Skip to content
2000
image of Advances in Piperazine-based Compounds for Antimicrobial Drug Development: Design, SAR, and Therapeutic Potential

Abstract

The rise of antimicrobial resistance has intensified the need for novel therapeutic agents to combat infectious diseases. Among various heterocyclic scaffolds, piperazine has emerged as a promising nucleus in drug discovery due to its structural versatility and ability to enhance bioactivity. This review explores the role of piperazine-based compounds in antimicrobial drug development, focusing on design strategies, Structure-Activity Relationships (SAR), and therapeutic applications. Structural modifications of piperazine derivatives, including the incorporation of electron-withdrawing groups (Cl, Br, NO), have demonstrated enhanced antibacterial activity, whereas electron-donating groups and certain ring substitutions (., pyridine, furan) often reduce potency. Molecular docking studies have provided valuable insights into the binding interactions of piperazine derivatives with microbial enzymes and proteins, validating their mechanism of action. Additionally, the integration of computational techniques and medicinal chemistry approaches has facilitated the rational design of more potent derivatives with improved pharmacokinetic properties. The therapeutic potential of piperazine-based antimicrobials extends to bacterial infections caused by multidrug-resistant (MDR) pathogens, making them strong candidates for next-generation antimicrobial agents. This review provides a comprehensive analysis of recent advancements in piperazine-based antimicrobial drug discovery and highlights future directions for medicinal chemists in the fight against drug-resistant microorganisms.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775378431250611100229
2025-06-19
2025-10-19
Loading full text...

Full text loading...

References

  1. Alav I. Buckner M.M.C. Non-antibiotic compounds associated with humans and the environment can promote horizontal transfer of antimicrobial resistance genes. Crit. Rev. Microbiol. 2024 50 6 993 1010 10.1080/1040841X.2023.2233603 37462915
    [Google Scholar]
  2. Sarmah P. Meria M. A review on common pathogenic microorganisms and their impact on human health. Electron J Biol 2018 14 1 50 55
    [Google Scholar]
  3. Dan M.M. Sarmah P. Rao Vana D. Adapa D. Wound healing: Concepts and updates in herbal medicine. Int. J. Med. Res. Health Sci. 2018 7 1 170 181
    [Google Scholar]
  4. Kaur P. Arora V. Pyrazole as an anti-microbial scaffold: A comprehensive review. Mini Rev. Org. Chem. 2023 20 6 578 592 10.2174/1570193X20666221031100542
    [Google Scholar]
  5. Hall T.J. Villapún V.M. Addison O. A call for action to the biomaterial community to tackle antimicrobial resistance. Biomater. Sci. 2020 8 18 4951 4974 10.1039/D0BM01160F 32820747
    [Google Scholar]
  6. Acar J. Röstel B. Antimicrobial resistance: An overview. Rev. Sci. Tech. 2001 20 3 797 810 10.20506/rst.20.3.1309 11732423
    [Google Scholar]
  7. Murray C.J.L. Ikuta K.S. Sharara F. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022 399 10325 629 655 10.1016/S0140‑6736(21)02724‑0 35065702
    [Google Scholar]
  8. O’Neill J. The Review on Antimicrobial Resistance Tackling drug-resistant infections globally: Final report and recommendations. London, United Kingdom Review on Antimicrobial Resistance 2014 12
    [Google Scholar]
  9. Torumkuney D. Poojary A. Shenoy B. Nijhara P. Dalal K. Manenzhe R. Country data on AMR in India in the context of community-acquired respiratory tract infections: Links between antibiotic susceptibility, local and international antibiotic prescribing guidelines, access to medicine and clinical outcome. J. Antimicrob. Chemother. 2022 77 Suppl. 1 i10 i17 10.1093/jac/dkac212 36065726
    [Google Scholar]
  10. Aminov R. Acquisition and spread of antimicrobial resistance: A tet(X) case study. Int. J. Mol. Sci. 2021 22 8 3905 10.3390/ijms22083905 33918911
    [Google Scholar]
  11. Nogrady B. The fight against antimicrobial resistance. Nature 2023 624 7991 S30 S32 10.1038/d41586‑023‑03912‑8 38092932
    [Google Scholar]
  12. Taneja N. Sharma M. Antimicrobial resistance in the environment. Indian J. Med. Res. 2019 149 2 119 128 10.4103/ijmr.IJMR_331_18 31219076
    [Google Scholar]
  13. Jampilek J. Heterocycles in medicinal chemistry. Molecules 2019 24 21 3839 10.3390/molecules24213839 31731387
    [Google Scholar]
  14. Sousa J.L.C. Albuquerque H.M.T. Silva A.M.S. Drug discovery based on oxygen and nitrogen (Non-)Heterocyclic compounds developed @LAQV–REQUIMTE/Aveiro. Pharmaceuticals 2023 16 12 1668 10.3390/ph16121668 38139794
    [Google Scholar]
  15. Taylor A.P. Robinson R.P. Fobian Y.M. Blakemore D.C. Jones L.H. Fadeyi O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem. 2016 14 28 6611 6637 10.1039/C6OB00936K 27282396
    [Google Scholar]
  16. Rizwan M. Noreen S. Asim S. Liaqat Z. Shaheen M. Ibrahim H. A comprehensive review on the synthesis of substituted piperazine and its novel bio-medicinal applications. Chem Inorg Mater 2024 2 100041 10.1016/j.cinorg.2024.100041
    [Google Scholar]
  17. Campbell W.C. Serendipity and new drugs for infectious disease. ILAR J. 2005 46 4 352 356 10.1093/ilar.46.4.352 16179743
    [Google Scholar]
  18. Sharma A. Wakode S. Fayaz F. Khasimbi S. Pottoo F.H. Kaur A. An overview of piperazine scaffold as promising nucleus for different therapeutic targets. Curr. Pharm. Des. 2020 26 35 4373 4385 10.2174/1381612826666200417154810 32303168
    [Google Scholar]
  19. Zhang R.H. Guo H.Y. Deng H. Li J. Quan Z.S. Piperazine skeleton in the structural modification of natural products: A review. J. Enzyme Inhib. Med. Chem. 2021 36 1 1165 1197 10.1080/14756366.2021.1931861 34080510
    [Google Scholar]
  20. Tahir S. Mahmood T. Dastgir F. Haq I. Waseem A. Rashid U. Design, synthesis and anti-bacterial studies of piperazine derivatives against drug resistant bacteria. Eur. J. Med. Chem. 2019 166 224 231 10.1016/j.ejmech.2019.01.062
    [Google Scholar]
  21. Kottakki N.K. Rao A.K. Devi P.U. Synthesis of piperine - Piperazine analogues and their antibacterial activity. INDIAN DRUGS 2021 58 6 30 35
    [Google Scholar]
  22. Wang Y. Xu K. Bai G. Synthesis and antifungal activity of novel triazole compounds containing piperazine moiety. Molecules 2014 19 8 11333 11340 10.3390/molecules190811333 25090121
    [Google Scholar]
  23. Thamban Chandrika N. Shrestha S.K. Ngo H.X. Tsodikov O.V. Howard K.C. Garneau-Tsodikova S. Alkylated piperazines and piperazine-azole hybrids as antifungal agents. J. Med. Chem. 2018 61 1 158 173 10.1021/acs.jmedchem.7b01138 29256601
    [Google Scholar]
  24. Huang J. Xu W. Xie H. Li S. One-step cyclization: Synthesis of N-heteroalkyl-N'-tosylpiperazines. J. Org. Chem. 2012 77 17 7506 7511 10.1021/jo3012896 22849619
    [Google Scholar]
  25. Cochran B.M. Michael F.E. Synthesis of 2,6-disubstituted piperazines by a diastereoselective palladium-catalyzed hydroamination reaction. Org. Lett. 2008 10 2 329 332 10.1021/ol702891p 18154298
    [Google Scholar]
  26. Gueret R. Pelinski L. Bousquet T. Sauthier M. Ferey V. Bigot A. Visible-light-driven carboxylic amine protocol (CLAP) for the synthesis of 2-substituted piperazines under batch and flow conditions. Org. Lett. 2020 22 13 5157 5162 10.1021/acs.orglett.0c01759 32575988
    [Google Scholar]
  27. Lu Z. Stahl S.S. Intramolecular Pd(II)-catalyzed aerobic oxidative amination of alkenes: Synthesis of six-membered N-heterocycles. Org. Lett. 2012 14 5 1234 1237 10.1021/ol300030w 22356620
    [Google Scholar]
  28. Montgomery T.D. Rawal V.H. Palladium-catalyzed modular synthesis of substituted piperazines and related nitrogen heterocycles. Org. Lett. 2016 18 4 740 743 10.1021/acs.orglett.5b03708 26824482
    [Google Scholar]
  29. Zeng C. Avula S.R. Meng J. Zhou C. Synthesis and biological evaluation of piperazine hybridized coumarin indolylcyanoenones with antibacterial potential. Molecules 2023 28 6 2511 10.3390/molecules28062511 36985486
    [Google Scholar]
  30. Nguyen W. Dans M.G. Ngo A. Structure activity refinement of phenylsulfonyl piperazines as antimalarials that block erythrocytic invasion. Eur. J. Med. Chem. 2021 214 113253 10.1016/j.ejmech.2021.113253 33610028
    [Google Scholar]
  31. Kumar R.R. Sahu B. Pathania S. Singh P.K. Akhtar M.J. Kumar B. Piperazine, a key substructure for antidepressants: Its role in developments and structure‐activity relationships. ChemMedChem 2021 16 12 1878 1901 10.1002/cmdc.202100045 33751807
    [Google Scholar]
  32. Jang E.H. Bae H.D. Jeon Y. Shin D.H. Kang S. Lee K. Meclizine, a piperazine-derivative antihistamine, binds to dimerized translationally controlled tumor protein and attenuates allergic reactions in a mouse model. Biomed. Pharmacother. 2023 157 114072 10.1016/j.biopha.2022.114072 36493627
    [Google Scholar]
  33. Guo J. Tao H. Alasadi A. Huang Q. Jin S. Niclosamide piperazine prevents high-fat diet-induced obesity and diabetic symptoms in mice. Eat. Weight Disord. 2019 24 1 91 96 10.1007/s40519‑017‑0424‑7 28780747
    [Google Scholar]
  34. Rathore A. Asati V. Kashaw S.K. The recent development of piperazine and piperidine derivatives as antipsychotic agents. Mini Rev. Med. Chem. 2021 21 3 362 379 10.2174/1389557520666200910092327 32912125
    [Google Scholar]
  35. Nate H. Watanabe A. Matsuki K. Synthesis of 2-phenylthiazolidine derivatives as cardiotonic agents. IV. Modification of the phenylpiperazino moiety of 2-(phenylpiperazinoal] koxyphenyl)thiazolidine-3-carbothioamides and the corresponding carboxamides. Chem. Pharm. Bull. 1987 35 7 2825 2839 10.1248/cpb.35.2825 3677235
    [Google Scholar]
  36. Bockaert J. Dumuis A. Bouhelal R. Sebben M. Cory R. Piperazine derivatives including the putative anxiolytic drugs, buspirone and ipsapirone, are agonists at 5-HT1A receptors negatively coupled with adenylate cyclase in hippocampal neurons. Naunyn Schmiedebergs Arch. Pharmacol. 1987 335 5 588 592 10.1007/BF00169129 2886925
    [Google Scholar]
  37. Srinivasarao S. Nandikolla A. Suresh A. Seeking potent anti-tubercular agents: Design and synthesis of substituted- N -(6-(4-(pyrazine-2-carbonyl)piperazine/homopiperazine-1-yl)pyridin-3-yl)benzamide derivatives as anti-tubercular agents. RSC Advances 2020 10 21 12272 12288 10.1039/D0RA01348J 35497605
    [Google Scholar]
  38. Halimehjani A.Z. Dehghan F. Tafakori V. Amini E. Hooshmand S.E. Nosood Y.L. Synthesis of novel antibacterial and antifungal dithiocarbamate-containing piperazine derivatives via re-engineering multicomponent approach. Heliyon 2022 8 6 e09564 10.1016/j.heliyon.2022.e09564 35669544
    [Google Scholar]
  39. Ruzic D. Ellinger B. Djokovic N. Discovery of 1-benzhydryl-piperazine-Based HDAC inhibitors with anti-breast cancer activity: Synthesis, molecular modeling, in vitro and in vivo biological evaluation. Pharmaceutics 2022 14 12 2600 10.3390/pharmaceutics14122600 36559094
    [Google Scholar]
  40. Bangari R.S. Sinha N. Adsorption of tetracycline, ofloxacin and cephalexin antibiotics on boron nitride nanosheets from aqueous solution. J. Mol. Liq. 2019 293 111376 10.1016/j.molliq.2019.111376
    [Google Scholar]
  41. Rao G.A. Mann J.R. Shoaibi A. Azithromycin and levofloxacin use and increased risk of cardiac arrhythmia and death. Ann. Fam. Med. 2014 12 2 121 127 10.1370/afm.1601 24615307
    [Google Scholar]
  42. Kouris E. Kalogiannis S. Perdih F. Turel I. Psomas G. Cobalt(II) complexes of sparfloxacin: Characterization, structure, antimicrobial activity and interaction with DNA and albumins. J. Inorg. Biochem. 2016 163 18 27 10.1016/j.jinorgbio.2016.07.022 27501348
    [Google Scholar]
  43. Caianelo M. Rodrigues-Silva C. Maniero M.G. Guimarães J.R. Antimicrobial activity against Gram-positive and Gram-negative bacteria during gatifloxacin degradation by hydroxyl radicals. Environ. Sci. Pollut. Res. Int. 2017 24 7 6288 6298 10.1007/s11356‑016‑6972‑y 27376368
    [Google Scholar]
  44. Metibemu D.S. Akinloye O.A. Akamo A.J. Ojo D.A. Okeowo O.T. Omotuyi I.O. Exploring receptor tyrosine kinases-inhibitors in cancer treatments. Egypt. J. Med. Hum. Genet. 2019 20 1 35 10.1186/s43042‑019‑0035‑0
    [Google Scholar]
  45. Bifeprunox – Atypical Antipsychotic Drug 2004 Available from: https://www.clinicaltrialsarena.com/projects/bifeprunox/
  46. Wilson T.K. Tripp J. Buspirone. Treasure Island (FL) StatPearls 2023 [https://www.ncbi.nlm.nih.gov/books/NBK531477/]
    [Google Scholar]
  47. Ellingrod V.L. Perry P.J. Nefazodone: A new antidepressant. Am. J. Health Syst. Pharm. 1995 52 24 2799 2812 10.1093/ajhp/52.24.2799 8748566
    [Google Scholar]
  48. Lestner J. Hope W.W. Itraconazole: An update on pharmacology and clinical use for treatment of invasive and allergic fungal infections. Expert Opin. Drug Metab. Toxicol. 2013 9 7 911 926 10.1517/17425255.2013.794785 23641752
    [Google Scholar]
  49. Morin D. Sapena R. Elimadi A. [3H]‐Trimetazidine mitochondrial binding sites: regulation by cations, effect of trimetazidine derivatives and other agents and interaction with an endogenous substance. Br. J. Pharmacol. 2000 130 3 655 663 10.1038/sj.bjp.0703348 10821795
    [Google Scholar]
  50. Nolte L.A. Yarasheski K.E. Kawanaka K. Fisher J. Le N. Holloszy J.O. The HIV protease inhibitor indinavir decreases insulin- and contraction-stimulated glucose transport in skeletal muscle. Diabetes 2001 50 6 1397 1401 10.2337/diabetes.50.6.1397 11375341
    [Google Scholar]
  51. Sodeifian G. Surya Alwi R. Razmimanesh F. Sodeifian F. Solubility of prazosin hydrochloride (alpha blocker antihypertensive drug) in supercritical CO2: Experimental and thermodynamic modelling. J. Mol. Liq. 2022 362 119689 10.1016/j.molliq.2022.119689
    [Google Scholar]
  52. Singh K. Siddiqui H.H. Shakya P. Bagga P. Kumar A. Khalid M. Piperazine-a biologically active scaffold. Int. J. Pharm. Sci. Res. 2015 6 10 4145 4158
    [Google Scholar]
  53. Verma S. Kumar S. Review exploring biological potentials of piperazines. Med. Chem. 2017 7 1 1 8 10.4172/2161‑0444.1000425
    [Google Scholar]
  54. Adejoh O. Ukoha P.O. Hosten E.C. Synthesis, structure, preliminary antimicrobial and antimalarial studies of 1,1′-(piperazine-1,4-diyl)bis(2-phenylethan-1-one) and its lanthanide, Ce(III), Pr(III), and Nd(III) complexes. J. Mol. Struct. 2024 1300 137287 10.1016/j.molstruc.2023.137287
    [Google Scholar]
  55. Hatnapure G.D. Keche A.P. Rodge A.H. Birajdar S.S. Tale R.H. Kamble V.M. Synthesis and biological evaluation of novel piperazine derivatives of flavone as potent anti-inflammatory and antimicrobial agent. Bioorg. Med. Chem. Lett. 2012 22 20 6385 6390 10.1016/j.bmcl.2012.08.071 22981334
    [Google Scholar]
  56. Janowska S. Andrzejczuk S. Gawryś P. Wujec M. Synthesis and antimicrobial activity of new mannich bases with piperazine moiety. Molecules 2023 28 14 5562 10.3390/molecules28145562 37513434
    [Google Scholar]
  57. Kolancılar H. Özcan H. Yılmaz A.Ş. Salan A.S. Ece A. 2,3-Dichloronaphthoquinone derivatives: Synthesis, antimicrobial activity, molecular modelling and ADMET studies. Bioorg. Chem. 2024 146 107300 10.1016/j.bioorg.2024.107300 38522391
    [Google Scholar]
  58. Koparde S. Hosamani K.M. Kulkarni V. Joshi S.D. Synthesis of coumarin-piperazine derivatives as potent anti-microbial and anti-inflammatory agents, and molecular docking studies. Chemical Data Collections 2018 15-16 197 206 10.1016/j.cdc.2018.06.001
    [Google Scholar]
  59. Amer Z. Al-Tamimi E.O. Synthesis and characterization of new 1,3,4-thiadiazole derivatives containing Azo group from acid hydrazide and studying their antioxidant activity. Chemical Methodologies 2022 6 8 604 611
    [Google Scholar]
  60. Jalageri M.D. Malgar Puttaiahgowda Y. Parambil A.M. Kulal A. Design of multifunctionalized piperazine polymer and its activity toward pathogenic microorganisms. J. Appl. Polym. Sci. 2019 136 19 47521 10.1002/app.47521
    [Google Scholar]
  61. Liu T. Yao X. Zhang R. Design, synthesis and biological evaluation of novel indole-piperazine derivatives as antibacterial agents. Bioorg. Med. Chem. Lett. 2023 89 129320 10.1016/j.bmcl.2023.129320 37156392
    [Google Scholar]
  62. Abu Mohsen U. Synthesis and antimicrobial activity of some piperazine dithiocarbamate derivatives 2014 11 3 347 54
    [Google Scholar]
  63. Nwuche C.O. Ujam O.T. Ibezim A. Ujam I.B. Experimental and in-silico investigation of anti-microbial activity of 1-chloro-2-isocyanatoethane derivatives of thiomorpholine, piperazine and morpholine. PLoS One 2017 12 1 e0170150 10.1371/journal.pone.0170150 28107379
    [Google Scholar]
  64. Rajashri N. Synthesis, characterization, anti-microbiological and methicillin-resistance staphylococeus aureus,evaluation of N-Acyl Ciprofloxacin derivatives. Int J Adv Res Sci Commun Technol 2023 3 1 24 29
    [Google Scholar]
  65. Patel P.R. Hirak J. Ujash S. Bhagirath P. Mayank B. Novel piperazine derivatives as anti microbial agents: A comprehensive review. Asian Pacific Journal of Health Sciences 2022 9 2 36 39 10.21276/apjhs.2022.9.2.09
    [Google Scholar]
  66. Patil M. Noonikara-Poyil A. Joshi S.D. Synthesis, molecular docking studies, and in vitro antimicrobial evaluation of piperazine and triazolo-pyrazine derivatives. Mol. Divers. 2022 26 2 827 841 10.1007/s11030‑021‑10190‑x 33547619
    [Google Scholar]
  67. Phougat H. Devi V. Rai S. Reddy T.S. Singh K. Urea derivatives of piperazine doped with pyrazole‐4‐carboxylic acids: Synthesis and antimicrobial evaluation. J. Heterocycl. Chem. 2021 58 10 1992 1999 10.1002/jhet.4325
    [Google Scholar]
  68. Prasad H.S.N. Ananda A.P. Mukarambi A. Design, synthesis, and anti-bacterial activities of piperazine based phthalimide derivatives against superbug-Methicillin-Resistant Staphylococcus aureus. Current Chemistry Letters 2023 12 1 65 78 10.5267/j.ccl.2022.9.005
    [Google Scholar]
  69. Rejinthala S. Endoori S. Vemula D. Bhandari V. Mondal T. Novel pyrimidine-piperazine hybrids as potential antimicrobial agents: In-vitro antimicrobial and in-silico studies. Results in Chemistry 2023 5 100951 10.1016/j.rechem.2023.100951
    [Google Scholar]
  70. Sadalge P.R. Karnawadi V. Roy L.D. Prabu M. Krishnamurthy G. Gour P. Synthesis, characterization, and biological activity of novel azole piperazine congeners. J. Appl. Pharm. Sci. 2023 13 4 53 69
    [Google Scholar]
  71. Salem M.E. Fares I.M.Z. Ghozlan S.A.S. Abdel-Aziz M.M. Abdelhamid I.A. Elwahy A.H.M. Facile synthesis and antimicrobial activity of bis (fused 4 H ‐pyrans) incorporating piperazine as novel hybrid molecules: Michael’s addition approach. J. Heterocycl. Chem. 2022 59 11 1907 1926 10.1002/jhet.4525
    [Google Scholar]
  72. Mekonnen Sanka B. Mamo Tadesse D. Teju Bedada E. Mengesha E.T. Babu G.N. Design, synthesis, biological screening and molecular docking studies of novel multifunctional 1,4-di (aryl/heteroaryl) substituted piperazine derivatives as potential antitubercular and antimicrobial agents. Bioorg. Chem. 2022 119 105568 10.1016/j.bioorg.2021.105568 34968884
    [Google Scholar]
  73. Shinde R.R. Gaikwad D. Farooqui M. Synthesis and antimicrobial activity of 2‐(4‐(benzo[d]thiazol‐5‐ylsulfonyl)piperazine‐1‐yl)‐N‐substituted acetamide derivatives. J. Heterocycl. Chem. 2020 57 11 3907 3917 10.1002/jhet.4099
    [Google Scholar]
  74. Suryavanshi H.R. Rathore M.M. Synthesis and biological activities of piperazine derivatives as antimicrobial and antifungal agents. Organic Communications 2017 10 3 228 238 10.25135/acg.oc.23.17.05.026
    [Google Scholar]
  75. Yadav P. Kaushik C.P. Kumar A. Synthesis and antimicrobial activity of piperazine containing substituted 1,2,3-triazoles with amide linkage. Synth. Commun. 2022 52 22 2149 2162 10.1080/00397911.2022.2132868
    [Google Scholar]
  76. Bhati S. Kumar V. Singh S. Singh J. Synthesis, biological activities and docking studies of piperazine incorporated 1, 3, 4-oxadiazole derivatives. J. Mol. Struct. 2019 1191 197 205 10.1016/j.molstruc.2019.04.106
    [Google Scholar]
  77. Bogdanov A.V. Vazykhova A.M. Khasiyatullina N.R. New N-Mannich bases obtained from isatin and piperazine derivatives: The synthesis and evaluation of antimicrobial activity. Chem. Heterocycl. Compd. 2016 52 1 25 30 10.1007/s10593‑016‑1826‑6
    [Google Scholar]
  78. Patil M. Noonikara Poyil A. Joshi S.D. Patil S.A. Patil S.A. Bugarin A. Design, synthesis, and molecular docking study of new piperazine derivative as potential antimicrobial agents. Bioorg. Chem. 2019 92 103217 10.1016/j.bioorg.2019.103217 31479986
    [Google Scholar]
  79. Wang S.F. Yin Y. Qiao F. Synthesis, molecular docking and biological evaluation of metronidazole derivatives containing piperazine skeleton as potential antibacterial agents. Bioorg. Med. Chem. 2014 22 8 2409 2415 10.1016/j.bmc.2014.03.004 24680059
    [Google Scholar]
  80. Wang S.F. Yin Y. Wu X. Synthesis, molecular docking and biological evaluation of coumarin derivatives containing piperazine skeleton as potential antibacterial agents. Bioorg. Med. Chem. 2014 22 21 5727 5737 10.1016/j.bmc.2014.09.048 25306465
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775378431250611100229
Loading
/content/journals/cdrr/10.2174/0125899775378431250611100229
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test