Skip to content
2000
Volume 17, Issue 2
  • ISSN: 2589-9775
  • E-ISSN: 2589-9783

Abstract

Background

After allogeneic organ transplantation, in order to reduce the risk of rejection, tacrolimus is given. In fact, infection is reported as one of the most common side effects of tacrolimus that might be associated with graft failure.

Objectives

This study aims to review the association between the occurrence of infections due to toxicity following the administration of tacrolimus in organ transplant recipients.

Methods

Scientific literature on the pharmacotherapy of tacrolimus after organ transplantation, infections, and neurotoxicity were searched using PUBMED.Gov (https://pubmed.ncbi.nlm.nih.gov/), Web of Science, and Scopus (n=108). All articles were screened, and the data associated with the topic of interest was extracted. The primary outcome was infection and neurotoxicity.

Results

Total area under the curve exposure, the ratio of parent drug/metabolites of tacrolimus was reported to be correlated with aggressive events such as infection episodes. A trough/dose ratio may demonstrate the net state of immunosuppression and drug-related events. The most frequent infectious complication of tacrolimus after organ transplantation was reported as urinary tract infections (UTIs). Virulent strains of recombinant Listeria monocytogenes, in addition to an increase in bacterial burden in the liver and spleen tissues, were reported in experimental animal studies. Patient survival was significantly lower in recipients with UTIs in the first post-transplant month. A higher degree of immunosuppression was associated with recurrent UTIs and drug-resistant organisms. By inhibiting the cerebral immune system, tacrolimus could cause neurodegeneration.

Conclusion

Transplant type, gut dysmotility, acute or chronic condition before transplant surgery, use of azole, antifungal, hematocrit, tacrolimus methods of detection, the total area under the curve, and duration of hospital stay could define the risk of infection through the first month of transplant surgery. In addition, neurological and infectious complications could be associated with the higher amounts of tacrolimus trough levels (C). Polypharmacy based on tacrolimus, antiviral, and antifungal drugs, in addition to neurotoxicity, could increase the risk of opportunistic infections such as cytomegalovirus within the first year of organ transplantation.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775259326231212073240
2023-12-22
2025-09-25
Loading full text...

Full text loading...

References

  1. RobertsMB FishmanJA Immunosuppressive agents and infectious risk in transplantation: Managing the "net state of immunosuppressionClin Infect Dis 20215;737e1302e131710.1093/cid/ciaa1189
    [Google Scholar]
  2. PercyC. HassounZ. MouradM. De MeyerM. BeguinC. JadoulM. GoffinE. WallemacqP. KanaanN. Impact of acute infection requiring hospitalization on tacrolimus blood levels in kidney transplant recipients.Transplant. Proc.20174992065206910.1016/j.transproceed.2017.09.01929149962
    [Google Scholar]
  3. EmalD. RampanelliE. ClaessenN. BemelmanF.J. LeemansJ.C. FlorquinS. DessingM.C. Calcineurin inhibitor Tacrolimus impairs host immune response against urinary tract infection.Sci. Rep.20199110610.1038/s41598‑018‑37482‑x30643171
    [Google Scholar]
  4. HowellJ. SawhneyR. TestroA. SkinnerN. GowP. AngusP. RatnamD. VisvanathanK. Cyclosporine and tacrolimus have inhibitory effects on toll-like receptor signaling after liver transplantation.Liver Transpl.201319101099110710.1002/lt.2371223894100
    [Google Scholar]
  5. HaoG.X. SongL.L. ZhangD.F. SuL.Q. Jacqz-AigrainE. ZhaoW. Off‐label use of tacrolimus in children with glomerular disease: Effectiveness, safety and pharmacokinetics.Br. J. Clin. Pharmacol.202086227428410.1111/bcp.1417431725919
    [Google Scholar]
  6. FranckeM.I. AndrewsL.M. LeH.L. van de WeteringJ. Clahsen-van GroningenM.C. van GelderT. van SchaikR.H.N. van der HoltB. de WinterB.C.M. HesselinkD.A. Avoiding tacrolimus underexposure and overexposure with a dosing algorithm for renal transplant recipients: A single arm prospective intervention trial.Clin. Pharmacol. Ther.2021110116917810.1002/cpt.216333452682
    [Google Scholar]
  7. SikmaM.A. HunaultC.C. Van MaarseveenE.M. HuitemaA.D.R. Van de GraafE.A. KirkelsJ.H. VerhaarM.C. GruttersJ.C. KeseciogluJ. De LangeD.W. High variability of whole-blood tacrolimus pharmacokinetics early after thoracic organ transplantation.Eur. J. Drug Metab. Pharmacokinet.202045112313410.1007/s13318‑019‑00591‑731745812
    [Google Scholar]
  8. Mendoza RojasA. HesselinkD.A. van BesouwN.M. DieterichM. de KuiperR. BaanC.C. van GelderT. High tacrolimus intrapatient variability and subtherapeutic immunosuppression are associated with adverse kidney transplant outcomes.Ther. Drug Monit.202244336937610.1097/FTD.000000000000095535394988
    [Google Scholar]
  9. VanhoveT. VermeulenT. AnnaertP. LerutE. KuypersD.R.J. High intrapatient variability of tacrolimus concentrations predicts accelerated progression of chronic histologic lesions in renal recipients.Am. J. Transplant.201616102954296310.1111/ajt.1380327013142
    [Google Scholar]
  10. ShukerN. van GelderT. HesselinkD.A. Intra-patient variability in tacrolimus exposure: Causes, consequences for clinical management.Transplant. Rev.2015292788410.1016/j.trre.2015.01.00225687818
    [Google Scholar]
  11. NeubergerJ.M. BechsteinW.O. KuypersD.R.J. BurraP. CitterioF. De GeestS. DuvouxC. JardineA.G. KamarN. KrämerB.K. MetselaarH.J. NevensF. PirenneJ. Rodríguez-PerálvarezM.L. SamuelD. SchneebergerS. SerónD. TrunečkaP. TisoneG. van GelderT. Practical recommendations for long-term management of modifiable risks in kidney and liver transplant recipients: A guidance report and clinical checklist by the consensus on managing modifiable risk in transplantation (COMMIT) group.Transplantation20171014SSuppl. 2S1S5610.1097/TP.000000000000165128328734
    [Google Scholar]
  12. KuypersD.R.J. From nonadherence to adherence.Transplantation202010471330134010.1097/TP.000000000000311231929426
    [Google Scholar]
  13. Tolou-GhamariZ MortazaviM PalizbanAA The investigation of the correlation between iminoral concentration and neurotoxic levels after kidney transplantation. ABR2015410.4103/2277‑9175.151876
    [Google Scholar]
  14. Tolou-GhamariZ. PalizbanA. GharaviM. Cyclosporin trough concentration-rejection relationship after kidney transplantation.Indian J. Pharmacol.2003356395396
    [Google Scholar]
  15. Tolou-GhamariZ SaneiB. Prograf concentrations in liver transplantation: Correlation with headache and other neurotoxic complications?Thrita 201651e32670
    [Google Scholar]
  16. Tolou-GhamariZ. PalizbanA.A. Laboratory monitoring of cyclosporine pre-dose concentration (C 0) after kidney transplantation in isfahan.IJMS20032828185
    [Google Scholar]
  17. Tolou-GhamariZ MirMohammadSadeghiM MazdakH Monitoring heart transplant recipients in order to investigate immunosuppressive drug absorption using pharmacokinetics parameters and its’ correlation with nephrotoxicity.AJECR 2019643846
    [Google Scholar]
  18. Tolou-GhamariZ. PalizbanA.A. Michael TredgerJ. Clinical monitoring of tacrolimus after liver transplantation using pentamer formation assay and microparticle enzyme immunoassay.Drugs R D.200451172210.2165/00126839‑200405010‑0000314725486
    [Google Scholar]
  19. TadayonF. ShariatiA. Tolou-GhamariZ. [Type of vascular anastomosis and early outcome after kidney transplantation].Urologiia20213758134251105
    [Google Scholar]
  20. Tolou-GhamariZ. PalizbanA.A. TredgerJ.M. Modelling tacrolimus AUC in acute and chronic liver disease immediately after transplant. Transplantationsmedizin.Organ of the German Transplantation Society2004162109111
    [Google Scholar]
  21. Tolou-GhamariZ. PalizbanA.A. WendonJ. TredgerJ.M. Pharmacokinetics of tacrolimus immediately after liver transplantation. Transplantationsmedizin.Organ of the German Transplantation Society2004162112116
    [Google Scholar]
  22. PflugradH. NöselP. DingX. SchmitzB. LanfermannH. Barg-HockH. KlempnauerJ. SchifferM. WeissenbornK. Brain function and metabolism in patients with long-term tacrolimus therapy after kidney transplantation in comparison to patients after liver transplantation.PLoS One2020153e022975910.1371/journal.pone.022975932155172
    [Google Scholar]
  23. DharR. Neurologic complications of transplantation.Neurocrit. Care201828141110.1007/s12028‑017‑0387‑628251577
    [Google Scholar]
  24. IllsingerS GokenC BrockmannM Effect of tacrolimus on energy metabolism in human umbilical endothelial cells. Annals of transplantation 201116268752011/07/0110.12659/AOT.881868
    [Google Scholar]
  25. TroenAM ScottTM D'AnciKE Cognitive dysfunction and depression in adult kidney transplant recipients: Baseline findings from the FAVORIT Ancillary Cognitive Trial (FACT)Renal Nutrition 201222226876. e1-310.1053/j.jrn.2011.07.009
    [Google Scholar]
  26. GelbS. ShapiroR.J. HillA. ThorntonW.L. Cognitive outcome following kidney transplantation.Nephrol. Dial. Transplant.20072331032103810.1093/ndt/gfm65918065801
    [Google Scholar]
  27. SikmaM.A. HunaultC.C. van de GraafE.A. VerhaarM.C. KeseciogluJ. de LangeD.W. MeulenbeltJ. High tacrolimus blood concentrations early after lung transplantation and the risk of kidney injury.Eur. J. Clin. Pharmacol.201773557358010.1007/s00228‑017‑2204‑828132082
    [Google Scholar]
  28. BrunetM. Pastor-AngladaM. Insights into the pharmacogenetics of tacrolimus pharmacokinetics and pharmacodynamics.Pharmaceutics2022149175510.3390/pharmaceutics1409175536145503
    [Google Scholar]
  29. RomeroFA RazonableRR Infections in liver transplant recipients. World J. Hepatol 20113839210.4254/wjh.v3.i4.83
    [Google Scholar]
  30. Van NieuwenhuyseB. Van der LindenD. ChatzisO. LoodC. WagemansJ. LavigneR. SchrovenK. PaeshuyseJ. de MagnéeC. SokalE. StéphenneX. ScheersI. Rodriguez-VillalobosH. DjebaraS. MerabishviliM. SoentjensP. PirnayJ.P. Bacteriophage-antibiotic combination therapy against extensively drug-resistant Pseudomonas aeruginosa infection to allow liver transplantation in a toddler.Nat. Commun.2022131572510.1038/s41467‑022‑33294‑w36175406
    [Google Scholar]
  31. MatsumotoY. YoshikawaA. NagamachiT. SugiyamaY. YamadaT. SugitaT. A critical role of calcineurin in stress responses, hyphal formation, and virulence of the pathogenic fungus Trichosporon asahii.Sci. Rep.20221211612610.1038/s41598‑022‑20507‑x36167890
    [Google Scholar]
  32. Rybicka-RamosM MarkiewiczM Suszka-ŚwitekA Profiles of interferon-gamma and interleukin-2 in patients after allogeneic hematopoietic stem cell transplantation.World J Biol Chem202227; 134728210.4331/wjbc.v13.i4.72
    [Google Scholar]
  33. LiJ. SuX. LiJ. WuW. WuC. GuoP. LiaoK. FuQ. LiJ. LiuL. WangC. The association of organ preservation fluid pathogens with early infection-related events after kidney transplantation.Diagnostics2022129224810.3390/diagnostics1209224836140649
    [Google Scholar]
  34. SorohanB.M. IsmailG. TacuD. ObrișcăB. CiolanG. GînguC. SinescuI. BastonC. Mycobacterium tuberculosis infection after kidney transplantation: A comprehensive review.Pathogens2022119104110.3390/pathogens1109104136145473
    [Google Scholar]
  35. BatemanCM KessonA PowysM Cytomegalovirus infections in children with primary and secondary immune deficienciesViruses 20211310200110.3390/v13102001
    [Google Scholar]
  36. ChengF. LiQ. WangJ. WangZ. ZengF. ZhangY. Analysis of risk factors and establishment of a risk prediction model for post-transplant diabetes mellitus after kidney transplantation.Saudi Pharm. J.20223081088109410.1016/j.jsps.2022.05.01336164572
    [Google Scholar]
  37. ChengF. LiQ. WangJ. WangZ. ZengF. ZhangY. Retrospective analysis of the risk factors of perioperative bacterial infection and correlation with clinical prognosis in kidney transplant recipients.Infect. Drug Resist.2022152271228610.2147/IDR.S35654335510155
    [Google Scholar]
  38. UrbanowiczT. MichalakM. Olasińska-WiśniewskaA. PerekB. RodzkiM. Wachowiak-BaszyńskaH. JemielityM. Neutrophile-to-lymphocyte ratio as a predictor of mortality and response to treatment in invasive aspergillosis among heart transplant recipients—exploratory study.Medicina20215712130010.3390/medicina5712130034946245
    [Google Scholar]
  39. AsadzadehR. AhmadpoorP. NafarM. SamavatS. NikoueinejadH. HosseinzadehM. MamizadehN. HatamiS. MasoumiE. AmirzargarA. Association of IL-15 and IP-10 serum levels with cytomegalovirus infection, CMV viral load and cyclosporine level after kidney transplantation.Rep. Biochem. Mol. Biol.202110221622310.52547/rbmb.10.2.21634604411
    [Google Scholar]
  40. GrossiP.A. KamarN. SalibaF. BaldantiF. AguadoJ.M. GottliebJ. BanasB. PotenaL. Cytomegalovirus management in solid organ transplant recipients: A pre-COVID-19 survey from the working group of the european society for organ transplantation.Transpl. Int.2022351033210.3389/ti.2022.1033235812158
    [Google Scholar]
  41. BeyzaeiZ. BagheriZ. KarimzadehS. GeramizadehB. Outcome of liver transplantation in hepatic glycogen storage disease: A systematic review and meta‐analysis.Clin. Transplant.2023373e1486710.1111/ctr.1486736433721
    [Google Scholar]
  42. ShevchenkoO TsirulnikovaO SharapchenkoS Upregulated circulating mir-424 and its' diagnostic value for gram-negative bacteremia after thoracic transplantation. Noncoding RNA Res 20227421722510.1016/j.ncrna.2022.08.001
    [Google Scholar]
  43. GuoJ. YuB. ZouJ. ZhangL. WangT. ZhouJ. QiuT. Correlation between CYP3A5 gene polymorphism and BK virus infection in kidney transplant recipients.Transpl. Immunol.20227510170910.1016/j.trim.2022.10170936100194
    [Google Scholar]
  44. Vanessa de Fátima BorgesV. Leticia Selinger GalantL.S. FK506 impairs neutrophil migration that results in increased polymicrobial sepsis susceptibility.Inflamm. Res.202210.1007/s00011‑022‑01669‑w36401631
    [Google Scholar]
  45. TakuyaIwamoto T KoheiNishikawa K. Monitoring of blood immunosuppressant concentrations and lymphocyte activation for predicting viral infections following kidney transplantation: A pilot studyMedicine 202210146e3178310.1097/MD.0000000000031783
    [Google Scholar]
  46. SantithanmakornC. VanichananJ. TownamchaiN. JutivorakoolK. WattanatornS. SutherasanM. OpanurukJ. KerrS.J. PraditpornsilpaK. AvihingsanonY. UdomkarnjananunS. Bacterial urinary tract infection and early asymptomatic bacteriuria in kidney transplantation still negatively affect kidney transplant outcomes in the era of modern immunosuppression and cotrimoxazole prophylaxis.Biomedicines20221011298410.3390/biomedicines1011298436428552
    [Google Scholar]
  47. JasiakN.M. ParkJ.M. Immunosuppression in solid-organ transplantation.Crit. Care Nurs. Q.201639322724010.1097/CNQ.000000000000011727254639
    [Google Scholar]
  48. PulleritsK GarlandS RengarajanS Kidney transplant-associated viral infection rates and outcomes in a single-centre cohort.Viruses 20221411240610.3390/v14112406
    [Google Scholar]
  49. Andrade-SierraJ. Heredia-PimentelA. Rojas-CamposE. Cytomegalovirus in renal transplant recipients from living donors with and without valganciclovir prophylaxis and with immunosuppression based on anti-thymocyte globulin or basiliximab.Int. J. Infect. Dis.2021107182410.1016/j.ijid.2021.04.032
    [Google Scholar]
  50. SinghN. GayowskiT. WagenerM.M. MarinoI.R. Bloodstream infections in liver transplant recipients receiving tacrolimus.Clin. Transplant.19971142752819267715
    [Google Scholar]
  51. KritikosA. ManuelO. Bloodstream infections after solid-organ transplantation.Virulence20167332934010.1080/21505594.2016.113927926766415
    [Google Scholar]
  52. RamirezC.G.B. McCauleyJ. Infection in Kidney Transplantation.Contemporary Kidney Transplantation201830732710.1007/978‑3‑319‑19617‑6_22
    [Google Scholar]
  53. TimsitJ.F. SonnevilleR. KalilA.C. BassettiM. FerrerR. JaberS. LanternierF. LuytC.E. MachadoF. MikulskaM. PapazianL. PèneF. PoulakouG. ViscoliC. WolffM. ZafraniL. Van DeldenC. Diagnostic and therapeutic approach to infectious diseases in solid organ transplant recipients.Intensive Care Med.201945557359110.1007/s00134‑019‑05597‑y30911807
    [Google Scholar]
  54. YinS. SongT. JiangY. LiX. FanY. LinT. Tacrolimus trough level at the first month may predict renal transplantation outcomes among living chinese kidney transplant patients: Propensity score–matched analysis.Ther. Drug Monit.201941330831610.1097/FTD.000000000000059331083041
    [Google Scholar]
  55. Reyes-PérezH. Sánchez-HuertaJ.L. Varela-FascinettoG. Romo-VázquezJ.C. Morales-SánchezA. Fuentes-PananáE.M. Parra-OrtegaI. Ramírez-RamírezG. López-MartínezB. Correlation between viral load of cytomegalovirus and tacrolimus and sirolimus levels in transplanted pediatric patients.Bol. Méd. Hosp. Infant. México20167314910.1016/j.bmhimx.2015.12.00629421231
    [Google Scholar]
  56. WongT.Y.H. ChanP.K.S. LeungC.B. SzetoC.C. TamJ.S. LiP.K.T. Parvovirus B19 infection causing red cell aplasia in renal transplantation on tacrolimus.Am. J. Kidney Dis.19993461132113610.1016/S0272‑6386(99)70021‑110585325
    [Google Scholar]
  57. PereiroM.Jr FerreirósM.M.P. De HoogG.S. ToribioJ. Cutaneous infection caused by Alternaria in patients receiving tacrolimus.Med. Mycol.200442327728210.1080/1369378031000161004715283243
    [Google Scholar]
  58. Miller-HandleyH. EricksonJ.J. GregoryE.J. PrasanphanichN.S. ShaoT.Y. WayS.S. Tacrolimus exposure windows responsible for Listeria monocytogenes infection susceptibility.Transpl. Infect. Dis.2021234e1365510.1111/tid.1365534057792
    [Google Scholar]
  59. MageeC.C. HalliganR.D. MilfordE.L. SayeghM.H. Nocardial infection in a renal transplant recipient on tacrolimus and mycophenolate mofetil.Clin. Nephrol.1999521444610442495
    [Google Scholar]
  60. Zylber-KatzE. GranotE. Abrupt increase of tacrolimus blood levels during an episode of Shigella infection in a child after liver transplantation.Ther. Drug Monit.200123664764910.1097/00007691‑200112000‑0000911802098
    [Google Scholar]
  61. FrühwirthM. FischerH. SimmaB. HochleitnerB. KönigsrainerA. MargreiterR. EllemunterH. Rotavirus infection as cause of tacrolimus elevation in solid‐organ‐transplanted children.Pediatr. Transplant.200152889210.1034/j.1399‑3046.2001.005002088.x11328545
    [Google Scholar]
  62. ManzanaresC. Therapeutic drug monitoring of tacrolimus: A moving matter.Therapie200257213313612185961
    [Google Scholar]
  63. WetzelS. WollenbergA. Eczema molluscatum in tacrolimus treated atopic dermatitis.Eur. J. Dermatol.2004141737414965804
    [Google Scholar]
  64. TaberD.J. ChokkalingamA. SuZ. SelfS. MillerD. SrinivasT. Randomized controlled trial assessing the impact of everolimus and low‐exposure tacrolimus on graft outcomes in kidney transplant recipients.Clin. Transplant.20193310e1367910.1111/ctr.1367931365151
    [Google Scholar]
  65. MijitiA. MatsunoN. TakeuchiH. UnezakiS. NagaoT. HiranoT. Clinical significance of the cellular pharmacodynamics of tacrolimus in living-donor liver transplantation.Cell Transplant.2009185-665766410.1177/096368970901805‑62219775528
    [Google Scholar]
  66. BzeiziKI AlbenmousaA ShawkatAM Efficacy and safety of once daily tacrolimus compared to twice daily tacrolimus after liver transplantation.World J Hepatol 202113337538310.4254/wjh.v13.i3.375
    [Google Scholar]
  67. AboujaoudeM. AlmawiW.Y. Single-center experience with tacrolimus-based immunosuppressive regimens in renal transplantation.Mol. Immunol.20033917-181067107210.1016/S0161‑5890(03)00076‑212835078
    [Google Scholar]
  68. GrasJ. Le FlécherA. DupontA. VérineJ. AmaraA. DelaugerreC. MolinaJ.M. PeraldiM.N. Characteristics, risk factors and outcome of BKV nephropathy in kidney transplant recipients: a case–control study.BMC Infect. Dis.20232317410.1186/s12879‑023‑08043‑z36747162
    [Google Scholar]
  69. RavalAD KistlerKD TangY Burden of neutropenia and leukopenia among adult kidney transplant recipients: A systematic literature review of observational studies.Transpl Infect Dis2023251e1400010.1111/tid.14000
    [Google Scholar]
  70. AgurT. RahamimovR. ZingermanB. BielopolskiD. LichtenbergS. NesherE. Rozen-ZviB. Exposure to tacrolimus trough levels below 6 ng/ml during the first year is associated with inferior kidney graft survival.Clin. Transplant.2023373e1487910.1111/ctr.1487936480165
    [Google Scholar]
  71. SongG.G. LeeY.H. Comparison of treatment response and serious infection using tacrolimus, tacrolimus with mycophenolate mofetil, in comparison to cyclophosphamide as induction treatment for lupus nephritis.Int. J. Clin. Pharmacol. Ther.2020581055055610.5414/CP20373632691727
    [Google Scholar]
  72. Tedesco- SilvaH. FelipeC. FerreiraA. CristelliM. OliveiraN. Sandes-FreitasT. AguiarW. CamposE. Gerbase-DeLimaM. FrancoM. Medina-PestanaJ. Reduced incidence of cytomegalovirus infection in kidney transplant recipients receiving everolimus and reduced tacrolimus doses.Am. J. Transplant.201515102655266410.1111/ajt.1332725988935
    [Google Scholar]
  73. LavríkováP. SečníkP. KubíčekZ. JaborA. HoškováL. FranekováJ. Tacrolimus has immunosuppressive effects on heavy/light chain pairs and free light chains in patients after heart transplantation: A relationship with infection.Transpl. Immunol.201850434710.1016/j.trim.2018.06.00529913223
    [Google Scholar]
  74. DeppermannC. PeiselerM. ZindelJ. ZbytnuikL. LeeW.Y. PasiniE. BaciuC. MatelskiJ. LeeY. KumarD. HumarA. SurewaardB. KubesP. BhatM. Tacrolimus impairs kupffer cell capacity to control bacteremia: Why transplant recipients are susceptible to infection.Hepatology20217351967198410.1002/hep.3149932761929
    [Google Scholar]
  75. PatersonD.L. SinghN. Interactions between tacrolimus and antimicrobial agents.Clin. Infect. Dis.19972561430144010.1086/5161389431391
    [Google Scholar]
  76. TrotterJF OsborneJC HellerM Effect of hepatitis C infection on tacrolimus doses and blood levels in liver transplantation recipients. Aliment Pharmacol Ther 2005221374410.1111/j.1365‑2036.2005.02502.x
    [Google Scholar]
  77. FujiyamaN. SatohS. SaitoM. NumakuraK. InoueT. YamamotoR. SaitoT. NaraT. KandaS. NaritaS. KagayaH. MiuraM. HabuchiT. Association of immunosuppressive agents and cytomegalovirus infection with de novo donor-specific antibody development within 1 year after renal transplantation.Int. Immunopharmacol.20197610588110.1016/j.intimp.2019.10588131520989
    [Google Scholar]
  78. PerrellaA. EspositoC. IoiaG. CampanellaL. TaglialatelaD. CuomoO. Cytomegalovirus infection after liver transplantation: Prophylaxis and preemptive treatment--a single-center experience.Transplant. Proc.20104241226122810.1016/j.transproceed.2010.03.06020534267
    [Google Scholar]
  79. LeeJ.T. WhitsonB.A. KellyR.F. D’CunhaJ. DunitzJ.M. HertzM.I. ShumwayS.J. Calcineurin inhibitors and Clostridium difficile infection in adult lung transplant recipients: The effect of cyclosporine versus tacrolimus.J. Surg. Res.2013184159960410.1016/j.jss.2013.03.04123566442
    [Google Scholar]
  80. Cohen-BucayA. GordonC.E. FrancisJ.M. Non-immunological complications following kidney transplantation.F1000Res 201918819410.12688/f1000research.16627.1
    [Google Scholar]
  81. ÜnalC.M. SteinertM. FKBPs in bacterial infections.Biochim. Biophys. Acta, Gen. Subj.20151850102096210210.1016/j.bbagen.2014.12.01825529296
    [Google Scholar]
  82. ZegarskaJ. HryniewieckaE. ZochowskaD. SamborowskaE. JazwiecR. BorowiecA. TszyrsznicW. ChmuraA. NazarewskiS. DadlezM. PaczekL. Tacrolimus metabolite M-III may have nephrotoxic and myelotoxic effects and increase the incidence of infections in kidney transplant recipients.Transplant. Proc.20164851539154210.1016/j.transproceed.2015.12.13327496443
    [Google Scholar]
  83. MalikS. GhoshA. HusainS. Disseminated mycobacteria chelonae infection in a kidney-pancreas transplant recipient: A case report and review of the literature.Saudi J. Kidney Dis. Transpl.20162761246125110.4103/1319‑2442.19468127900974
    [Google Scholar]
  84. KizilbashSJ RheaultMN BangdiwalaA Infection rates in tacrolimus versus cyclosporine-treated pediatric kidney transplant recipients with a rapid discontinuation of prednisone protocol: 1-year analysis.Pediatr Transplant2017214e1291910.1111/petr.12919
    [Google Scholar]
  85. Desmond PadhiI. LongP. BashaM. AnandanJ.V. Interaction between tacrolimus and erythromycin.Ther. Drug Monit.199719112012210.1097/00007691‑199702000‑000249029762
    [Google Scholar]
  86. ThölkingG SchmidtC KochR Influence of tacrolimus metabolism rate on BKV infection after kidney transplantation.Sci Rep20163063227310.1038/srep32273
    [Google Scholar]
  87. VaroE. MellaC. MartínezJ. ToméJ. OteroE. BustamanteM. CastroagudinJ.F. RegueiroB. MariñoA. González-QuintelaA. Incidence of cytomegalovirus infection and disease in orthotopic liver transplant patients immunosuppressed with cyclosporin versus tacrolimus.Transplant. Proc.20023451567156810.1016/S0041‑1345(02)03025‑712176488
    [Google Scholar]
  88. WingsE. SpinnerM. EckardtJ. Evaluation of clotrimazole prophylaxis on tacrolimus trough concentrations in kidney transplant recipients.Transpl. Infect. Dis.2022244e1388210.1111/tid.1388235689488
    [Google Scholar]
  89. DowneyM.R. TaskarV. LinderD.F. BaerS.L. WallerJ.L. BollagW.B. KhedaM. MohammedA. PadalaS. Tacrolimus: effects and side effects.Pediatr Infect Dis J 199918437237310.1097/00006454
    [Google Scholar]
  90. Linder DF. BaerSL. WallerJL. Incidence and risk factors for mucormycosis in renal transplant patients.J Investig Med20223704239640110.1136/jim‑2021‑001933
    [Google Scholar]
  91. BeattyPR KramsSM EsquivelCO Effect of cyclosporine a and tacrolimus on the growth of Epstein-Barr virus-transformed B-cell lines.Transplantation 19986591248125510.1097/00007890‑199805150‑00017
    [Google Scholar]
  92. HattoriY. TanakaH. TeranishiJ. IshidaH. MakiyamaK. MiyajimaE. NoguchiK. KubotaY. Influence of cytochrome P450 3A5 polymorphisms on viral infection incidence in kidney transplant patients treated with tacrolimus.Transplant. Proc.201446257057310.1016/j.transproceed.2013.11.02324656015
    [Google Scholar]
  93. HeeneyS. SzempruchK.R. LeeR.A.M. MintzA. SerranoP. DetwilerR. DoligalskiC. The effect of tacrolimus trough variability on kidney transplant outcomes.Transplant. Proc.202052103129313310.1016/j.transproceed.2020.07.01632896383
    [Google Scholar]
  94. HuT LiuQ XuQ Tacrolimus decreases proteinuria in patients with refractory IgA nephropathyMedicine 20189718e061010.1097/MD.0000000000010610
    [Google Scholar]
  95. HooksMA Tacrolimus, a new immunosuppressant--a review of the literature. Ann Pharmacother199428450151110.1177/106002809402800414
    [Google Scholar]
  96. VargaÁ. Kalmár NagyK. SzakályP. Takrolimuszterápia vesetranszplantáció után. A koncentráció/dózis arány aktuális kérdései.Orv. Hetil.2019160301178118310.1556/650.2019.3147031327249
    [Google Scholar]
  97. WinterbottomF. JenkinsM. Infections in the intensive care unit.Crit. Care Nurs. Clin. North Am.20172919711010.1016/j.cnc.2016.09.00228160960
    [Google Scholar]
  98. GreenM. Introduction: Infections in solid organ transplantation.Am. J. Transplant.201313s4Suppl. 43810.1111/ajt.1209323464993
    [Google Scholar]
  99. SinghN. LimayeA.P. Infections in Solid-Organ Transplant Recipients.Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases20153440345210.1016/B978‑1‑4557‑4801‑3.00313‑1
    [Google Scholar]
  100. PascualJ. BergerS.P. WitzkeO. TedescoH. MulgaonkarS. QaziY. ChadbanS. OppenheimerF. SommererC. OberbauerR. WataraiY. LegendreC. CitterioF. HenryM. SrinivasT.R. LuoW.L. MartiA. BernhardtP. VincentiF. TRANSFORM Investigators TRANSFORM investigators. Everolimus with reduced calcineurin inhibitor exposure in renal transplantation.J. Am. Soc. Nephrol.20182971979199110.1681/ASN.201801000929752413
    [Google Scholar]
  101. EkbergH. Tedesco-SilvaH. DemirbasA. VítkoŠ. NashanB. GürkanA. MargreiterR. HugoC. GrinyóJ.M. FreiU. VanrenterghemY. DalozeP. HalloranP.F. ELITE-Symphony Study Reduced exposure to calcineurin inhibitors in renal transplantation.N. Engl. J. Med.2007357252562257510.1056/NEJMoa06741118094377
    [Google Scholar]
  102. Le MeurY. BüchlerM. ThierryA. CaillardS. VillemainF. LavaudS. EtienneI. WesteelP.F. De LignyB.H. RostaingL. ThervetE. SzelagJ.C. RérolleJ.P. RousseauA. TouchardG. MarquetP. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation.Am. J. Transplant.20077112496250310.1111/j.1600‑6143.2007.01983.x17908276
    [Google Scholar]
  103. Tolou-GhamariZ. Tacrolimus and cyclosporin pharmacotherapy, detection methods, cytochrome P450 enzymes after heart transplantation.Cardiovasc. Hematol. Agents Med. Chem.202422210611310.2174/187152572166623072615002137496131
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775259326231212073240
Loading
/content/journals/cdrr/10.2174/0125899775259326231212073240
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keyword(s): antiviral; immunosuppressive; infection; Organ; tacrolimus; transplant
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test