Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

This review aims to explore the advancements in long-acting injectable therapies (LAI) that are revolutionizing cancer treatment. With cancer posing a significant global health challenge, conventional treatments often come with limitations, including harmful side effects and resistance development. Long-acting formulations (LAFs), particularly those manipulating medication release through delivery systems, present a promising alternative. The review delves into various LAF approaches, such as micro-encapsulation, liposomes, oil-based LAPFs, nanocrystal suspensions, long-acting hydrogels, microneedles, and implantable systems. These approaches offer sustained release, reduced toxicity, and improved therapeutic efficacy. The review highlights the benefits and disadvantages of LAIs, emphasizing improved adherence, reduced risk of relapse, and enhanced quality of life. Evaluation parameters, including pharmacokinetics, biocompatibility, stability, mechanical properties, and safety, are discussed. The comprehensive assessment underscores the ongoing efforts in oncological research to develop innovative and effective therapies that address the challenges associated with conventional cancer treatments.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855307290240807060226
2024-08-21
2025-12-03
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. de OliveiraS.A. BorgesR. RosaD dos S. de SouzaA.C.S. SeabraA.B. BainoF. Strategies for cancer treatment based on photonic nanomedicine.Materials. MDPI AG202114
    [Google Scholar]
  3. YangL. NingQ. TangS.S. Recent advances and next breakthrough in immunotherapy for cancer treatment.J. Immunol. Res.20222022805221210.1155/2022/8052212
    [Google Scholar]
  4. Dagogo-JackI. ShawA.T. Tumour heterogeneity and resistance to cancer therapies. In: Nature Reviews Clinical Oncology. Nature Publishing Group2018158194
    [Google Scholar]
  5. PucciC. MartinelliC. CiofaniG. Innovative approaches for cancer treatment: current perspectives and new challenges.Ecancermedicalscience201913961
    [Google Scholar]
  6. ShiY. LuA. WangX. BelhadjZ. WangJ. ZhangQ. A review of existing strategies for designing long-acting parenteral formulations: Focus on underlying mechanisms, and future perspectives.Acta Pharm. Sin. B20211182396241510.1016/j.apsb.2021.05.002 34522592
    [Google Scholar]
  7. KurnoolA.N. TavariP. Long acting injectables-an overview.J Pharm Sci & Res201911828572861
    [Google Scholar]
  8. O’BrienM.N. JiangW. WangY. LoffredoD.M. Challenges and opportunities in the development of complex generic long-acting injectable drug products.J. Control. Release202133614415810.1016/j.jconrel.2021.06.017 34126170
    [Google Scholar]
  9. HoffmanA.S. LaiJ.J. Three significant highlights of controlled drug delivery over the past 55 years: PEGylation, ADCs, and EPR. In: Advanced Drug Delivery Reviews. Elsevier B.V.202015823
    [Google Scholar]
  10. LarsenM.T. KuhlmannM. HvamM.L. HowardK.A. Albumin-based drug delivery: Harnessing nature to cure disease.Mol. Cell. Ther.201641310.1186/s40591‑016‑0048‑8 26925240
    [Google Scholar]
  11. SmithC.I.E. ZainR. Therapeutic oligonucleotides: State of the art.Annu. Rev. Pharmacol. Toxicol.201959160563010.1146/annurev‑pharmtox‑010818‑021050 30285540
    [Google Scholar]
  12. DuivelshofB.L. MurisierA. CamperiJ. Therapeutic Fc‐fusion proteins: Current analytical strategies.J. Sep. Sci.2021441356210.1002/jssc.202000765 32914936
    [Google Scholar]
  13. ZhaoZ. UkidveA. GaoY. KimJ. Health and medicine Erythrocyte leveraged chemotherapy (ELeCt): Nanoparticle assembly on erythrocyte surface to combat lung metastasis.Sci. Adv.20195
    [Google Scholar]
  14. SrisJ. PrabhaK. Embase.Int. J. Pharma Bio Sci.2024153
    [Google Scholar]
  15. MantripragadaS. A lipid based depot (DepoFoam 1 technology) for sustained release drug delivery.Available from: www.elsevier.com/locate/plipres
  16. TienY. HuangW.C. KuoH.Y. Pharmacokinetics of dinalbuphine sebacate and nalbuphine in human after intramuscular injection of dinalbuphine sebacate in an extended‐release formulation.Biopharm. Drug Dispos.201738849449710.1002/bdd.2088 28741675
    [Google Scholar]
  17. MohammadI.S. HuH. YinL. HeW. Drug nanocrystals: Fabrication methods and promising therapeutic applications.Int. J. Pharm.201956218720210.1016/j.ijpharm.2019.02.045 30851386
    [Google Scholar]
  18. YaoS. JinB. LiuZ. Biomineralization: From material tactics to biological strategy.Adv. Mater.20172914160590310.1002/adma.201605903 28229486
    [Google Scholar]
  19. LaiW.F. HeZ.D. Design and fabrication of hydrogel-based nanoparticulate systems for in vivo drug delivery.J. Control. Release201624326928210.1016/j.jconrel.2016.10.013 27746276
    [Google Scholar]
  20. ChenZ. HeJ. QiJ. ZhuQ. WuW. LuY. Long-acting microneedles: A progress report of the state-of-the-art techniques.In: Drug Discovery Today.Elsevier Ltd202014621468
    [Google Scholar]
  21. Pons-FaudoaF.P. BalleriniA. SakamotoJ. GrattoniA. Advanced implantable drug delivery technologies: Transforming the clinical landscape of therapeutics for chronic diseases.Biomed. Microdevices20192124710.1007/s10544‑019‑0389‑6 31104136
    [Google Scholar]
  22. MckeageK. CheerS. WagstaffA.J. Adis drug evaluation octreotide long-acting release (LAR) A review of its use in the management of acromegaly.Drugs200363
    [Google Scholar]
  23. ParkK. OtteA. SharifiF. Formulation composition, manufacturing process, and characterization of poly(lactide-co-glycolide) microparticles.J. Control. Release20213291150116110.1016/j.jconrel.2020.10.044 33148404
    [Google Scholar]
  24. FreibergS. ZhuX.X. Polymer microspheres for controlled drug release.Int. J. Pharm.20042821-211810.1016/j.ijpharm.2004.04.013 15336378
    [Google Scholar]
  25. SridharanB. MohanN. BerklandC.J. DetamoreM.S. Material characterization of microsphere-based scaffolds with encapsulated raw materials.Mater. Sci. Eng. C20166342242810.1016/j.msec.2016.02.038 27040236
    [Google Scholar]
  26. SinhaV.R. TrehanA. Biodegradable microspheres for protein delivery.J. Control. Release200390326128010.1016/S0168‑3659(03)00194‑9 12880694
    [Google Scholar]
  27. ZhouJ. WalkerJ. AckermannR. Effect of manufacturing variables and raw materials on the composition-equivalent PLGA microspheres for 1-month controlled release of leuprolide.Mol. Pharm.20201751502151510.1021/acs.molpharmaceut.9b01188 32074448
    [Google Scholar]
  28. ButreddyA. GaddamR.P. KommineniN. DudhipalaN. VoshavarC. Plga/pla-based long-acting injectable depot microspheres in clinical use: Production and characterization overview for protein/peptide delivery.Int. J. Mol. Sci.202122
    [Google Scholar]
  29. BulbakeU. DoppalapudiS. KommineniN. KhanW. Liposomal formulations in clinical use: An updated review.In: Pharmaceutics. MDPI AG20179
    [Google Scholar]
  30. BanghamA.D. StandishM.M. WatkinsJ.C. Diffusion of univalent ions across the lamellae of swollen phospholipids.J. Mol. Biol.1965131238IN2710.1016/S0022‑2836(65)80093‑6 5859039
    [Google Scholar]
  31. BozzutoG. MolinariA. Liposomes as nanomedical devices.Int. J. Nanomedicine20151097599910.2147/IJN.S68861 25678787
    [Google Scholar]
  32. BarenholzY.C. Doxil® — The first FDA-approved nano-drug: Lessons learned.J. Control. Release2012160211713410.1016/j.jconrel.2012.03.020 22484195
    [Google Scholar]
  33. YeQ. AshermanJ. StevensonM. BrownsonE. KatreN.V. DepoFoam® technology: A vehicle for controlled delivery of protein and peptide drugs.J. Control. Release200064
    [Google Scholar]
  34. MillaP. DosioF. CattelL. PEGylation of proteins and liposomes: A powerful and flexible strategy to improve the drug delivery.Curr. Drug Metab.201213110511910.2174/138920012798356934 21892917
    [Google Scholar]
  35. LeonardR.C.F. WilliamsS. TulpuleA. LevineA.M. OliverosS. Improving the therapeutic index of anthracycline chemotherapy: Focus on liposomal doxorubicin (MyocetTM). In: Breast. Churchill Livingstone20091821824
    [Google Scholar]
  36. MurryD.J. BlaneyS.M. Clinical pharmacology of encapsulated sustained-release cytarabine.Ann. Pharmacother.200034101173117810.1345/aph.19347 11054987
    [Google Scholar]
  37. SlingerlandM. GuchelaarH.J. GelderblomH. Liposomal drug formulations in cancer therapy: 15 years along the road.Drug Discov. Today2012173-416016610.1016/j.drudis.2011.09.015 21983329
    [Google Scholar]
  38. NkangaC.I. FischA. Rad-MalekshahiM. Clinically established biodegradable long acting injectables: An industry perspective.Adv. Drug Deliv. Rev.2020167194610.1016/j.addr.2020.11.008 33202261
    [Google Scholar]
  39. RahnfeldL. LucianiP. Injectable lipid-based depot formulations: Where do we stand? Pharmaceutics.MDPI AG202012128
    [Google Scholar]
  40. Weng LarsenS. LarsenC. Critical factors influencing the in vivo performance of long-acting lipophilic solutions--impact on in vitro release method design.AAPS J.200911476277010.1208/s12248‑009‑9153‑9 19894123
    [Google Scholar]
  41. MeyerJ.M. Converting oral to long-acting injectable antipsychotics: A guide for the perplexed.In: CNS Spectrums. Cambridge University Press2017221727
    [Google Scholar]
  42. PawarV.K. SinghY. MeherJ.G. GuptaS. ChourasiaM.K. Engineered nanocrystal technology: In-vivo fate, targeting and applications in drug delivery.J. Control. Release2014183516610.1016/j.jconrel.2014.03.030 24667572
    [Google Scholar]
  43. LiT. CipollaD. RadesT. BoydB.J. Drug nanocrystallisation within liposomes.J. Control. Release20182889611010.1016/j.jconrel.2018.09.001 30184465
    [Google Scholar]
  44. JoshiK. ChandraA. JainK. TalegaonkarS. Nanocrystalization: An emerging technology to enhance the bioavailability of poorly soluble drugs.Pharm. Nanotechnol.20197425927810.2174/2211738507666190405182524 30961518
    [Google Scholar]
  45. GaoL. ZhangD. ChenM. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system.J. Nanopart. Res.200810584586210.1007/s11051‑008‑9357‑4
    [Google Scholar]
  46. SurveD.H. JindalA.B. Recent advances in long-acting nanoformulations for delivery of antiretroviral drugs.J. Control. Release202032437940410.1016/j.jconrel.2020.05.022 32461114
    [Google Scholar]
  47. VigataM. MeinertC. HutmacherD.W. BockN. Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques.Pharmaceutics20201212118810.3390/pharmaceutics12121188 33297493
    [Google Scholar]
  48. Vázquez-GonzálezM. WillnerI. Stimuli‐responsive biomolecule‐based hydrogels and their applications.Angew. Chem. Int. Ed.20205936153421537710.1002/anie.201907670 31730715
    [Google Scholar]
  49. KasińskiA. Zielińska-PisklakM. OledzkaE. SobczakM. Smart hydrogels - synthetic stimuli-responsive antitumor drug release systems.Int. J. Nanomedicine2020154541457210.2147/IJN.S248987 32617004
    [Google Scholar]
  50. WangD. HuY. LiuP. LuoD. Bioresponsive DNA hydrogels: Beyond the conventional stimuli responsiveness.Acc. Chem. Res.201750473373910.1021/acs.accounts.6b00581 28186723
    [Google Scholar]
  51. ChenM. QuanG. SunY. YangD. PanX. WuC. Nanoparticles-encapsulated polymeric microneedles for transdermal drug delivery.J. Control. Release202032516317510.1016/j.jconrel.2020.06.039 32629134
    [Google Scholar]
  52. LiW. TerryR.N. TangJ. FengM.R. SchwendemanS.P. PrausnitzM.R. Rapidly separable microneedle patch for the sustained release of a contraceptive.Nat. Biomed. Eng.20193322022910.1038/s41551‑018‑0337‑4 30948808
    [Google Scholar]
  53. KeC.J. LinY.J. HuY.C. Multidrug release based on microneedle arrays filled with pH-responsive PLGA hollow microspheres.Biomaterials201233205156516510.1016/j.biomaterials.2012.03.056 22484044
    [Google Scholar]
  54. KimY.C. ParkJ.H. PrausnitzM.R. Microneedles for drug and vaccine delivery.Adv. Drug Deliv. Rev.201264141547156810.1016/j.addr.2012.04.005 22575858
    [Google Scholar]
  55. PetersenR.S. NielsenL.H. RindzeviciusT. BoisenA. KellerS.S. Controlled drug release from biodegradable polymer matrix loaded in microcontainers using hot punching.Pharmaceutics20201211105010.3390/pharmaceutics12111050 33153058
    [Google Scholar]
  56. YangL. YangY. ChenH. MeiL. ZengX. Polymeric microneedle‐mediated sustained release systems: Design strategies and promising applications for drug delivery.Asian J. Pharm. Sci.2022177086
    [Google Scholar]
  57. VoraL.K. MoffattK. TekkoI.A. Microneedle array systems for long-acting drug delivery.Eur. J. Pharm. Biopharm.2021159447610.1016/j.ejpb.2020.12.006 33359666
    [Google Scholar]
  58. CorduasF. MancusoE. LamprouD.A. Long-acting implantable devices for the prevention and personalised treatment of infectious, inflammatory and chronic diseases.J. Drug Deliv. Sci. Technol.20206010195210.1016/j.jddst.2020.101952
    [Google Scholar]
  59. StewartS.A. Domínguez-RoblesJ. DonnellyR.F. LarrañetaE. Implantable polymeric drug delivery devices: Classification, manufacture, materials, and clinical applications.In: Polymers. MDPI AG201810
    [Google Scholar]
  60. KempeS. MäderK. In situ forming implants — An attractive formulation principle for parenteral depot formulations.J. Control. Release2012161266867910.1016/j.jconrel.2012.04.016 22543012
    [Google Scholar]
  61. PackhaeuserC.B. SchniedersJ. OsterC.G. KisselT. In situ forming parenteral drug delivery systems: An overview.Eur. J. Pharm. Biopharm.200458244545510.1016/j.ejpb.2004.03.003 15296966
    [Google Scholar]
  62. AbuzarS.M. ParkE.J. SeoY. LeeJ. BaikS.H. HwangS.J. Preparation and evaluation of intraperitoneal long-acting oxaliplatin-loaded multi-vesicular liposomal depot for colorectal cancer treatment.Pharmaceutics202012873610.3390/pharmaceutics12080736 32764318
    [Google Scholar]
  63. CimenZ. BabadagS. OdabasS. AltuntasS. DemirelG. DemirelG.B. Injectable and self-healable pH-responsive gelatin–PEG/Laponite hybrid hydrogels as long-acting implants for local cancer treatment.ACS Appl. Polym. Mater.2021373504351810.1021/acsapm.1c00419
    [Google Scholar]
  64. XuX. HuangZ. HuangZ. Injectable, NIR/pH-responsive nanocomposite hydrogel as long-acting implant for chemophotothermal synergistic cancer therapy.ACS Appl. Mater. Interfaces2017924203612037510.1021/acsami.7b02307 28532154
    [Google Scholar]
  65. WonJ.E. WiT.I. LeeC.M. NIR irradiation-controlled drug release utilizing injectable hydrogels containing gold-labeled liposomes for the treatment of melanoma cancer.Acta Biomater.202113650851810.1016/j.actbio.2021.09.062 34626819
    [Google Scholar]
  66. NajlahM. Said SulimanA. TolaymatI. Development of injectable PEGylated liposome encapsulating disulfiram for colorectal cancer treatment.Pharmaceutics2019111161010.3390/pharmaceutics11110610 31739556
    [Google Scholar]
  67. WuD. ZhaoZ. KimJ. Gemcitabine and doxorubicin in immunostimulatory monophosphoryl lipid A liposomes for treating breast cancer.Bioeng. Transl. Med.202161e1018810.1002/btm2.10188 33532588
    [Google Scholar]
  68. HanB. YangY. ChenJ. Preparation, characterization, and pharmacokinetic study of a novel long-acting targeted paclitaxel liposome with antitumor activity.Int. J. Nanomedicine20201555357110.2147/IJN.S228715 32158208
    [Google Scholar]
  69. JusuS.M. ObayemiJ.D. SalifuA.A. Drug-encapsulated blend of PLGA-PEG microspheres: In vitro and in vivo study of the effects of localized/targeted drug delivery on the treatment of triple-negative breast cancer.Sci. Rep.20201011418810.1038/s41598‑020‑71129‑0 32843673
    [Google Scholar]
  70. ReynoldsJ.G. GerettiE. HendriksB.S. HER2-targeted liposomal doxorubicin displays enhanced anti-tumorigenic effects without associated cardiotoxicity.Toxicol. Appl. Pharmacol.2012262111010.1016/j.taap.2012.04.008 22676972
    [Google Scholar]
  71. BernardiA. BraganholE. JägerE. Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model.Cancer Lett.20092811536310.1016/j.canlet.2009.02.018 19286307
    [Google Scholar]
  72. AbedinM.R. PowersK. AiardoR. BaruaD. BaruaS. Antibody–drug nanoparticle induces synergistic treatment efficacies in HER2 positive breast cancer cells.Sci. Rep.2021111734710.1038/s41598‑021‑86762‑6 33795712
    [Google Scholar]
  73. LuB. XiongS.B. YangH. YinX.D. ChaoR.B. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases.Eur. J. Pharm. Sci.2006281-2869510.1016/j.ejps.2006.01.001 16472996
    [Google Scholar]
  74. MaP. DongX. SwadleyC.L. Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome Pgp-mediated multiple drug resistance in leukemia.J. Biomed. Nanotechnol.20095215116110.1166/jbn.2009.1021 20055093
    [Google Scholar]
  75. AnsariK.A. TorneS.J. VaviaP.R. TrottaF. CavalliR. Paclitaxel loaded nanosponges: In-vitro characterization and cytotoxicity study on MCF-7 cell line culture.Curr. Drug Deliv.20118219420210.2174/156720111794479934 21235471
    [Google Scholar]
  76. BagalkotV. ZhangL. Levy-NissenbaumE. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer.Nano Lett.20077103065307010.1021/nl071546n 17854227
    [Google Scholar]
  77. LeT.M.D. JungB.K. LiY. Physically crosslinked injectable hydrogels for long-term delivery of oncolytic adenoviruses for cancer treatment.Biomater. Sci.20197104195420710.1039/C9BM00992B 31386700
    [Google Scholar]
  78. AbdellatifA.A.H. MohammedA.M. SaleemI. Smart injectable chitosan hydrogels loaded with 5-fluorouracil for the treatment of breast cancer.Pharmaceutics202214366110.3390/pharmaceutics14030661 35336035
    [Google Scholar]
  79. LengQ. LiY. ZhouP. Injectable hydrogel loaded with paclitaxel and epirubicin to prevent postoperative recurrence and metastasis of breast cancer.Mater. Sci. Eng. C202112911239010.1016/j.msec.2021.112390 34579909
    [Google Scholar]
  80. XieL. YueW. IbrahimK. ShenJ. A long-acting curcumin nanoparticle/in situ hydrogel composite for the treatment of uveal melanoma.Pharmaceutics2021139133510.3390/pharmaceutics13091335 34575410
    [Google Scholar]
  81. RazaF. ZhuY. ChenL. Paclitaxel-loaded pH responsive hydrogel based on self-assembled peptides for tumor targeting.Biomater. Sci.2019752023203610.1039/C9BM00139E 30839983
    [Google Scholar]
  82. GargM.A. GargA. ChhipaK. KumarL. Microencapsulation techniques in pharmaceutical formulation.Eur. J. Pharm. Med. Res.202253199206
    [Google Scholar]
  83. MicroencapsulationS.W. Microencapsulation.Angew. Chem. Int. Ed. Engl.197514853955010.1002/anie.197505391 810049
    [Google Scholar]
  84. PoshadriA. KunaA. Microencapsulation technology: A review.J Res ANGRAU201038
    [Google Scholar]
  85. GouinS. Microencapsulation: Industrial appraisal of existing technologies and trends.Trends Food Sci. Technol.2004157-8330347
    [Google Scholar]
  86. JacksonL.S. Microencapsulation and the food industry.LWT1991244289297
    [Google Scholar]
  87. JyothiN.V.N. PrasannaP.M. SakarkarS.N. PrabhaK.S. RamaiahP.S. SrawanG.Y. Microencapsulation techniques, factors influencing encapsulation efficiency.J. Microencapsul.201027318719710.3109/02652040903131301 20406093
    [Google Scholar]
  88. Gousia BegumS. A review on microencapsulation.World J Pharm Sci2018642536
    [Google Scholar]
  89. Bakker-WoudenbergI.A.J.M. Long-circulating sterically stabilized liposomes as carriers of agents for treatment of infection or for imaging infectious foci.Int. J. Antimicrob. Agents2002 Apr194299311
    [Google Scholar]
  90. KlibanovlA.L. MaruyamalK. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes.FEBS Lett.19902681235237
    [Google Scholar]
  91. BlumeG. CevcG. Molecular mechanism of the lipid vesicle longevity in vivo.Biochim. Biophys. Acta Biomembr.19931146215716810.1016/0005‑2736(93)90351‑Y 8452853
    [Google Scholar]
  92. FilipczakN. PanJ. YalamartyS.S.K. TorchilinV.P. Recent advancements in liposome technology.In: Advanced Drug Delivery Reviews. Elsevier B.V.2020156422
    [Google Scholar]
  93. TorchilinV.P. Recent advances with liposomes as pharmaceutical carriers.Nat. Rev. Drug Discov.20054214516010.1038/nrd1632 15688077
    [Google Scholar]
  94. LaouiniA. Jaafar-MaalejC. Limayem-BlouzaI. SfarS. CharcossetC. FessiH. Preparation, characterization and applications of liposomes: State of the art.J Colloid Sci Biotechnol20121214716810.1166/jcsb.2012.1020
    [Google Scholar]
  95. AkbarzadehA. Rezaei-SadabadyR. DavaranS. Woo JooS. ZarghamiN. HanifehpourY. Liposome: Classification, preparation, and applications.Nanoscale Res. Lett.201381102
    [Google Scholar]
  96. WilkinsonJ. AjuloD. TamburriniV. Lipid based intramuscular long-acting injectables: Current state of the art.Eur. J. Pharm. Sci.202217810625310.1016/j.ejps.2022.106253 35793750
    [Google Scholar]
  97. KalicharanR.W. OussorenC. SchotP. de RijkE. VromansH. The contribution of the in-vivo fate of an oil depot to drug absorption.Int. J. Pharm.20175281-259560110.1016/j.ijpharm.2017.06.055 28629984
    [Google Scholar]
  98. ThingM. LarsenC. ØstergaardJ. JensenH. LarsenS.W. In vitro release from oil injectables for intra-articular administration: Importance of interfacial area, diffusivity and partitioning.Eur. J. Pharm. Sci.201245335135710.1016/j.ejps.2011.12.006 22178293
    [Google Scholar]
  99. HippalgaonkarK. MajumdarS. KansaraV. Injectable lipid emulsions-advancements, opportunities and challenges.AAPS PharmSciTech20101141526154010.1208/s12249‑010‑9526‑5 20976577
    [Google Scholar]
  100. DriscollD.F. Lipid injectable emulsions: 2006.Nutr. Clin. Pract.200621438138610.1177/0115426506021004381 16870806
    [Google Scholar]
  101. ChangT.L. ZhanH. LiangD. LiangJ.F. Nanocrystal technology for drug formulation and delivery. Frontiers of Chemical Science and Engineering.Higher Education Press2015910.1007/s11705‑015‑1509‑3
    [Google Scholar]
  102. ShegokarR. MüllerR.H. Nanocrystals: Industrially feasible multifunctional formulation technology for poorly soluble actives.Int. J. Pharm.20103991-212913910.1016/j.ijpharm.2010.07.044 20674732
    [Google Scholar]
  103. CouillaudB.M. EspeauP. MignetN. CorvisY. State of the art of pharmaceutical solid forms: From crystal property issues to nanocrystals formulation.ChemMedChem2019141823
    [Google Scholar]
  104. PeltonenL. HirvonenJ. Drug nanocrystals – Versatile option for formulation of poorly soluble materials.Int. J. Pharm.20185371-2738310.1016/j.ijpharm.2017.12.005 29262301
    [Google Scholar]
  105. OverstreetD.J. DuttaD. StabenfeldtS.E. VernonB.L. Injectable hydrogels.J. Polym. Sci., B, Polym. Phys.2012501388190310.1002/polb.23081
    [Google Scholar]
  106. SchildH.G. Poly(N-isopropylacrylamide): Experiment, theory and application.Prog. Polym. Sci.199217216324910.1016/0079‑6700(92)90023‑R
    [Google Scholar]
  107. FeilH. BaeY.H. FeijenJ. KimS.W. Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers.Macromolecules199326102496250010.1021/ma00062a016
    [Google Scholar]
  108. ZentnerG.M. RathiR. ShihC. McreaJ.C. SeoM.H. OhH. Biodegradable block copolymers for delivery of proteins and water-insoluble drugs.J. Control. Release200172
    [Google Scholar]
  109. LakshmiS. KattiD.S. LaurencinC.T. Biodegradable polyphosphazenes for drug delivery applications.In: Advanced Drug Delivery Reviews.Elsevier200346748210.1016/S0169‑409X(03)00039‑5
    [Google Scholar]
  110. UrryD.W. Free energy transduction in polypeptides and proteins based on inverse temperature transitions.Prog. Biophys. Mol. Biol.19925712357
    [Google Scholar]
  111. DesbrièJ. HirrienM. RinaudoM. A calorimetric study of methylcellulose gelation.Carbohydr. Polym.1998372145152
    [Google Scholar]
  112. LeeK.Y. AlsbergE. MooneyD.J. Degradable and injectable poly(aldehyde guluronate) hydrogels for bone tissue engineering.J. Biomed. Mater. Res.2001562228233
    [Google Scholar]
  113. CaiS. LiuY. Zheng ShuX. PrestwichG.D. Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor.Biomaterials200526306054606710.1016/j.biomaterials.2005.03.012 15958243
    [Google Scholar]
  114. NorouziM. NazariB. MillerD.W. Injectable hydrogel-based drug delivery systems for local cancer therapy.Drug Discovery Today2016211835184910.1016/j.drudis.2016.07.006
    [Google Scholar]
  115. StabenfeldtS.E. GourleyM. KrishnanL. HoyingJ.B. BarkerT.H. Engineering fibrin polymers through engagement of alternative polymerization mechanisms.Biomaterials201233253554410.1016/j.biomaterials.2011.09.079 22018389
    [Google Scholar]
  116. MathewA.P. UthamanS. ChoK.H. ChoC.S. ParkI.K. Injectable hydrogels for delivering biotherapeutic molecules.Int. J. Biol. Macromol.20181101729
    [Google Scholar]
  117. BariyaS.H. GohelM.C. MehtaT.A. SharmaO.P. Microneedles: An emerging transdermal drug delivery system.J. Pharm. Pharmacol.2011641112910.1111/j.2042‑7158.2011.01369.x 22150668
    [Google Scholar]
  118. SinghP. CarrierA. ChenY. Polymeric microneedles for controlled transdermal drug delivery.J. Control. Release20193159711310.1016/j.jconrel.2019.10.022 31644938
    [Google Scholar]
  119. LeeJ.W. ParkJ.H. PrausnitzM.R. Dissolving microneedles for transdermal drug delivery.Biomaterials200829132113212410.1016/j.biomaterials.2007.12.048 18261792
    [Google Scholar]
  120. LarrañetaE. LuttonR.E.M. WoolfsonA.D. DonnellyR.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development.Mater. Sci. Eng. Rep.2016104132
    [Google Scholar]
  121. VoraL.K. DonnellyR.F. LarrañetaE. González-VázquezP. ThakurR.R.S. VaviaP.R. Novel bilayer dissolving microneedle arrays with concentrated PLGA nano-microparticles for targeted intradermal delivery: Proof of concept.J. Control. Release20172659310110.1016/j.jconrel.2017.10.005 29037785
    [Google Scholar]
  122. ZhuD.D. WangQ.L. LiuX.B. GuoX.D. Rapidly separating microneedles for transdermal drug delivery.Acta Biomater.20164131231910.1016/j.actbio.2016.06.005 27265152
    [Google Scholar]
  123. LeeY. ParkS. KimS.I. LeeK.J. RyuW.H. Rapidly detachable microneedles using porous water‐soluble layer for ocular drug delivery.Adv. Mater. Technol.202055190114510.1002/admt.201901145
    [Google Scholar]
  124. PeartonM. SallerV. CoulmanS.A. Microneedle delivery of plasmid DNA to living human skin: Formulation coating, skin insertion and gene expression.J. Control. Release2012160356156910.1016/j.jconrel.2012.04.005 22516089
    [Google Scholar]
  125. YangJ. LiuX. FuY. SongY. Recent advances of microneedles for biomedical applications: drug delivery and beyond.Acta Pharm. Sin. B201993469483
    [Google Scholar]
  126. CorrellC.U. KimE. SliwaJ.K. HammW. GopalS. MathewsM. Pharmacokinetic characteristics of long-acting injectable antipsychotics for schizophrenia: An overview.CNS Drugs2021353959
    [Google Scholar]
  127. NanakiS. BarmpalexisP. PapakonstantinouZ. ChristodoulouE. KostoglouM. BikiarisD.N. Preparation of new risperidone depot microspheres based on novel biocompatible poly(alkylene adipate) polyesters as long-acting injectable formulations.J. Pharm. Sci.2018107112891290110.1016/j.xphs.2018.07.029 30096352
    [Google Scholar]
  128. AlQahtaniA.D. O’ConnorD. DomlingA. GodaS.K. Strategies for the production of long-acting therapeutics and efficient drug delivery for cancer treatment.Biomed. Pharmacother.2019113108750
    [Google Scholar]
  129. HalpernV. StalterR.M. OwenD.H. DorflingerL.J. LendvayA. RademacherK.H. Towards the development of a longer-acting injectable contraceptive: Past research and current trends.Contraception2015 Jul92139
    [Google Scholar]
  130. DriscollD.F. Lipid injectable emulsions: Pharmacopeial and safety issues.Pharm. Res.20062391959196910.1007/s11095‑006‑9092‑4 16951994
    [Google Scholar]
  131. OwenA. RannardS. Strengths, weaknesses, opportunities and challenges for long acting injectable therapies: Insights for applications in HIV therapy.In: Advance Drug Delivery Reviews2016103144156
    [Google Scholar]
  132. ParkE.S. ManiarM. ShahJ.C. Biodegradable polyanhydride devices of cefazolin sodium, bupivacaine, and taxol for local drug delivery: Preparation, and kinetics and mechanism of in vitro release.J. Control. Release1998521-217918910.1016/S0168‑3659(97)00223‑X
    [Google Scholar]
  133. LarsenC. LarsenS.W. JensenH. YaghmurA. ØstergaardJ. Role of in vitro release models in formulation development and quality control of parenteral depots.Expert Opin. Drug Deliv.20096121283129510.1517/17425240903307431 19941410
    [Google Scholar]
  134. LaginhaK.M. VerwoertS. CharroisG.J.R. AllenT.M. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors.Clin. Cancer Res.200511196944694910.1158/1078‑0432.CCR‑05‑0343 16203786
    [Google Scholar]
  135. ShehzadA. WahidF. LeeY.S. Curcumin in cancer chemoprevention: Molecular targets, pharmacokinetics, bioavailability, and clinical trials.Arch. Pharm.2010343948949910.1002/ardp.200900319 20726007
    [Google Scholar]
  136. van ’t KloosterG. HoebenE. BorghysH. Pharmacokinetics and disposition of rilpivirine (TMC278) nanosuspension as a long-acting injectable antiretroviral formulation.Antimicrob. Agents Chemother.20105452042205010.1128/AAC.01529‑09 20160045
    [Google Scholar]
  137. YangX. YuB. ZhongZ. GuoB. HuangY. Nevirapine-polycaprolactone crystalline inclusion complex as a potential long-acting injectable solid form.Int. J. Pharm.20185431-212112910.1016/j.ijpharm.2018.03.043 29597033
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855307290240807060226
Loading
/content/journals/cdth/10.2174/0115748855307290240807060226
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test