Skip to content
2000
image of Platelet-rich Plasma: A Tour d’horizon for its Application in Rheumatoid Arthritis

Abstract

Rheumatoid Arthritis (RA) is one of the most common inflammatory diseases, affecting millions of people worldwide, out of which 40% show poor clinical response while 5-20% do not respond to current medications, including biologic and targeted therapies. Platelet-Rich Plasma (PRP), an autologous blood-derived product enriched with growth factors, has emerged as a new orthobiologic for the treatment of such non-responsive patients. The growth factors present in PRP influence various fundamental processes, including inflammation, angiogenesis, cell migration, and metabolism in RA. PRP alleviates the inflammatory response suppression of nuclear factor-κβ beta and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signalling pathway. It also modulates the intra-articular environment of the affected joints, characterised by the suppression of oxidative stress and synovial hyperplasia, and promotion of angiogenesis and chondrogenesis, thereby attenuating the arthritic changes in the synovium and cartilage. Till now, there appears to be a gap regarding uniformity in dosage regimens and treatment protocols among the studies demonstrating the efficacy of PRP in RA, and well-planned studies are required to explore the therapeutic potential of this new orthobiologic treatment.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775369691250526071536
2025-06-27
2025-09-03
Loading full text...

Full text loading...

References

  1. Entezami P. Fox D.A. Clapham P.J. Chung K.C. Historical perspective on the etiology of rheumatoid arthritis. Hand Clin. 2011 27 1 1 10 10.1016/j.hcl.2010.09.006 21176794
    [Google Scholar]
  2. Scherer H.U. Häupl T. Burmester G.R. The etiology of rheumatoid arthritis. J. Autoimmun. 2020 110 102400 10.1016/j.jaut.2019.102400 31980337
    [Google Scholar]
  3. Díaz-González F. Hernández-Hernández M.V. Rheumatoid arthritis. Med Clín 2023 161 12 533 542 10.1016/j.medcli.2023.07.014 37567824
    [Google Scholar]
  4. Di Matteo A. Bathon J.M. Emery P. Rheumatoid arthritis. Lancet 2023 402 10416 2019 2033 10.1016/S0140‑6736(23)01525‑8 38240831
    [Google Scholar]
  5. Gravallese E.M. Firestein G.S. Rheumatoid arthritis - common origins, divergent mechanisms. N. Engl. J. Med. 2023 388 6 529 542 10.1056/NEJMra2103726 36780677
    [Google Scholar]
  6. Brown P. Pratt A.G. Hyrich K.L. Therapeutic advances in rheumatoid arthritis. BMJ 2024 384 e070856 10.1136/bmj‑2022‑070856 38233032
    [Google Scholar]
  7. Figus F.A. Piga M. Azzolin I. McConnell R. Iagnocco A. Rheumatoid arthritis: Extra-articular manifestations and comorbidities. Autoimmun. Rev. 2021 20 4 102776 10.1016/j.autrev.2021.102776 33609792
    [Google Scholar]
  8. Rheumatoid arthritis 2023 Available from: https://www.who.int/news-room/fact-sheets/detail/rheumatoid-arthritis
  9. Choy E. 2012 Understanding the dynamics: Pathways involved in the pathogenesis of rheumatoid arthritis Rheumatology 51 v3 v11 Suppl. 5 10.1093/rheumatology/kes113 22718924
    [Google Scholar]
  10. Gao Y. Zhang Y. Liu X. Rheumatoid arthritis: Pathogenesis and therapeutic advances. MedComm 2024 5 3 e509 10.1002/mco2.509 38469546
    [Google Scholar]
  11. Tateiwa D. Yoshikawa H. Kaito T. Cartilage and bone destruction in arthritis: Pathogenesis and treatment strategy: A literature review. Cells 2019 8 8 818 10.3390/cells8080818 31382539
    [Google Scholar]
  12. Prasad P. Verma S. Surbhi, Ganguly NK, Chaturvedi V, Mittal SA. Rheumatoid arthritis: Advances in treatment strategies. Mol. Cell. Biochem. 2023 478 1 69 88 10.1007/s11010‑022‑04492‑3 35725992
    [Google Scholar]
  13. Pincus T Gibson KA Castrejón I Update on methotrexate as the anchor drug for rheumatoid arthritis. Bull Hosp Jt Dis 2013 71 71 S9 S19 (Suppl. 1) 24219036
    [Google Scholar]
  14. Cronstein B.N. Aune T.M. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat. Rev. Rheumatol. 2020 16 3 145 154 10.1038/s41584‑020‑0373‑9 32066940
    [Google Scholar]
  15. Rubio-Romero E. Díaz-Torné C. Moreno-Martínez M.J. De-Luz J. Methotrexate treatment strategies for rheumatoid arthritis: A scoping review on doses and administration routes. BMC Rheumatol. 2024 8 1 11 10.1186/s41927‑024‑00381‑y 38444043
    [Google Scholar]
  16. Han R. Ren H.C. Zhou S. Conventional disease-modifying anti-rheumatic drugs combined with Chinese Herbal Medicines for rheumatoid arthritis: A systematic review and meta-analysis. J. Tradit. Complement. Med. 2022 12 5 437 446 10.1016/j.jtcme.2022.01.005 36081815
    [Google Scholar]
  17. Spies C.M. Bijlsma J.W.J. Burmester G.R. Buttgereit F. Pharmacology of glucocorticoids in rheumatoid arthritis. Curr. Opin. Pharmacol. 2010 10 3 302 307 10.1016/j.coph.2010.02.001 20202903
    [Google Scholar]
  18. Doumen M. Pazmino S. Bertrand D. Westhovens R. Verschueren P. Glucocorticoids in rheumatoid arthritis: Balancing benefits and harm by leveraging the therapeutic window of opportunity. Joint Bone Spine 2023 90 3 105491 10.1016/j.jbspin.2022.105491 36410680
    [Google Scholar]
  19. Radu A.F. Bungau S.G. Management of rheumatoid arthritis: An overview. Cells 2021 10 11 2857 10.3390/cells10112857 34831081
    [Google Scholar]
  20. Sánchez-Flórez J.C. Seija-Butnaru D. Valero E.G. Acosta C.P.A. Amaya S. Pain management strategies in rheumatoid arthritis: A narrative review. J. Pain Palliat. Care Pharmacother. 2021 35 4 291 299 10.1080/15360288.2021.1973647 34623946
    [Google Scholar]
  21. Hochberg M. New directions in symptomatic therapy for patients with osteoarthritis and rheumatoid arthritis☆, ☆☆. Semin Arthritis Rheum 2002 32 3 4 14 (Suppl. 1) 10.1053/sarh.2002.37215 12528069
    [Google Scholar]
  22. Crofford LJ Use of NSAIDs in treating patients with arthritis. Arthritis Res Ther 2013 15 (S3.S2) (Suppl. 3) 10.1186/ar4174 24267197
    [Google Scholar]
  23. Bobek D. Banić Stipetić A. Franić M. Use of non-steroidal anti-inflammatory drugs in patients with advanced active rheumatoid arthritis. Acta Clin. Croat. 2022 61 4 588 598 10.20471/acc.2022.61.04.04 37868178
    [Google Scholar]
  24. Findeisen K.E. Sewell J. Ostor A.J.K. Biological therapies for rheumatoid arthritis: An overview for the clinician. Biologics 2021 15 343 352 10.2147/BTT.S252575 34413630
    [Google Scholar]
  25. Riaz M. Rasool G. Yousaf R. Fatima H. Munir N. Ejaz H. Anti-Rheumatic potential of biological DMARDS and protagonistic role of bio-markers in early detection and management of rheumatoid arthritis. Innate Immun. 2025 31 17534259251324820 10.1177/17534259251324820 40091354
    [Google Scholar]
  26. Law S.T. Taylor P.C. Role of biological agents in treatment of rheumatoid arthritis. Pharmacol. Res. 2019 150 104497 10.1016/j.phrs.2019.104497 31629903
    [Google Scholar]
  27. Chaplin S. Biological disease‐modifying drugs for rheumatoid arthritis. Prescriber 2020 31 4 22 27 10.1002/psb.1836
    [Google Scholar]
  28. Sarsenova M. Issabekova A. Abisheva S. Rutskaya-Moroshan K. Ogay V. Saparov A. Mesenchymal stem cell-based therapy for rheumatoid arthritis. Int. J. Mol. Sci. 2021 22 21 11592 10.3390/ijms222111592 34769021
    [Google Scholar]
  29. Li C. Sun Y. Xu W. Chang F. Wang Y. Ding J. Mesenchymal stem cells‐involved strategies for rheumatoid arthritis therapy. Adv. Sci. 2024 11 24 2305116 10.1002/advs.202305116 38477559
    [Google Scholar]
  30. Aghajani S. Maboudi S.A. Seyhoun I. Review of mesenchymal stem cell-derived exosomes and their potential therapeutic roles in treating rheumatoid arthritis. Mol. Biol. Rep. 2025 52 1 229 10.1007/s11033‑025‑10290‑z 39948229
    [Google Scholar]
  31. Feng Z. Yang Y. Liu X. Application of cell therapy in rheumatoid Arthritis: Focusing on the immunomodulatory strategies of Mesenchymal stem cells. Int. Immunopharmacol. 2025 147 114017 10.1016/j.intimp.2025.114017 39778278
    [Google Scholar]
  32. Ghoryani M. Shariati-Sarabi Z. Tavakkol-Afshari J. Ghasemi A. Poursamimi J. Mohammadi M. Amelioration of clinical symptoms of patients with refractory rheumatoid arthritis following treatment with autologous bone marrow-derived mesenchymal stem cells: A successful clinical trial in Iran. Biomed. Pharmacother. 2019 109 1834 1840 10.1016/j.biopha.2018.11.056 30551438
    [Google Scholar]
  33. Chiu Y.H. Liang Y.H. Hwang J.J. Wang H.S. IL-1β stimulated human umbilical cord mesenchymal stem cells ameliorate rheumatoid arthritis via inducing apoptosis of fibroblast-like synoviocytes. Sci. Rep. 2023 13 1 15344 10.1038/s41598‑023‑42585‑1 37714911
    [Google Scholar]
  34. Wang L. Hao M. Xu Y. Adipose-derived stem cells attenuate rheumatoid arthritis by restoring CX3CR1+ synovial lining macrophage barrier. Stem Cell Res. Ther. 2025 16 1 111 10.1186/s13287‑025‑04144‑5 40038808
    [Google Scholar]
  35. Lee J. Min H.K. Lim J.Y. Human nasal turbinate stem cells with specific gene signatures (HAS2, CXCL1, KRTAP1-5, GSTT2B, and C4B) attenuate rheumatoid arthritis. Sci. Rep. 2025 15 1 6493 10.1038/s41598‑025‑90707‑8 39987230
    [Google Scholar]
  36. Arshad M. Jalil F. Jaleel H. Ghafoor F. Bone marrow derived mesenchymal stem cells therapy for rheumatoid arthritis - A concise review of past ten years. Mol. Biol. Rep. 2023 50 5 4619 4629 10.1007/s11033‑023‑08277‑9 36929285
    [Google Scholar]
  37. Hou Y. Zhang X. Zeng D. Gingival mesenchymal stem cells derived from patients with rheumatoid arthritis treat experimental arthritis. VIEW 2024 5 20240021 10.1002/VIW.20240021
    [Google Scholar]
  38. Zhang C Ma P Qin A Current immunotherapy strategies for rheumatoid arthritis: The immunoengineering and delivery systems. Res 2023 6 0220 0 10.34133/research.0220
    [Google Scholar]
  39. Gupta S. Paliczak A. Delgado D. Evidence-based indications of platelet-rich plasma therapy. Expert Rev. Hematol. 2021 14 1 97 108 10.1080/17474086.2021.1860002 33275468
    [Google Scholar]
  40. Streit-Ciećkiewicz D. Kołodyńska A. Futyma-Gąbka K. Grzybowska M.E. Gołacki J. Futyma K. Platelet rich plasma in gynecology-discovering undiscovered-review. Int. J. Environ. Res. Public Health 2022 19 9 19 [PMID: 35564681
    [Google Scholar]
  41. Justicz N. Derakhshan A. Chen J.X. Lee L.N. Platelet-rich plasma for hair restoration. Facial Plast. Surg. Clin. North Am. 2020 28 2 181 187 10.1016/j.fsc.2020.01.009 32312505
    [Google Scholar]
  42. Everts P. Onishi K. Jayaram P. Lana J.F. Mautner K. Platelet-rich plasma: New performance understandings and therapeutic considerations in 2020. Int. J. Mol. Sci. 2020 21 20 7794 10.3390/ijms21207794 33096812
    [Google Scholar]
  43. Qian Y. Han Q. Chen W. platelet-rich plasma derived growth factors contribute to stem cell differentiation in musculoskeletal regeneration. Front Chem. 2017 5 89 10.3389/fchem.2017.00089 29164105
    [Google Scholar]
  44. Sharara F.I. Lelea L.L. Rahman S. Klebanoff J.S. Moawad G.N. A narrative review of platelet-rich plasma (PRP) in reproductive medicine. J. Assist. Reprod. Genet. 2021 38 5 1003 1012 10.1007/s10815‑021‑02146‑9 33723748
    [Google Scholar]
  45. Neculaes B. Frelinger A.L. Gerrits A.J. Activation of platelet-rich plasma by pulse electric fields: Voltage, pulse width and calcium concentration can be used to control and tune the release of growth factors, serotonin and hemoglobin. PLoS One 2021 16 4 e0249209 10.1371/journal.pone.0249209 33891598
    [Google Scholar]
  46. Dhurat R. Sukesh M.S. Principles and methods of preparation of platelet-rich plasma: A review and author′s perspective. J. Cutan. Aesthet. Surg. 2014 7 4 189 197 10.4103/0974‑2077.150734 25722595
    [Google Scholar]
  47. Fufa D. Shealy B. Jacobson M. Kevy S. Murray M.M. Activation of platelet-rich plasma using soluble type I collagen. J. Oral Maxillofac. Surg. 2008 66 4 684 690 10.1016/j.joms.2007.06.635 18355591
    [Google Scholar]
  48. Fang J. Wang X. Jiang W. Platelet-rich plasma therapy in the treatment of diseases associated with orthopedic injuries. Tissue Eng. Part B Rev. 2020 26 6 571 585 10.1089/ten.teb.2019.0292 32380937
    [Google Scholar]
  49. Xiong G. Lingampalli N. Koltsov J.C.B. Men and women differ in the biochemical composition of platelet-rich plasma. Am. J. Sports Med. 2018 46 2 409 419 10.1177/0363546517740845 29211968
    [Google Scholar]
  50. Sharun K. Pawde A.M. Amarpal. Classification and coding systems for platelet-rich plasma (PRP): A peek into the history. Expert Opin. Biol. Ther. 2021 21 2 121 123 10.1080/14712598.2021.1846715 33138647
    [Google Scholar]
  51. Dohan Ehrenfest D.M. Rasmusson L. Albrektsson T. Classification of platelet concentrates: From pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009 27 3 158 167 10.1016/j.tibtech.2008.11.009 19187989
    [Google Scholar]
  52. Mishra A. Harmon K. Woodall J. Vieira A. Sports medicine applications of platelet rich plasma. Curr. Pharm. Biotechnol. 2012 13 7 1185 1195 10.2174/138920112800624283 21740373
    [Google Scholar]
  53. DeLong J.M. Russell R.P. Mazzocca A.D. Platelet-rich plasma: The PAW classification system. Arthroscopy 2012 28 7 998 1009 10.1016/j.arthro.2012.04.148 22738751
    [Google Scholar]
  54. Mautner K. Malanga G.A. Smith J. A call for a standard classification system for future biologic research: the rationale for new PRP nomenclature. PM R 2015 7 4S S53 S59 [Suppl.] 10.1016/j.pmrj.2015.02.005 25864661
    [Google Scholar]
  55. Magalon J. Chateau A.L. Bertrand B. DEPA classification: A proposal for standardising PRP use and a retrospective application of available devices. BMJ Open Sport Exerc. Med. 2016 2 1 e000060 10.1136/bmjsem‑2015‑000060 27900152
    [Google Scholar]
  56. Lana J.F.S.D. Purita J. Paulus C. Contributions for classification of platelet rich plasma - Proposal of a new classification: MARSPILL. Regen. Med. 2017 12 5 565 574 10.2217/rme‑2017‑0042 28758836
    [Google Scholar]
  57. Harrison P. Alsousou J. Andia I. The use of platelets in regenerative medicine and proposal for a new classification system: Guidance from the SSC of the ISTH. J. Thromb. Haemost. 2018 16 9 1895 1900 10.1111/jth.14223 30099839
    [Google Scholar]
  58. Kon E. Di Matteo B. Delgado D. Platelet-rich plasma for the treatment of knee osteoarthritis: An expert opinion and proposal for a novel classification and coding system. Expert Opin. Biol. Ther. 2020 20 12 1447 1460 10.1080/14712598.2020.1798925 32692595
    [Google Scholar]
  59. Everts P.A. Sadeghi P. Smith D.R. Basic science of autologous orthobiologics. Phys. Med. Rehabil. Clin. N. Am. 2023 34 1 1 23 10.1016/j.pmr.2022.08.003 36410877
    [Google Scholar]
  60. Moreno-Garcia A. Rodriguez-Merchan E.C. Orthobiologics: Current role in orthopedic surgery and traumatology. Arch. Bone Jt. Surg. 2022 10 7 536 542 10.22038/ABJS.2021.52770.2614 36032640
    [Google Scholar]
  61. Moretti L. Maccagnano G. Coviello M. Platelet rich plasma injections for knee osteoarthritis treatment: A prospective clinical study. J. Clin. Med. 2022 11 9 2640 10.3390/jcm11092640 35566766
    [Google Scholar]
  62. Hada S. Ishijima M. Omiya H. Tomita Y. Hada M. Two cases of contact athletes with anterior cruciate ligament injuries who returned to competition early after conservative treatment with PRP therapy. Int. J. Surg. Case Rep. 2022 95 107268 10.1016/j.ijscr.2022.107268
    [Google Scholar]
  63. Madhi M.I. Yausep O.E. Khamdan K. Trigkilidas D. The use of PRP in treatment of Achilles tendinopathy: A systematic review of literature. Study design: Systematic review of literature. Ann. Med. Surg. 2020 55 320 326 10.1016/j.amsu.2020.04.042 32566217
    [Google Scholar]
  64. Hastie G. Soufi M. Wilson J. Roy B. Platelet rich plasma injections for lateral epicondylitis of the elbow reduce the need for surgical intervention. J. Orthop. 2018 15 1 239 241 10.1016/j.jor.2018.01.046 29657476
    [Google Scholar]
  65. Yang W. Han Y. Cao X. Platelet-rich plasma as a treatment for plantar fasciitis. Medicine 2017 96 44 e8475 10.1097/MD.0000000000008475 29095303
    [Google Scholar]
  66. Tong S. Liu J. Zhang C. Platelet-rich plasma inhibits inflammatory factors and represses rheumatoid fibroblast-like synoviocytes in rheumatoid arthritis. Clin. Exp. Med. 2017 17 4 441 449 10.1007/s10238‑017‑0449‑2 28120218
    [Google Scholar]
  67. Tohidnezhad M. Bayer A. Rasuo B. Platelet-released growth factors modulate the secretion of cytokines in synoviocytes under inflammatory joint disease. Mediators Inflamm. 2017 2017 1 9 10.1155/2017/1046438 29348703
    [Google Scholar]
  68. Tong S. Zhang C. Liu J. Platelet-rich plasma exhibits beneficial effects for rheumatoid arthritis mice by suppressing inflammatory factors. Mol. Med. Rep. 2017 16 4 4082 4088 10.3892/mmr.2017.7091 28765945
    [Google Scholar]
  69. Piramoon S. Tahoori M.T. Owlia M.B. Royaei M.R. PRP as a modulator of inflammation in FLS of RA patients by regulation of galectins and TGF-β1. Heliyon 2024 10 1 e24036 10.1016/j.heliyon.2024.e24036 38268610
    [Google Scholar]
  70. Xing R. Jin Y. Sun L. Interleukin-21 induces migration and invasion of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Clin. Exp. Immunol. 2016 184 2 147 158 10.1111/cei.12751 26646950
    [Google Scholar]
  71. Yan S. Yang B. Shang C. Platelet rich plasma promotes the migration and invasion of synovial fibroblasts in patients with rheumatoid arthritis. Mol. Med. Rep. 2016 14 3 2269 2275 10.3892/mmr.2016.5500 27431382
    [Google Scholar]
  72. Wang W. Liu J. Yang B. Modulation of platelet-derived microparticles to adhesion and motility of human rheumatoid arthritis fibroblast-like synoviocytes. PLoS One 2017 12 7 e0181003 [PMID: 28704431
    [Google Scholar]
  73. Lippross S. Moeller B. Haas H. Intraarticular injection of platelet-rich plasma reduces inflammation in a pig model of rheumatoid arthritis of the knee joint. Arthritis Rheum. 2011 63 11 3344 3353 10.1002/art.30547 21769848
    [Google Scholar]
  74. Naujokat H. Sengebusch A. Loger K. Möller B. Açil Y. Wiltfang J. Therapy of antigen-induced arthritis of the temporomandibular joint via platelet-rich plasma injections in domestic pigs. J. Craniomaxillofac. Surg. 2021 49 8 726 731 10.1016/j.jcms.2021.02.022 33676818
    [Google Scholar]
  75. Pacheco C.M.R. Kerppers I.I. Parreira R. Use of platelet-rich plasma in an experimental rheumatoid arthritis model. IJIR 2016 2 2454 1362
    [Google Scholar]
  76. Shafik N.M. El-Esawy R.O. Mohamed D.A. Deghidy E.A. El-Deeb O.S. Regenerative effects of glycyrrhizin and/or platelet rich plasma on type-II collagen induced arthritis: Targeting autophay machinery markers, inflammation and oxidative stress. Arch. Biochem. Biophys. 2019 675 108095 10.1016/j.abb.2019.108095 31476301
    [Google Scholar]
  77. Gonçalves A.B. Bovo J.L. Gomes B.S. Photobiomodulation (λ=808nm) and Platelet-Rich Plasma (PRP) for the Treatment of Acute Rheumatoid Arthritis in Wistar Rats. J. Lasers Med. Sci. 2021 12 e60 10.34172/jlms.2021.60 35155145
    [Google Scholar]
  78. Badsha H. Harifi G. Murrell W.D. Platelet rich plasma for treatment of rheumatoid arthritis: Case series and review of literature. Case Rep. Rheumatol. 2020 2020 1 7 10.1155/2020/8761485 32082684
    [Google Scholar]
  79. Shively D. Amin N. Platelet-rich plasma for rheumatoid arthritis: A case series. Cureus 2021 13 11 e19629 10.7759/cureus.19629 34926082
    [Google Scholar]
  80. Stumberga E.S. Platelet-rich plasma (PRP) injections in rheumatoid arthritis knee joints. Ortho 2020 1 1005
    [Google Scholar]
  81. Conigliaro P. Triggianese P. De Martino E. Challenges in the treatment of Rheumatoid Arthritis. Autoimmun. Rev. 2019 18 7 706 713 10.1016/j.autrev.2019.05.007 31059844
    [Google Scholar]
  82. Soriano E.R. Current status and future challenges in the treatment of rheumatic diseases. Front. Drug Saf. Regul. 2022 10.3389/fdsfr.2022.881556
    [Google Scholar]
  83. do Amaral R.J.F.C. da Silva N.P. Haddad N.F. Platelet‐rich plasma obtained with different anticoagulants and their effect on platelet numbers and mesenchymal stromal cells behavior in vitro. Stem Cells Int. 2016 2016 1 7414036 10.1155/2016/7414036 27340410
    [Google Scholar]
  84. Aizawa H. Kawabata H. Sato A. A comparative study of the effects of anticoagulants on pure platelet-rich plasma quality and potency. Biomedicines 2020 8 3 42 10.3390/biomedicines8030042 32106422
    [Google Scholar]
  85. Lei H. Gui L. Xiao R. The effect of anticoagulants on the quality and biological efficacy of platelet-rich plasma. Clin. Biochem. 2009 42 13-14 1452 1460 10.1016/j.clinbiochem.2009.06.012 19560449
    [Google Scholar]
  86. Perez A.G.M. Lana J.F.S.D. Rodrigues A.A. Luzo A.C.M. Belangero W.D. Santana M.H.A. Relevant aspects of centrifugation step in the preparation of platelet-rich plasma. ISRN Hematol. 2014 2014 1 8 10.1155/2014/176060 25006472
    [Google Scholar]
  87. Muthu S. Krishnan A. Ramanathan K.R. Standardization and validation of a conventional high yield platelet-rich plasma preparation protocol. Ann. Med. Surg. 2022 82 104593 10.1016/j.amsu.2022.104593 36268335
    [Google Scholar]
  88. Muthuprabakaran K. Pai V.V. Ahmad S. Shukla P. A cross-sectional analysis of the effects of various centrifugation speeds and inclusion of the buffy coat in platelet-rich plasma preparation. Indian J. Dermatol. Venereol. Leprol. 2021 87 6 792 799 10.25259/IJDVL_1050_20
    [Google Scholar]
  89. Etulain J. Mena H.A. Meiss R.P. An optimised protocol for platelet-rich plasma preparation to improve its angiogenic and regenerative properties. Sci. Rep. 2018 8 1 1513 10.1038/s41598‑018‑19419‑6 29367608
    [Google Scholar]
  90. Du L. Miao Y. Li X. Shi P. Hu Z. A novel and convenient method for the preparation and activation of PRP without any additives: Temperature controlled PRP. BioMed Res. Int. 2018 2018 1 12 10.1155/2018/1761865 29862255
    [Google Scholar]
  91. Chen N. Wang H. Shao Y. Yang J. Song G. A comparative study on platelet-rich plasma from elderly individuals and young adults to treat pressure ulcers in mice. J. Surg. Res. 2024 294 198 210 10.1016/j.jss.2023.08.029 37913727
    [Google Scholar]
  92. Platzer H. Kubon K.D. Diederichs S. „Platelet-rich plasma“ (PRP). Orthopädie 2023 52 11 907 915 10.1007/s00132‑023‑04442‑x 37843575
    [Google Scholar]
  93. Sudic D. Razmara M. Forslund M. Ji Q. Hjemdahl P. Li N. High glucose levels enhance platelet activation: involvement of multiple mechanisms. Br. J. Haematol. 2006 133 3 315 322 10.1111/j.1365‑2141.2006.06012.x 16643434
    [Google Scholar]
  94. Kuffler D. Variables affecting the potential efficacy of PRP in providing chronic pain relief. J. Pain Res. 2018 12 109 116 10.2147/JPR.S190065 30613159
    [Google Scholar]
  95. Tian J. Lei X.X. Xuan L. Tang J.B. Cheng B. The effects of aging, diabetes mellitus, and antiplatelet drugs on growth factors and anti-aging proteins in platelet-rich plasma. Platelets 2019 30 6 773 792 10.1080/09537104.2018.1514110 30252623
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775369691250526071536
Loading
/content/journals/cdrr/10.2174/0125899775369691250526071536
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: platelets ; cartilage ; Platelet-rich plasma ; rheumatoid arthritis ; growth factors
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test