErelO. CelikN. Serum paraoxonase-1 activity in women with endometriosis and its relationship with the stage of the disease.Hum. Reprod.200723110010410.1093/humrep/dem34018000171
    [Google Scholar]
  36. TianZ. ChangX.H. ZhaoY. ZhuH.L. Current biomarkers for the detection of endometriosis.Chin. Med. J2020133192346235210.1097/CM9.000000000000106332858595
    [Google Scholar]
  37. DeviT.R. KadalmaniB. DeviC.A. Novel methods in diagnosis of endometriosis in future.Int. J. Reprod. Contracept. Obstet. Gynecol.20221161824183110.18203/2320‑1770.ijrcog20221472
    [Google Scholar]
  38. KocbekV. VoukK. MuellerM.D. RižnerT.L. BersingerN.A. Elevated glycodelin-A concentrations in serum and peritoneal fluid of women with ovarian endometriosis.Gynecol. Endocrinol.201329545545910.3109/09513590.2013.76951623461865
    [Google Scholar]
  39. DuttaM. JoshiM. SrivastavaS. LodhI. ChakravartyB. ChaudhuryK. A metabonomics approach as a means for identification of potential biomarkers for early diagnosis of endometriosis.Mol. Biosyst.20128123281328710.1039/c2mb25353d23079773
    [Google Scholar]
  40. BalanA. MogaM.A. DimaL. DinuC.G. MartinescuC.C. PanaitD.E. IrimieC.A. AnastasiuC.V. An overview on the conservative management of endometriosis from a naturopathic perspective: Phytochemicals and medicinal plants.Plants202110358710.3390/plants1003058733804660
    [Google Scholar]
  41. DolmansM.M. DonnezJ. Emerging drug targets for endometriosis.Biomolecules20221211165410.3390/biom1211165436359004
    [Google Scholar]
  42. LaiZ.Z. YangH.L. HaS.Y. ChangK.K. MeiJ. ZhouW.J. QiuX.M. WangX.Q. ZhuR. LiD.J. LiM.Q. Cyclooxygenase-2 in endometriosis.Int. J. Biol. Sci.201915132783279710.7150/ijbs.3512831853218
    [Google Scholar]
  43. WuM.H. WangC.A. LinC.C. ChenL.C. ChangW.C. TsaiS.J. Distinct regulation of cyclooxygenase-2 by interleukin-1beta in normal and endometriotic stromal cells.J. Clin. Endocrinol. Metab.200590128629510.1210/jc.2004‑161215483103
    [Google Scholar]
  44. VanhieA. TomassettiC. PeeraerK. MeulemanC. D’HoogheT. Challenges in the development of novel therapeutic strategies for treatment of endometriosis.Expert Opin. Ther. Targets201620559360010.1517/14728222.2016.111846126558646
    [Google Scholar]
  45. CobellisL. RazziS. De SimoneS. SartiniA. FavaA. DaneroS. GioffrèW. MazziniM. PetragliaF. The treatment with a COX-2 specific inhibitor is effective in the management of pain related to endometriosis.Eur. J. Obstet. Gynecol. Reprod. Biol.2004116110010210.1016/j.ejogrb.2004.02.00715294376
    [Google Scholar]
  46. VercelliniP. SomiglianaE. ViganòP. AbbiatiA. BarbaraG. CrosignaniP.G. Endometriosis.Drugs200969664967510.2165/00003495‑200969060‑0000219405548
    [Google Scholar]
  47. YuT. LaoX. ZhengH. Influencing COX-2 activity by COX related pathways in inflammation and cancer.Mini Rev. Med. Chem.201616151230124310.2174/138955751666616050511574327145850
    [Google Scholar]
  48. IwabeT. HaradaT. TsudoT. NaganoY. YoshidaS. TanikawaM. TerakawaN. Tumor necrosis factor-α promotes proliferation of endometriotic stromal cells by inducing interleukin-8 gene and protein expression.J. Clin. Endocrinol. Metab.200085282482910690897
    [Google Scholar]
  49. KoninckxP.R. CraessaertsM. TimmermanD. CornillieF. KennedyS. Anti-TNF- treatment for deep endometriosis-associated pain: A randomized placebo-controlled trial.Hum. Reprod.20082392017202310.1093/humrep/den17718556683
    [Google Scholar]
  50. D’HoogheT.M. NugentN.P. CuneoS. ChaiD.C. DeerF. DebrockS. KyamaC.M. MihalyiA. MwendaJ.M. Recombinant human TNFRSF1A (r-hTBP1) inhibits the development of endometriosis in baboons: A prospective, randomized, placebo- and drug-controlled study.Biol. Reprod.200674113113610.1095/biolreprod.105.04334916177224
    [Google Scholar]
  51. GuoS.W. Epigenetics of endometriosis.Mol. Hum. Reprod.2009151058760710.1093/molehr/gap06419651637
    [Google Scholar]
  52. WangL. TanY.J. WangM. ChenY.F. LiX.Y. DNA methylation inhibitor 5-Aza-2′-deoxycytidine modulates endometrial receptivity through upregulating HOXA10 expression.Reprod. Sci.201926683984610.1177/193371911881557530522400
    [Google Scholar]
  53. JeungI. CheonK. KimM.R. Decreased cytotoxicity of peripheral and peritoneal natural killer cell in endometriosis.BioMed Res. Int.201620161610.1155/2016/291607027294113
    [Google Scholar]
  54. KapoorR. StratopoulouC.A. DolmansM.M. Pathogenesis of endometriosis: New insights into prospective therapies.Int. J. Mol. Sci.202122211170010.3390/ijms22211170034769130
    [Google Scholar]
  55. LiuY. WangJ. ZhangX. An update on the multifaceted role of NF-kappaB in endometriosis.Int. J. Biol. Sci.202218114400441310.7150/ijbs.7270735864971
    [Google Scholar]
  56. El-ZayadiA.A. MohamedS.A. ArafaM. MohammedS.M. ZayedA. AbdelhafezM.S. BadawyA.M. Anti-IL-6 receptor monoclonal antibody as a new treatment of endometriosis.Immunol. Res.202068638939710.1007/s12026‑020‑09153‑532939649
    [Google Scholar]
  57. Kolahdouz-MohammadiR. ShidfarF. KhodaverdiS. ArablouT. HeidariS. RashidiN. DelbandiA.A. Resveratrol treatment reduces expression of MCP-1, IL-6, IL-8 and RANTES in endometriotic stromal cells.J. Cell. Mol. Med.20212521116112710.1111/jcmm.1617833325132
    [Google Scholar]
  58. KaramianA. PaktinatS. EsfandyariS. NazarianH. ZiaiS.A. ZarnaniA.H. SalehpourS. HosseiniradH. KaramianA. NovinM.G. Pyrvinium pamoate induces in-vitro suppression of IL-6 and IL-8 produced by human endometriotic stromal cells.Hum. Exp. Toxicol.202140464966010.1177/096032712096454333021119
    [Google Scholar]
  59. WeiX. ShaoX. Nobiletin alleviates endometriosis via down-regulating NF-κB activity in endometriosis mouse model.Biosci. Rep.2018383BSR2018047010.1042/BSR20180470
    [Google Scholar]
  60. MarquardtR.M. KimT.H. ShinJ.H. JeongJ.W. Progesterone and estrogen signaling in the endometrium: What goes wrong in endometriosis?Int. J. Mol. Sci.20192015382210.3390/ijms2015382231387263
    [Google Scholar]
  61. DonnezJ. DolmansM.M. Endometriosis and medical therapy: From progestogens to progesterone resistance to GnRH antagonists: A review.J. Clin. Med.2021105108510.3390/jcm1005108533807739
    [Google Scholar]
  62. DonnezJ. DolmansM.M. GnRH antagonists with or without add-back therapy: A new alternative in the management of endometriosis?Int. J. Mol. Sci.202122211134210.3390/ijms22211134234768770
    [Google Scholar]
  63. TaylorH.S. GiudiceL.C. LesseyB.A. AbraoM.S. KotarskiJ. ArcherD.F. DiamondM.P. SurreyE. JohnsonN.P. WattsN.B. GallagherJ.C. SimonJ.A. CarrB.R. DmowskiW.P. LeylandN. RowanJ.P. DuanW.R. NgJ. SchwefelB. ThomasJ.W. JainR.I. ChwaliszK. Treatment of endometriosis-associated pain with elagolix, an oral gnrh antagonist.N. Engl. J. Med.20173771284010.1056/NEJMoa170008928525302
    [Google Scholar]
  64. DonnezJ. CacciottolaL. SquiffletJ.L. DolmansM.M. Profile of Linzagolix in the Management of Endometriosis, Including Design, Development and Potential Place in Therapy: A Narrative Review.Drug Des. Devel. Ther.20231736938010.2147/DDDT.S26997636789095
    [Google Scholar]
  65. OsugaY. SekiY. TanimotoM. KusumotoT. KudouK. TerakawaN. Relugolix, an oral gonadotropin-releasing hormone receptor antagonist, reduces endometriosis-associated pain in a dose–response manner: a randomized, double-blind, placebo-controlled study.Fertil. Steril.2021115239740510.1016/j.fertnstert.2020.07.05532912633
    [Google Scholar]
  66. NgôC. ChéreauC. NiccoC. WeillB. ChapronC. BatteuxF. Reactive oxygen species controls endometriosis progression.Am. J. Pathol.2009175122523410.2353/ajpath.2009.08080419498006
    [Google Scholar]
  67. CacciottolaL. DonnezJ. DolmansM.M. Can Endometriosis-Related Oxidative Stress Pave the Way for New Treatment Targets?Int. J. Mol. Sci.20212213713810.3390/ijms2213713834281188
    [Google Scholar]
  68. NgôC. NiccoC. LeconteM. ChéreauC. ArkwrightS. Vacher-LavenuM.C. WeillB. ChapronC. BatteuxF. Protein kinase inhibitors can control the progression of endometriosis in vitro and in vivo.J. Pathol.2010222214815710.1002/path.275620821752
    [Google Scholar]
  69. AytanH. CaglarP. UygurD. ZergerogluS. BatiogluS. Effect of the immunomodulator leflunomide on the induction of endometriosis in an experimental rat model.Fertil. Steril.200787369870110.1016/j.fertnstert.2006.07.152717118364
    [Google Scholar]
  70. LeconteM. SantulliP. ChouzenouxS. MarcellinL. CerlesO. ChapronC. DoussetB. BatteuxF. Inhibition of MAPK and VEGFR by Sorafenib Controls the Progression of Endometriosis.Reprod. Sci.20152291171118010.1177/193371911559270826169036
    [Google Scholar]
  71. OzerH. BoztosunA. AçmazG. AtılganR. AkkarO.B. KosarM.I. The efficacy of bevacizumab, sorafenib, and retinoic acid on rat endometriosis model.Reprod. Sci.2013201263210.1177/193371911245294122895024
    [Google Scholar]
  72. YildizC. KacanT. AkkarO.B. KarakusS. KacanS.B. OzerH. CetinA. Effects of pazopanib, sunitinib, and sorafenib, anti-vegf agents, on the growth of experimental endometriosis in rats.Reprod. Sci.201522111445145110.1177/193371911558444825963915
    [Google Scholar]
  73. LeconteM. NiccoC. NgôC. ChéreauC. ChouzenouxS. MarutW. GuibourdencheJ. ArkwrightS. WeillB. ChapronC. DoussetB. BatteuxF. The mTOR/AKT inhibitor temsirolimus prevents deep infiltrating endometriosis in mice.Am. J. Pathol.2011179288088910.1016/j.ajpath.2011.04.02021718677
    [Google Scholar]
  74. YagyuT. TsujiY. HarutaS. KitanakaT. YamadaY. KawaguchiR. KanayamaS. TanaseY. KuritaN. KobayashiH. Activation of mammalian target of rapamycin in postmenopausal ovarian endometriosis.Int. J. Gynecol. Cancer20061641545155110.1136/ijgc‑00009577‑200607000‑0000816884363
    [Google Scholar]
  75. LeconteM. NiccoC. NgôC. ArkwrightS. ChéreauC. GuibourdencheJ. WeillB. ChapronC. DoussetB. BatteuxF. Antiproliferative effects of cannabinoid agonists on deep infiltrating endometriosis.Am. J. Pathol.201017762963297010.2353/ajpath.2010.10037521057002
    [Google Scholar]
  76. Bruner-TranK.L. OsteenK.G. TaylorH.S. SokalskaA. HainesK. DulebaA.J. Resveratrol inhibits development of experimental endometriosis in vivo and reduces endometrial stromal cell invasiveness in vitro.Biol. Reprod.201184110611210.1095/biolreprod.110.08674420844278
    [Google Scholar]
  77. TaguchiA. Wada-HiraikeO. KawanaK. KogaK. YamashitaA. ShiraneA. UrataY. KozumaS. OsugaY. FujiiT. Resveratrol suppresses inflammatory responses in endometrial stromal cells derived from endometriosis: A possible role of the sirtuin 1 pathway.J. Obstet. Gynaecol. Res.201440377077810.1111/jog.1225224320086
    [Google Scholar]
  78. ParkS. LimW. BazerF.W. SongG. Naringenin induces mitochondria-mediated apoptosis and endoplasmic reticulum stress by regulating MAPK and AKT signal transduction pathways in endometriosis cells.Mol. Hum. Reprod.2017231284285410.1093/molehr/gax05729121349
    [Google Scholar]
  79. KapoorR. SirohiV.K. GuptaK. DwivediA. Naringenin ameliorates progression of endometriosis by modulating Nrf2/Keap1/HO1 axis and inducing apoptosis in rats.J. Nutr. Biochem.20197021522610.1016/j.jnutbio.2019.05.00331252288
    [Google Scholar]
  80. Radomska-LeśniewskaD.M. HevelkeA. SkopińskiP. BałanB. JóźwiakJ. RokickiD. Skopińska-RóżewskaE. BiałoszewskaA. Reactive oxygen species and synthetic antioxidants as angiogenesis modulators: Clinical implications.Pharmacol. Rep.201668246247110.1016/j.pharep.2015.10.00226922554
    [Google Scholar]
  81. PorporaM.G. BrunelliR. CostaG. ImperialeL. KrasnowskaE.K. LundebergT. NofroniI. PiccioniM.G. PittalugaE. TicinoA. ParasassiT. A promise in the treatment of endometriosis: An observational cohort study on ovarian endometrioma reduction by N-acetylcysteine.Evid. Based Complement. Alternat. Med.201320131710.1155/2013/24070223737821
    [Google Scholar]
  82. AllavenaG. CarrarelliP. Del BelloB. LuisiS. PetragliaF. MaellaroE. Autophagy is upregulated in ovarian endometriosis: a possible interplay with p53 and heme oxygenase-1.Fertil. Steril.2015103512441251.e110.1016/j.fertnstert.2015.02.00725772769
    [Google Scholar]
  83. YangH. HuT. HuP. QiC. QianL. miR‑143‑3p inhibits endometriotic stromal cell proliferation and invasion by inactivating autophagy in endometriosis.Mol. Med. Rep.202123535610.3892/mmr.2021.1199533760149
    [Google Scholar]
  84. LinY.K. LiY.Y. LiY. LiD.J. WangX.L. WangL. YuM. ZhuY.Z. ChengJ.J. DuM.R. SCM-198 Prevents Endometriosis by Reversing Low Autophagy of Endometrial Stromal Cell via Balancing ERα and PR Signals.Front. Endocrinol20221385817610.3389/fendo.2022.85817635784569
    [Google Scholar]
  85. FabrisL BrivioS CadamuroM StrazzaboscoM Revisiting epithelial-to-mesenchymal transition in liver fibrosis: clues for a better understanding of the “reactive” biliary epithelial phenotype.Int. J. Stem Cells201610.1155/2016/2953727
    [Google Scholar]
  86. KonradL. DietzeR. RiazM.A. Scheiner-BobisG. BehnkeJ. HornéF. HoerscherA. ReisingC. Meinhold-HeerleinI. Epithelial–mesenchymal transition in endometriosis—when does it happen?J. Clin. Med.202096191510.3390/jcm906191532570986
    [Google Scholar]
  87. HsuY.W. ChenH.Y. ChiangY.F. ChangL.C. LinP.H. HsiaS.M. The effects of isoliquiritigenin on endometriosis in vivo and in vitro study.Phytomedicine20207715321410.1016/j.phymed.2020.15321432736296
    [Google Scholar]
  88. ChangL.C. ChiangY.F. ChenH.Y. HuangY.J. LiuA.C. HsiaS.M. The potential effect of fucoidan on inhibiting epithelial-to-mesenchymal transition, proliferation, and increase in apoptosis for endometriosis treatment:In Vivo and In Vitro Study.Biomedicines202081152810.3390/biomedicines811052833266505
    [Google Scholar]
  89. QiS. YanL. LiuZ. MuY. LiM. ZhaoX. ChenZ.J. ZhangH. Melatonin inhibits 17β-estradiol-induced migration, invasion and epithelial-mesenchymal transition in normal and endometriotic endometrial epithelial cells.Reprod. Biol. Endocrinol.20181616210.1186/s12958‑018‑0375‑529935526
    [Google Scholar]
  90. YuM.M. ZhouQ.M. 3,6-dihydroxyflavone suppresses the epithelial-mesenchymal transition, migration and invasion in endometrial stromal cells by inhibiting the Notch signaling pathway.Eur. Rev. Med. Pharmacol. Sci.201822124009401729949177
    [Google Scholar]
  91. OrellanaR. García-SolaresJ. DonnezJ. van KerkO. DolmansM.M. DonnezO. Important role of collective cell migration and nerve fiber density in the development of deep nodular endometriosis.Fertil. Steril.20171074987995.e510.1016/j.fertnstert.2017.01.00528238494
    [Google Scholar]
  92. ChungM.S. HanS.J. Endometriosis-associated angiogenesis and anti-angiogenic therapy for endometriosis.Front. glob. women's health2022856316
    [Google Scholar]
  93. MendelD.B. LairdA.D. XinX. LouieS.G. ChristensenJ.G. LiG. SchreckR.E. AbramsT.J. NgaiT.J. LeeL.B. MurrayL.J. CarverJ. ChanE. MossK.G. HaznedarJ.O. SukbuntherngJ. BlakeR.A. SunL. TangC. MillerT. ShirazianS. McMahonG. CherringtonJ.M. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship.Clin. Cancer Res.20039132733712538485
    [Google Scholar]
  94. AbbasM.A. DisiA.M. TahaM.O. Sunitinib as an anti-endometriotic agent.Eur. J. Pharm. Sci.201349473273610.1016/j.ejps.2013.05.02123747661
    [Google Scholar]
  95. GómezR. AbadA. DelgadoF. TamaritS. SimónC. PellicerA. Effects of hyperprolactinemia treatment with the dopamine agonist quinagolide on endometriotic lesions in patients with endometriosis-associated hyperprolactinemia.Fertil. Steril.2011953882888.e110.1016/j.fertnstert.2010.10.02421055747
    [Google Scholar]
  96. MaharaniM. WahyuniE.S. SutrisnoS. Effect of genistein on endometriosis lesion, matrix metalloproteinase-2 and -9 level of endometriosis:In silico and In vivo Study.J. Clin. Mol. Endocrinol.201514
    [Google Scholar]
  97. TsunoA. NasuK. KawanoY. YugeA. LiH. AbeW. NaraharaH. Fasudil inhibits the proliferation and contractility and induces cell cycle arrest and apoptosis of human endometriotic stromal cells: A promising agent for the treatment of endometriosis.J. Clin. Endocrinol. Metab.20119612E1944E195210.1210/jc.2011‑150321917869
    [Google Scholar]
  98. PellicerN. GallianoD. HerraizS. BaggerY.Z. ArceJ.C. PellicerA. Use of dopamine agonists to target angiogenesis in women with endometriosis.Hum. Reprod.202136485085810.1093/humrep/deaa33733355352
    [Google Scholar]
  99. TejadaM.Á. Santos-LlamasA.I. Fernández-RamírezM.J. TarínJ.J. CanoA. GómezR. A reassessment of the therapeutic potential of a dopamine receptor 2 agonist (D2-AG) in endometriosis by comparison against a standardized antiangiogenic treatment.Biomedicines20219326910.3390/biomedicines903026933800198
    [Google Scholar]
  100. DuffyJ.M. ArambageK. CorreaF.J. OliveD. FarquharC. GarryR. BarlowD.H. JacobsonT.Z. Laparoscopic surgery for endometriosis.Cochrane Database Syst. Rev.20144
    [Google Scholar]
  101. SaundersP.T.K. HorneA.W. Endometriosis: Etiology, pathobiology, and therapeutic prospects.Cell2021184112807282410.1016/j.cell.2021.04.04134048704
    [Google Scholar]
  102. BafortC. BeebeejaunY. TomassettiC. BosteelsJ. DuffyJ.M. Laparoscopic surgery for endometriosis.Cochrane Database Syst. Rev202010
    [Google Scholar]
  103. HorneA.W. DanielsJ. HummelshojL. CoxE. CooperK.G. Surgical removal of superficial peritoneal endometriosis for managing women with chronic pelvic pain: Time for a rethink?BJOG2019126121414141610.1111/1471‑0528.1589431359584
    [Google Scholar]
  104. SimanskiC.J.P. AlthausA. HoederathS. KreutzK.W. HoederathP. LeferingR. Pape-KöhlerC. NeugebauerE.A.M. Incidence of chronic postsurgical pain (CPSP) after general surgery.Pain Med.20141571222122910.1111/pme.1243424716774
    [Google Scholar]
  105. AlthausA. Hinrichs-RockerA. ChapmanR. BeckerO.A. LeferingR. SimanskiC. WeberF. MoserK.H. JoppichR. TrojanS. GutzeitN. NeugebauerE. Development of a risk index for the prediction of chronic post-surgical pain.Eur. J. Pain201216690191010.1002/j.1532‑2149.2011.00090.x22337572
    [Google Scholar]
  106. KrupaA. PadałaO. PutowskiM. KonopelkoM. PiasekE. Available treatment methods for endometriosis.J. Phys. Educ. Sport201997178184
    [Google Scholar]
  107. StreuliI. de ZieglerD. SantulliP. MarcellinL. BorgheseB. BatteuxF. ChapronC. An update on the pharmacological management of endometriosis.Expert Opin. Pharmacother.201314329130510.1517/14656566.2013.76733423356536
    [Google Scholar]
  108. KimJ.J. KuritaT. BulunS.E. Progesterone action in endometrial cancer, endometriosis, uterine fibroids, and breast cancer.Endocr. Rev.201334113016210.1210/er.2012‑104323303565
    [Google Scholar]
  109. McCormackP.L. Dienogest.Drugs201070162073208810.2165/11206320‑000000000‑0000020964453
    [Google Scholar]
  110. BuggioL. SomiglianaE. BarbaraG. FrattaruoloM.P. VercelliniP. Oral and depot progestin therapy for endometriosis: Towards a personalized medicine.Expert Opin. Pharmacother.201718151569158110.1080/14656566.2017.138108628914561
    [Google Scholar]
  111. VercelliniP. PietropaoloG. De GiorgiO. PasinR. ChiodiniA. CrosignaniP.G. Treatment of symptomatic rectovaginal endometriosis with an estrogen–progestogen combination versus low-dose norethindrone acetate.Fertil. Steril.20058451375138710.1016/j.fertnstert.2005.03.08316275232
    [Google Scholar]
  112. HidalgoM. BahamondesL. PerrottiM. DiazJ. Dantas-MonteiroC. PettaC. Bleeding patterns and clinical performance of the levonorgestrel-releasing intrauterine system (Mirena) up to two years.Contraception200265212913210.1016/S0010‑7824(01)00302‑X11927115
    [Google Scholar]
  113. GodinR. MarcouxV. Vaginally administered danazol: An overlooked option in the treatment of rectovaginal endometriosis?J. Obstet. Gynaecol. Can.201537121098110310.1016/S1701‑2163(16)30075‑526637082
    [Google Scholar]
  114. SelakV. FarquharC. PrenticeA. SinglaA. Danazol for pelvic pain associated with endometriosis.Cochrane Database Syst. Rev.201011
    [Google Scholar]
  115. MarjoribanksJ. ProctorM.L. FarquharC. Nonsteroidal anti-inflammatory drugs for primary dysmenorrhoea.Cochrane Database Syst. Rev.20034CD00175114583938
    [Google Scholar]
  116. KalaitzopoulosD.R. SamartzisN. KolovosG.N. MaretiE. SamartzisE.P. EberhardM. DinasK. DaniilidisA. Treatment of endometriosis: A review with comparison of 8 guidelines.BMC Womens Health202121139710.1186/s12905‑021‑01545‑534844587
    [Google Scholar]
  117. FerreroS. EvangelistiG. BarraF. Current and emerging treatment options for endometriosis.Expert Opin. Pharmacother.201819101109112510.1080/14656566.2018.149415429975553
    [Google Scholar]
  118. SoysalS. SoysalM.E. OzerS. GulN. GezginT. The effects of post-surgical administration of goserelin plus anastrozole compared to goserelin alone in patients with severe endometriosis: A prospective randomized trial.Hum. Reprod.200419116016710.1093/humrep/deh03514688176
    [Google Scholar]
  119. PavoneM.E. BulunS.E. Aromatase inhibitors for the treatment of endometriosis.Fertil. Steril.20129861370137910.1016/j.fertnstert.2012.08.05322999792
    [Google Scholar]
  120. BrownJ. PanA. HartR.J. Gonadotrophin-releasing hormone analogues for pain associated with endometriosis.Cochrane Database Syst. Rev.2010201012CD00847521154398
    [Google Scholar]
  121. SagsveenM. FarmerJ.E. PrenticeA. BreezeA. DuffyJ.M. WatsonA. PickA. Gonadotrophin-releasing hormone analogues for endometriosis: Bone mineral density.Cochrane Database Syst. Rev.200320034CD00129714583930
    [Google Scholar]
  122. CarrB. DmowskiW.P. O’BrienC. JiangP. BurkeJ. JimenezR. GarnerE. ChwaliszK. Elagolix, an oral GnRH antagonist, versus subcutaneous depot medroxyprogesterone acetate for the treatment of endometriosis: Effects on bone mineral density.Reprod. Sci.201421111341135110.1177/193371911454984825249568
    [Google Scholar]
  123. StruthersR.S. NichollsA.J. GrundyJ. ChenT. JimenezR. YenS.S.C. BozigianH.P. Suppression of gonadotropins and estradiol in premenopausal women by oral administration of the nonpeptide gonadotropin-releasing hormone antagonist elagolix.J. Clin. Endocrinol. Metab.200994254555110.1210/jc.2008‑169519033369
    [Google Scholar]
  124. IlhanM. Gürağaç DereliF.T. AkkolE.K. Novel drug targets with traditional herbal medicines for overcoming endometriosis.Curr. Drug Deliv.201916538639910.2174/156720181666618122711242130588884
    [Google Scholar]
  125. ShahP. AdlakhaA. Laparoscopic management of moderate: Severe endometriosis.J. Minim. Access Surg.2014101273310.4103/0972‑9941.12446324501506
    [Google Scholar]
  126. LeeD. KimS.K. LeeJ.R. JeeB.C. Management of endometriosis-related infertility: Considerations and treatment options.Clin. Exp. Reprod. Med.202047111110.5653/cerm.2019.0297132088944
    [Google Scholar]
  127. SaltanG. SüntarI. OzbilginS. IlhanM. DemirelM.A. OzB.E. KeleşH. AkkolE.K. Viburnum opulus L.: A remedy for the treatment of endometriosis demonstrated by rat model of surgically-induced endometriosis.J. Ethnopharmacol.201619345045510.1016/j.jep.2016.09.02927647013
    [Google Scholar]
  128. DemirelM.A. SuntarI. IlhanM. KelesH. Kupeli AkkolE. Experimental endometriosis remission in rats treated with Achillea biebersteinii Afan.: histopathological evaluation and determination of cytokine levels.Eur. J. Obstet. Gynecol. Reprod. Biol.201417517217710.1016/j.ejogrb.2014.01.01124495394
    [Google Scholar]
  129. SharmaM. SchoopR. HudsonJ.B. Echinacea as an antiinflammatory agent: the influence of physiologically relevant parameters.Phytother. Res.200923686386710.1002/ptr.271419107735
    [Google Scholar]
  130. PareekA. SutharM. RathoreG. BansalV. Feverfew (Tanacetum parthenium L.): A systematic review.Pharmacogn. Rev.20115910311010.4103/0973‑7847.7910522096324
    [Google Scholar]
  131. YuanD.P. GuL. LongJ. ChenJ. NiJ. QianN. ShiY.L. Shikonin reduces endometriosis by inhibiting RANTES secretion and mononuclear macrophage chemotaxis.Exp. Ther. Med.20147368569010.3892/etm.2013.145824520268
    [Google Scholar]
  132. AzarniaM. Ejtemaee-MehrS. AnsariA.S.A. Effects of Vitex agnus castus on mice fetus development.Acta Med. Iran.200745263270
    [Google Scholar]
  133. Küpeli AkkolE. DemirelM.A. Bahadır AcıkaraO. SüntarI. ErgeneB. IlhanM. OzbilginS. SaltanG. KeleşH. TekinM. Phytochemical analyses and effects of Alchemilla mollis (Buser) Rothm. and Alchemilla persica Rothm. in rat endometriosis model.Arch. Gynecol. Obstet.2015292361962810.1007/s00404‑015‑3665‑625700659
    [Google Scholar]
  134. NetoJ.N. CoelhoT.M. AguiarG.C. CarvalhoL.R. de AraújoA.G.P. GirãoM.J.B.C. SchorE. Experimental endometriosis reduction in rats treated with Uncaria tomentosa (cat’s claw) extract.Eur. J. Obstet. Gynecol. Reprod. Biol.2011154220520810.1016/j.ejogrb.2010.10.00221030132
    [Google Scholar]
  135. WichtlM. Herbal drugs and phytopharmaceuticals: A handbook for practice on a scientific basis.4th edStuttgartMedpharm2004
    [Google Scholar]
  136. XuH. BeckerC.M. LuiW.T. ChuC.Y. DavisT.N. KungA.L. BirsnerA.E. D’AmatoR.J. Wai ManG.C. WangC.C. Green tea epigallocatechin-3-gallate inhibits angiogenesis and suppresses vascular endothelial growth factor C/vascular endothelial growth factor receptor 2 expression and signaling in experimental endometriosis in vivo.Fertil. Steril.201196410211028.e110.1016/j.fertnstert.2011.07.00821821246
    [Google Scholar]
  137. WangD. LiuY. HanJ. ZaiD. JiM. ChengW. XuL. YangL. HeM. NiJ. CaiZ. YuC. Puerarin suppresses invasion and vascularization of endometriosis tissue stimulated by 17β-estradiol.PLoS One201169e2501110.1371/journal.pone.002501121949833
    [Google Scholar]
  138. ErgenoÄŸluA.M. YenielA.Ã. ErbaÅŸO. AktuÄŸH.Ã. YildirimN. UlukuÅŸM. TaskiranD. Regression of endometrial implants by resveratrol in an experimentally induced endometriosis model in rats.Reprod. Sci.201320101230123610.1177/193371911348301423536571
    [Google Scholar]
  139. JinZ. HuangJ. ZhuZ. Baicalein reduces endometriosis by suppressing the viability of human endometrial stromal cells through the nuclear factor-κB pathway in vitro. Exp. Ther. Med.20171442992299810.3892/etm.2017.486028912852
    [Google Scholar]
  140. Di PaolaR. FuscoR. GugliandoloE. CrupiR. EvangelistaM. GraneseR. CuzzocreaS. Co-micronized palmitoylethanolamide/polydatin treatment causes endometriotic lesion regression in a rodent model of surgically induced endometriosis.Front. Pharmacol.2016738210.3389/fphar.2016.0038227790149
    [Google Scholar]
  141. CosarE. MamillapalliR. MoridiI. DulebaA. TaylorH.S. Serum microRNA biomarkers regulated by simvastatin in a primate model of endometriosis.Reprod. Sci.201926101343135010.1177/193371911876597129587611
    [Google Scholar]
  142. VivierE. TomaselloE. BaratinM. WalzerT. UgoliniS. Functions of natural killer cells.Nat. Immunol.20089550351010.1038/ni158218425107
    [Google Scholar]
  143. ThiruchelvamU. WingfieldM. O’FarrellyC. Natural killer cells: Key players in endometriosis.Am. J. Reprod. Immunol.201574429130110.1111/aji.1240826104509
    [Google Scholar]
  144. Hoogstad-van EvertJ. PaapR. NapA. van der MolenR. The promises of natural killer cell therapy in endometriosis.Int. J. Mol. Sci.20222310553910.3390/ijms2310553935628346
    [Google Scholar]
  145. MatsuokaS. MaedaN. IzumiyaC. YamashitaC. NishimoriY. FukayaT. Expression of inhibitory-motif killer immunoglobulin-like receptor, KIR2DL1, is increased in natural killer cells from women with pelvic endometriosis.Am. J. Reprod. Immunol.200553524925410.1111/j.1600‑0897.2005.00271.x15833103
    [Google Scholar]
  146. BinyaminL. AlpaughR.K. HughesT.L. LutzC.T. CampbellK.S. WeinerL.M. Blocking NK cell inhibitory self-recognition promotes antibody-dependent cellular cytotoxicity in a model of anti-lymphoma therapy.J. Immunol.200818096392640110.4049/jimmunol.180.9.639218424763
    [Google Scholar]
  147. BylińskaA. WilczyńskaK. MalejczykJ. MilewskiŁ. WagnerM. JasekM. Niepiekło-MiniewskaW. WiśniewskiA. PłoskiR. BarczE. RoszkowskiP. KamińskiP. MalinowskiA. WilczyńskiJ.R. RadwanP. RadwanM. KuśnierczykP. NowakI. The impact of HLA-G, LILRB1 and LILRB2 gene polymorphisms on susceptibility to and severity of endometriosis.Mol. Genet. Genomics2018293360161310.1007/s00438‑017‑1404‑329234882
    [Google Scholar]
  148. CarosellaE.D. Rouas-FreissN. Tronik-Le RouxD. MoreauP. LeMaoultJ. HLA-G: An immune checkpoint molecule.Adv. Immunol.20151273314410.1016/bs.ai.2015.04.00126073983
    [Google Scholar]
  149. AmodioG. Sales de AlbuquerqueR. GregoriS. New insights into HLA -G mediated tolerance.Tissue Antigens201484325526310.1111/tan.1242725132109
    [Google Scholar]
  150. GalandriniR. PorporaM.G. StoppacciaroA. MicucciF. CapuanoC. TassiI. Di FeliceA. Benedetti-PaniciP. SantoniA. Increased frequency of human leukocyte antigen–E inhibitory receptor CD94/NKG2A–expressing peritoneal natural killer cells in patients with endometriosis.Fertil. Steril.2008895Suppl.1490149610.1016/j.fertnstert.2007.05.01817706207
    [Google Scholar]
  151. AndréP. DenisC. SoulasC. Bourbon-CailletC. LopezJ. ArnouxT. BléryM. BonnafousC. GauthierL. MorelA. RossiB. RemarkR. BresoV. BonnetE. HabifG. GuiaS. LalanneA.I. HoffmannC. LantzO. FayetteJ. Boyer-ChammardA. ZerbibR. DodionP. GhadiallyH. Jure-KunkelM. MorelY. HerbstR. Narni-MancinelliE. CohenR.B. VivierE. Anti-NKG2A mAb Is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK Cells.Cell2018175717311743.e1310.1016/j.cell.2018.10.01430503213
    [Google Scholar]
  152. WuL. LvC. SuY. LiC. ZhangH. ZhaoX. LiM. Expression of programmed death-1 (PD-1) and its ligand PD-L1 is upregulated in endometriosis and promoted by 17beta-estradiol.Gynecol. Endocrinol.201935325125610.1080/09513590.2018.151978730325236
    [Google Scholar]
  153. SikoraJ. Smycz-KubańskaM. Mielczarek-PalaczA. BednarekI. Kondera-AnaszZ. The involvement of multifunctional TGF-β and related cytokines in pathogenesis of endometriosis.Immunol. Lett.2018201313710.1016/j.imlet.2018.10.01130367890
    [Google Scholar]
  154. HawinkelsL.J.A.C. ten DijkeP. Exploring anti-TGF-β therapies in cancer and fibrosis.Growth Factors201129414015210.3109/08977194.2011.59541121718111
    [Google Scholar]
  155. VargaJ. PascheB. Transforming growth factor β as a therapeutic target in systemic sclerosis.Nat. Rev. Rheumatol.20095420020610.1038/nrrheum.2009.2619337284
    [Google Scholar]
  156. JiangT. ZhouC. RenS. Role of IL-2 in cancer immunotherapy.OncoImmunology201656e116346210.1080/2162402X.2016.116346227471638
    [Google Scholar]
  157. OosterlynckD.J. LacquetF.A. WaerM. KoninckxP.R. Lymphokine-activated killer activity in women with endometriosis.Gynecol. Obstet. Invest.199437318519010.1159/0002925568005550
    [Google Scholar]
  158. VelascoI. QueredaF. BermejoR. CamposA. AciénP. Intraperitoneal recombinant interleukin-2 activates leukocytes in rat endometriosis.J. Reprod. Immunol.2007741-212413210.1016/j.jri.2006.12.00117210185
    [Google Scholar]
  159. HalpernG. SchorE. KopelmanA. Nutritional aspects related to endometriosis.Rev. Assoc. Med. Bras.201561651952310.1590/1806‑9282.61.06.51926841161
    [Google Scholar]
  160. YousefluS. Jahanian SadatmahallehS. RoshanzadehG. MottaghiA. KazemnejadA. MoiniA. Effects of endometriosis on sleep quality of women: does life style factor make a difference?BMC Womens Health202020116810.1186/s12905‑020‑01036‑z32778090
    [Google Scholar]
  161. ZuraikatF.M. St-OngeM.P. The influence of diet on sleep.Neurological modulation of sleepWatson RR, Preedy VR, EdAcademic Press202020521510.1016/B978‑0‑12‑816658‑1.00022‑3
    [Google Scholar]
  162. CalderP.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20151851446948410.1016/j.bbalip.2014.08.01025149823
    [Google Scholar]
  163. NetsuS. KonnoR. OdagiriK. SomaM. FujiwaraH. SuzukiM. Oral eicosapentaenoic acid supplementation as possible therapy for endometriosis.Fertil. Steril.2008904Suppl.1496150210.1016/j.fertnstert.2007.08.01418054352
    [Google Scholar]
  164. ValléeA. LecarpentierY. Curcumin and endometriosis.Int. J. Mol. Sci.2020217244010.3390/ijms2107244032244563
    [Google Scholar]
  165. ArablouT. PharmacotherapyR.K-M-B. Curcumin and endometriosis: Review on potential roles and molecular mechanisms.Elsevier2018Available at: https://www.sciencedirect.com/science/article/pii/S0753332217346838
  166. ClinicalTrials.govAvailable at: https://clinicaltrials.gov/
  167. RicciE. ViganòP. CiprianiS. ChiaffarinoF. BianchiS. RebonatoG. ParazziniF. Physical activity and endometriosis risk in women with infertility or pain.Medicine20169540e495710.1097/MD.000000000000495727749551
    [Google Scholar]
  168. GonçalvesA.V. BarrosN.F. BahamondesL. The practice of hatha yoga for the treatment of pain associated with endometriosis.J. Altern. Complement. Med.2017231455210.1089/acm.2015.034327869485
    [Google Scholar]
  169. RakhshaeeZ. Effect of three yoga poses (cobra, cat and fish poses) in women with primary dysmenorrhea: A randomized clinical trial.J. Pediatr. Adolesc. Gynecol.201124419219610.1016/j.jpag.2011.01.05921514190
    [Google Scholar]
  170. GuptaL.A. GowdaP.A. Expectant management of endometriosis pain reduction of infertile women through yoga techniques: An observational study.Int. j. adapt. phys. educ. yoga2018412230
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855310120240819062459
Loading
/content/journals/cdth/10.2174/0115748855310120240819062459
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test