Skip to content
2000
image of Nanotherapeutics Mediated Intranasal Delivery for Therapeutic Effect on Parkinson’s Disease: Balancing Advancements and Challenges

Abstract

Managing Parkinson's Disease (PD) presents formidable challenges due to the impermeability of the Blood-Brain Barrier (BBB), which severely restricts effective drug delivery. Traditional treatment modalities often prove inadequate, prompting the exploration of intranasal drug delivery as a novel and promising alternative. This innovative approach provides direct access to the central nervous system while bypassing the Blood-Brain Barrier (BBB). Recent advancements in nanotechnology, particularly the development of polymeric and lipidic Nanoparticles (NPs), significantly enhance this delivery method by improving mucoadhesion and drug uptake, resulting in elevated drug concentrations in the brain and improved symptomatology. Furthermore, the unique properties of NPs enable sustained drug release, maintaining effective pharmacological levels while minimizing systemic side effects. However, challenges such as potential toxicity, formulation stability, and scalability persist. This review elucidates the role of NPs in surmounting BBB obstacles and underscores the necessity for continued research to optimize their design and ensure long-term safety. As the field advances, intranasal delivery systems hold the promise of becoming pivotal tools in PD management, offering more effective and less invasive therapeutic options for patients.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775352044250519092112
2025-06-25
2025-09-03
Loading full text...

Full text loading...

References

  1. Onofrj M. Ajdinaj P. Digiovanni A. Malek N. Martinotti G. Ferro F.M. Russo M. Thomas A. Sensi S.L. Functional Neurologic Disorders, disorders to be managed by neurologists, or are neurologists wandering in a dangerous field with inadequate resources? Front. Psychiatry 2023 14 1120981 10.3389/fpsyt.2023.1120981 37009111
    [Google Scholar]
  2. Launch of WHO’s Parkinson disease technical brief. 2022 Available from: https://www.who.int/news/item/14-06-2022-launch-of-who-s-parkinson-disease-technical-brief
  3. Torres-Ortega P.V. Saludas L. Hanafy A.S. Garbayo E. Blanco-Prieto M.J. Micro- and nanotechnology approaches to improve Parkinson’s disease therapy. J. Control. Release 2019 295 201 213 10.1016/j.jconrel.2018.12.036 30579984
    [Google Scholar]
  4. Tolosa E. Garrido A. Scholz S.W. Poewe W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol. 2021 20 5 385 397 10.1016/S1474‑4422(21)00030‑2 33894193
    [Google Scholar]
  5. Marino B.L.B. de Souza L.R. Sousa K.P.A. Ferreira J.V. Padilha E.C. da Silva C.H.T.P. Taft C.A. Hage-Melim L.I.S. Parkinson’s disease: A review from pathophysiology to treatment. Mini Rev. Med. Chem. 2020 20 9 754 767 10.2174/1389557519666191104110908 31686637
    [Google Scholar]
  6. Agliardi C. Guerini F. Meloni M. Clerici M. Alpha-synuclein as a biomarker in Parkinson’s disease: Focus on neural derived extracelluar vesicles. Neural Regen. Res. 2022 17 7 1503 1504 10.4103/1673‑5374.330604 34916434
    [Google Scholar]
  7. Jellinger K.A. A critical evaluation of current staging of α-synuclein pathology in Lewy body disorders. Biochim. Biophys. Acta Mol. Basis Dis. 2009 1792 7 730 740 10.1016/j.bbadis.2008.07.006 18718530
    [Google Scholar]
  8. Negi S. Khurana N. Duggal N. The misfolding mystery: α-synuclein and the pathogenesis of Parkinson’s disease. Neurochem. Int. 2024 177 105760 10.1016/j.neuint.2024.105760 38723900
    [Google Scholar]
  9. Pan L. Meng L. He M. Zhang Z. Tau in the pathophysiology of Parkinson’s disease. J. Mol. Neurosci. 2021 71 11 2179 2191 10.1007/s12031‑020‑01776‑5 33459970
    [Google Scholar]
  10. Iovino L. Tremblay M.E. Civiero L. Glutamate-induced excitotoxicity in Parkinson’s disease: The role of glial cells. J. Pharmacol. Sci. 2020 144 3 151 164 10.1016/j.jphs.2020.07.011 32807662
    [Google Scholar]
  11. Bloem B.R. Okun M.S. Klein C. Parkinson’s disease. Lancet 2021 397 10291 2284 2303 10.1016/S0140‑6736(21)00218‑X 33848468
    [Google Scholar]
  12. Weintraub D. Aarsland D. Chaudhuri K.R. Dobkin R.D. Leentjens A.F.G. Rodriguez-Violante M. Schrag A. The neuropsychiatry of Parkinson’s disease: Advances and challenges. Lancet Neurol. 2022 21 1 89 102 10.1016/S1474‑4422(21)00330‑6 34942142
    [Google Scholar]
  13. Paul A. Yadav K.S. Parkinson’s disease: Current drug therapy and unraveling the prospects of nanoparticles. J. Drug Deliv. Sci. Technol. 2020 58 101790 10.1016/j.jddst.2020.101790
    [Google Scholar]
  14. Smith Y. Wichmann T. Factor S.A. DeLong M.R. Parkinson’s disease therapeutics: New developments and challenges since the introduction of levodopa. Neuropsychopharmacology 2012 37 1 213 246 10.1038/npp.2011.212 21956442
    [Google Scholar]
  15. Rathod S. Desai H. Patil R. Sarolia J. Non-ionic surfactants as a P-glycoprotein (P-gp) efflux inhibitor for optimal drug delivery—A concise outlook. AAPS PharmSciTech 2022 23 1 55 10.1208/s12249‑022‑02211‑1 35043278
    [Google Scholar]
  16. Leyva-Gómez G. Cortés H. Magaña J.J. Leyva-García N. Quintanar-Guerrero D. Florán B. Nanoparticle technology for treatment of Parkinson’s disease: The role of surface phenomena in reaching the brain. Drug Discov. Today 2015 20 7 824 837 10.1016/j.drudis.2015.02.009 25701281
    [Google Scholar]
  17. Baskin J. Jeon J.E. Lewis S.J.G. Nanoparticles for drug delivery in Parkinson’s disease. J. Neurol. 2021 268 5 1981 1994 10.1007/s00415‑020‑10291‑x 33141248
    [Google Scholar]
  18. Wang Z. Xiong G. Tsang W.C. Schätzlein A.G. Uchegbu I.F. Nose-to-brain delivery. J. Pharmacol. Exp. Ther. 2019 370 3 593 601 10.1124/jpet.119.258152 31126978
    [Google Scholar]
  19. Xinchen Y. Jing T. Jiaoqiong G. Lipid-based nanoparticles via nose-to-brain delivery: A mini review. Front. Cell Dev. Biol. 2023 11 1214450 10.3389/fcell.2023.1214450 37675144
    [Google Scholar]
  20. Omidian H. Gill E.J. Dey Chowdhury S. Cubeddu L.X. Chitosan nanoparticles for intranasal drug delivery. Pharmaceutics 2024 16 6 746 10.3390/pharmaceutics16060746 38931868
    [Google Scholar]
  21. Candela F. Quarta E. Buttini F. Ancona A. Bettini R. Sonvico F. Recent patents on nasal vaccines containing nanoadjuvants. Recent Adv. Drug Deliv. Formul. 2022 16 2 103 121 10.2174/2667387816666220420124648 35450539
    [Google Scholar]
  22. Mittal D. Ali A. Md S. Baboota S. Sahni J.K. Ali J. Insights into direct nose to brain delivery: Current status and future perspective. Drug Deliv. 2014 21 2 75 86 10.3109/10717544.2013.838713 24102636
    [Google Scholar]
  23. Sharma S. Batra S. Gupta S. Sharma V. K. Rahman M. H. Kamal M. A. Persons with co-existing neurological disorders: Risk analysis, considerations and management in COVID-19 pandemic. CNS Neurol Disord Drug Targets. 2022 21 3 228 234 10.2174/1871527320666210308113457 33687889
    [Google Scholar]
  24. Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur. J. Pharm. Sci. 2000 11 1 1 18 10.1016/S0928‑0987(00)00087‑7 10913748
    [Google Scholar]
  25. Pardeshi C. Souto E.B. Direct Nose-to-Brain Drug Delivery: Mechanism, Technological Advances, Applications, and Regulatory Updates. Academic Press 2021
    [Google Scholar]
  26. Ghosh A. Majie A. Karmakar V. Chatterjee K. Chakraborty S. Pandey M. Jain N. Roy Sarkar S. Nair A.B. Gorain B. In-depth mechanism, challenges, and opportunities of delivering therapeutics in brain using intranasal route. AAPS PharmSciTech 2024 25 5 96 10.1208/s12249‑024‑02810‑0 38710855
    [Google Scholar]
  27. Khunt D. Misra M. An overview of anatomical and physiological aspects of the nose and the brain. Direct Nose-to-Brain Drug Delivery Academic Press Cambridge, Massachusetts 2021 3 14 10.1016/B978‑0‑12‑822522‑6.00029‑1
    [Google Scholar]
  28. Alexander A. Dwivedi S. Ajazuddin Giri T.K. Saraf S. Saraf S. Tripathi D.K. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J. Control. Release 2012 164 1 26 40 10.1016/j.jconrel.2012.09.017 23064010
    [Google Scholar]
  29. Singh A.K. Singh A. Madhv N.V.S. Nasal cavity, a promising transmucosal platform for drug delivery and research approaches from nasal to brain targetting. J. Drug Deliv. Ther. 2012 2 3 10.22270/jddt.v2i3.163
    [Google Scholar]
  30. Bourganis V. Kammona O. Alexopoulos A. Kiparissides C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur. J. Pharm. Biopharm. 2018 128 337 362 10.1016/j.ejpb.2018.05.009 29733950
    [Google Scholar]
  31. Dhuria S.V. Hanson L.R. Frey W.H. II Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. J. Pharm. Sci. 2010 99 4 1654 1673 10.1002/jps.21924 19877171
    [Google Scholar]
  32. Li Y. Wang C. Zong S. Qi J. Dong X. Zhao W. Wu W. Fu Q. Lu Y. Chen Z. The trigeminal pathway dominates the nose-to-brain transportation of intact polymeric nanoparticles: Evidence from aggregation-caused quenching probes. J. Biomed. Nanotechnol. 2019 15 4 686 702 10.1166/jbn.2019.2724 30841963
    [Google Scholar]
  33. Akita T. Oda Y. Kimura R. Nagai M. Tezuka A. Shimamura M. Washizu K. Oka J.I. Yamashita C. Involvement of trigeminal axons in nose-to-brain delivery of glucagon-like peptide-2 derivative. J. Control. Release 2022 351 573 580 10.1016/j.jconrel.2022.09.047 36179766
    [Google Scholar]
  34. Gänger S. Schindowski K. Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics 2018 10 3 116 10.3390/pharmaceutics10030116 30081536
    [Google Scholar]
  35. Ponkshe P. Thakkar R.A. Mulay T. Joshi R. Javia A. Amrutiya J. Chougule M. Nasal and pulmonary drug delivery systems. In-Vitro and In-Vivo Tools in Drug Delivery Research for Optimum Clinical Outcomes CRC Press Boca Raton, FL 2018 79 134
    [Google Scholar]
  36. Lee D. Minko T. Nanotherapeutics for nose-to-brain drug delivery: An approach to bypass the blood brain barrier. Pharmaceutics 2021 13 12 2049 10.3390/pharmaceutics13122049 34959331
    [Google Scholar]
  37. Formica M.L. Real D.A. Picchio M.L. Catlin E. Donnelly R.F. Paredes A.J. On a highway to the brain: A review on nose-to-brain drug delivery using nanoparticles. Appl. Mater. Today 2022 29 101631 10.1016/j.apmt.2022.101631
    [Google Scholar]
  38. Jeong S.H. Jang J.H. Lee Y.B. Drug delivery to the brain via the nasal route of administration: Exploration of key targets and major consideration factors. J. Pharm. Investig. 2023 53 1 119 152 10.1007/s40005‑022‑00589‑5 35910081
    [Google Scholar]
  39. Patel A. Patel J. Inhalable polymeric nano-particulate powders for respiratory delivery. Handbook of Lung Targeted Drug Delivery Systems. CRC Press 2021 209 223 10.1201/9781003046547‑15
    [Google Scholar]
  40. Oliveira P. Fortuna A. Alves G. Falcao A. Drug-metabolizing enzymes and efflux transporters in nasal epithelium: Influence on the bioavailability of intranasally administered drugs. Curr. Drug Metab. 2016 17 7 628 647 10.2174/1389200217666160406120509 27048181
    [Google Scholar]
  41. Sarkar M.A. Drug metabolism in the nasal mucosa. Pharm. Res. 1992 9 1 1 9 10.1023/A:1018911206646 1589391
    [Google Scholar]
  42. Lenz F.A. Ablative surgery for the treatment of Parkinson’s disease. Handbook of Clinical Neurology. Elsevier 2007 Vol. 84 243 260
    [Google Scholar]
  43. Rabiee N. Ahmadi S. Afshari R. Khalaji S. Rabiee M. Bagherzadeh M. Fatahi Y. Dinarvand R. Tahriri M. Tayebi L. Hamblin M.R. Webster T.J. Polymeric nanoparticles for nasal drug delivery to the brain: Relevance to Alzheimer’s disease. Adv. Ther. 2021 4 3 2000076 10.1002/adtp.202000076
    [Google Scholar]
  44. Trevino J.T. Quispe R.C. Khan F. Novak V. Non-invasive strategies for nose-to-brain drug delivery. J. Clin. Trials 2020 10 7 439 33505777
    [Google Scholar]
  45. Cho H.J. Balakrishnan P. Lin H. Choi M.K. Kim D.D. Application of biopharmaceutics classification system (BCS) in drug transport studies across human respiratory epithelial cell monolayers. J. Pharm. Investig. 2012 42 3 147 153 10.1007/s40005‑012‑0020‑9
    [Google Scholar]
  46. Rassu G. Sorrenti M. Catenacci L. Pavan B. Ferraro L. Gavini E. Bonferoni M.C. Giunchedi P. Dalpiaz A. Versatile nasal application of cyclodextrins: Excipients and/or actives? Pharmaceutics 2021 13 8 1180 10.3390/pharmaceutics13081180 34452141
    [Google Scholar]
  47. Froelich A. Osmałek T. Jadach B. Puri V. Michniak-Kohn B. Microemulsion-based media in nose-to-brain drug delivery. Pharmaceutics 2021 13 2 201 10.3390/pharmaceutics13020201 33540856
    [Google Scholar]
  48. Comfort C. Garrastazu G. Pozzoli M. Sonvico F. Opportunities and challenges for the nasal administration of nanoemulsions. Curr. Top. Med. Chem. 2015 15 4 356 368 10.2174/1568026615666150108144655 25579345
    [Google Scholar]
  49. Jadhav K. Gambhire M. Shaikh I. Kadam V. Pisal S. Nasal drug delivery system-factors affecting and applications. Curr. Drug Ther. 2007 2 1 27 38 10.2174/157488507779422374
    [Google Scholar]
  50. Shim S. Yoo H.S. The application of mucoadhesive chitosan nanoparticles in nasal drug delivery. Mar. Drugs 2020 18 12 605 10.3390/md18120605 33260406
    [Google Scholar]
  51. Noback M.L. Harvati K. Spoor F. Climate‐related variation of the human nasal cavity. Am. J. Phys. Anthropol. 2011 145 4 599 614 10.1002/ajpa.21523 21660932
    [Google Scholar]
  52. Pires P.C. Rodrigues M. Alves G. Santos A.O. Strategies to improve drug strength in nasal preparations for brain delivery of low aqueous solubility drugs. Pharmaceutics 2022 14 3 588 10.3390/pharmaceutics14030588 35335964
    [Google Scholar]
  53. Ong W.Y. Shalini S.M. Costantino L. Nose-to-brain drug delivery by nanoparticles in the treatment of neurological disorders. Curr. Med. Chem. 2014 21 37 4247 4256 10.2174/0929867321666140716103130 25039773
    [Google Scholar]
  54. Giunchedi P. Gavini E. Bonferoni M.C. Nose-to-brain delivery. Pharmaceutics 2020 12 2 138 10.3390/pharmaceutics12020138 32041344
    [Google Scholar]
  55. Awad R. Avital A. Sosnik A. Polymeric nanocarriers for nose-to-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders. Acta Pharm. Sin. B 2023 13 5 1866 1886 10.1016/j.apsb.2022.07.003 37250152
    [Google Scholar]
  56. Md S. Bhattmisra S.K. Zeeshan F. Shahzad N. Mujtaba M.A. Srikanth Meka V. Radhakrishnan A. Kesharwani P. Baboota S. Ali J. Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J. Drug Deliv. Sci. Technol. 2018 43 295 310 10.1016/j.jddst.2017.09.022
    [Google Scholar]
  57. Emad N.A. Ahmed B. Alhalmi A. Alzobaidi N. Al-Kubati S.S. Recent progress in nanocarriers for direct nose to brain drug delivery. J. Drug Deliv. Sci. Technol. 2021 64 102642 10.1016/j.jddst.2021.102642
    [Google Scholar]
  58. Mistry A. Stolnik S. Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int. J. Pharm. 2009 379 1 146 157 10.1016/j.ijpharm.2009.06.019 19555750
    [Google Scholar]
  59. Salama M.M. Elzoghby A.O. Mucoadhesive nanoparticles as promising drug delivery systems. Theory and Applications of Nonparenteral Nanomedicines. Elsevier 2021 113 136 10.1016/B978‑0‑12‑820466‑5.00006‑5
    [Google Scholar]
  60. Morawski A.S. Fachel F.N.S. Pohlmann A.R. Guterres S.S. Frank L.A. Polymeric nanoparticles for nose-to-brain delivery in Alzheimer’s and Parkinson’s diseases. CNS Drug Development and Delivery: Concepts and Applications. Springer 2024 163 179 10.1007/978‑3‑031‑62604‑3_7
    [Google Scholar]
  61. Kulkarni A.D. Vanjari Y.H. Sancheti K.H. Belgamwar V.S. Surana S.J. Pardeshi C.V. Nanotechnology-mediated nose to brain drug delivery for Parkinson’s disease: A mini review. J. Drug Target. 2015 23 9 775 788 10.3109/1061186X.2015.1020809 25758751
    [Google Scholar]
  62. Bhattamisra S.K. Shak A.T. Xi L.W. Safian N.H. Choudhury H. Lim W.M. Shahzad N. Alhakamy N.A. Anwer M.K. Radhakrishnan A.K. Md S. Nose to brain delivery of rotigotine loaded chitosan nanoparticles in human SH-SY5Y neuroblastoma cells and animal model of Parkinson’s disease. Int. J. Pharm. 2020 579 119148 10.1016/j.ijpharm.2020.119148 32084576
    [Google Scholar]
  63. Saha P. Singh P. Kathuria H. Chitkara D. Pandey M.M. Self-assembled lecithin-chitosan nanoparticles improved rotigotine nose-to-brain delivery and brain targeting efficiency. Pharmaceutics 2023 15 3 851 10.3390/pharmaceutics15030851 36986712
    [Google Scholar]
  64. Ahmad M.Z. Sabri A.H.B. Anjani Q.K. Domínguez-Robles J. Abdul Latip N. Hamid K.A. Design and development of levodopa loaded polymeric nanoparticles for intranasal delivery. Pharmaceuticals 2022 15 3 370 10.3390/ph15030370 35337167
    [Google Scholar]
  65. Tengse K. A. Avari J. G. Dhapke P. Formulation and evaluation of chitosan nanoparticle based in-situ nasal gel for Parkinson’s disease. World J Pharm Res. 2020 9 15 859 880
    [Google Scholar]
  66. Md S. Alhakamy N.A. Aldawsari H.M. Asfour H.Z. Neuroprotective and antioxidant effect of naringenin-loaded nanoparticles for nose-to-brain delivery. Brain Sci. 2019 9 10 275 10.3390/brainsci9100275 31618942
    [Google Scholar]
  67. Raj R. Wairkar S. Sridhar V. Gaud R. Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: Development, characterization and in vivo anti-Parkinson activity. Int. J. Biol. Macromol. 2018 109 27 35 10.1016/j.ijbiomac.2017.12.056 29247729
    [Google Scholar]
  68. Rukmangathen R. Yallamalli I.M. Yalavarthi P.R. Biopharmaceutical potential of selegiline loaded chitosan nanoparticles in the management of Parkinson’s disease. Curr. Drug Discov. Technol. 2019 16 4 417 425 10.2174/1570163815666180418144019 29669501
    [Google Scholar]
  69. Sharma D. Sharma R.K. Sharma N. Gabrani R. Sharma S.K. Ali J. Dang S. Nose-to-brain delivery of PLGA-Diazepam nanoparticles. AAPS PharmSciTech 2015 16 5 1108 1121 10.1208/s12249‑015‑0294‑0 25698083
    [Google Scholar]
  70. Musumeci T. Serapide M.F. Pellitteri R. Dalpiaz A. Ferraro L. Dal Magro R. Bonaccorso A. Carbone C. Veiga F. Sancini G. Puglisi G. Oxcarbazepine free or loaded PLGA nanoparticles as effective intranasal approach to control epileptic seizures in rodents. Eur. J. Pharm. Biopharm. 2018 133 309 320 10.1016/j.ejpb.2018.11.002 30399400
    [Google Scholar]
  71. Rawal S.U. Patel B.M. Patel M.M. New drug delivery systems developed for brain targeting. Drugs 2022 82 7 749 792 10.1007/s40265‑022‑01717‑z 35596879
    [Google Scholar]
  72. Arisoy S. Sayiner O. Comoglu T. Onal D. Atalay O. Pehlivanoglu B. In vitro and in vivo evaluation of levodopa-loaded nanoparticles for nose to brain delivery. Pharm. Dev. Technol. 2020 25 6 735 747 10.1080/10837450.2020.1740257 32141798
    [Google Scholar]
  73. Nigam K. Kaur A. Tyagi A. Nematullah M. Khan F. Gabrani R. Dang S. Nose-to-brain delivery of lamotrigine-loaded PLGA nanoparticles. Drug Deliv. Transl. Res. 2019 9 5 879 890 10.1007/s13346‑019‑00622‑5 30887226
    [Google Scholar]
  74. Shah P. Dubey P. Vyas B. Kaul A. Mishra A.K. Chopra D. Patel P. Lamotrigine loaded PLGA nanoparticles intended for direct nose to brain delivery in epilepsy: Pharmacokinetic, pharmacodynamic and scintigraphy study. Artif. Cells Nanomed. Biotechnol. 2021 49 1 511 522 10.1080/21691401.2021.1939709 34151674
    [Google Scholar]
  75. Tang S. Wang A. Yan X. Chu L. Yang X. Song Y. Sun K. Yu X. Liu R. Wu Z. Xue P. Brain-targeted intranasal delivery of dopamine with borneol and lactoferrin co-modified nanoparticles for treating Parkinson’s disease. Drug Deliv. 2019 26 1 700 707 10.1080/10717544.2019.1636420 31290705
    [Google Scholar]
  76. Bi C. Wang A. Chu Y. Liu S. Mu H. Liu W. Wu Z. Sun K. Li Y. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson's disease treatment. Int. J. Nanomedicine 2016 11 6547 6559 10.2147/IJN.S120939 27994458
    [Google Scholar]
  77. Wen Z. Yan Z. Hu K. Pang Z. Cheng X. Guo L. Zhang Q. Jiang X. Fang L. Lai R. Odorranalectin-conjugated nanoparticles: Preparation, brain delivery and pharmacodynamic study on Parkinson’s disease following intranasal administration. J. Control. Release 2011 151 2 131 138 10.1016/j.jconrel.2011.02.022 21362449
    [Google Scholar]
  78. Chatzitaki A.T. Jesus S. Karavasili C. Andreadis D. Fatouros D.G. Borges O. Chitosan-coated PLGA nanoparticles for the nasal delivery of ropinirole hydrochloride: In vitro and ex vivo evaluation of efficacy and safety. Int. J. Pharm. 2020 589 119776 10.1016/j.ijpharm.2020.119776 32818538
    [Google Scholar]
  79. Wilson B. Samanta M.K. Santhi K. Kumar K.P.S. Paramakrishnan N. Suresh B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res. 2008 1200 159 168 10.1016/j.brainres.2008.01.039 18291351
    [Google Scholar]
  80. Boyuklieva R. Hristozova A. Pilicheva B. Synthesis and characterization of PCL-Idebenone nanoparticles for potential nose-to-brain delivery. Biomedicines 2023 11 5 1491 10.3390/biomedicines11051491 37239161
    [Google Scholar]
  81. Badran M.M. Alanazi A.E. Ibrahim M.A. Alshora D.H. Taha E. H Alomrani A. Optimization of bromocriptine-mesylate-loaded polycaprolactone nanoparticles coated with chitosan for nose-to-brain delivery: In vitro and in vivo studies. Polymers 2023 15 19 3890 10.3390/polym15193890 37835942
    [Google Scholar]
  82. Darwish W.M. Bayoumi N.A. Ebeid N.H. Biocompatible mucoadhesive nanoparticles for brain targeting of ropinirole hydrochloride: Formulations, radiolabeling and biodistribution. Biopolymers 2022 113 6 e23489 10.1002/bip.23489 35403210
    [Google Scholar]
  83. Figueiras A. Domingues C. Jarak I. Santos A.I. Parra A. Pais A. Alvarez-Lorenzo C. Concheiro A. Kabanov A. Cabral H. Veiga F. New advances in biomedical application of polymeric micelles. Pharmaceutics 2022 14 8 1700 10.3390/pharmaceutics14081700 36015325
    [Google Scholar]
  84. Kotta S. Aldawsari H.M. Badr-Eldin S.M. Nair A.B. Yt K. Progress in polymeric micelles for drug delivery applications. Pharmaceutics 2022 14 8 1636 10.3390/pharmaceutics14081636 36015262
    [Google Scholar]
  85. Wang F. Yang Z. Liu M. Tao Y. Li Z. Wu Z. Gui S. Facile nose-to-brain delivery of rotigotine-loaded polymer micelles thermosensitive hydrogels: In vitro characterization and in vivo behavior study. Int. J. Pharm. 2020 577 119046 10.1016/j.ijpharm.2020.119046 31982559
    [Google Scholar]
  86. Zhang L. Yang S. Huang L. Ho P.C.L. Poly (ethylene glycol)-block-poly (D, L-lactide) (PEG-PLA) micelles for brain delivery of baicalein through nasal route for potential treatment of neurodegenerative diseases due to oxidative stress and inflammation: An in vitro and in vivo study. Int. J. Pharm. 2020 591 119981 10.1016/j.ijpharm.2020.119981 33069896
    [Google Scholar]
  87. Yoon G. Park J.W. Yoon I.S. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs): Recent advances in drug delivery. J. Pharm. Investig. 2013 43 5 353 362 10.1007/s40005‑013‑0087‑y
    [Google Scholar]
  88. Haftcheshmeh S.M. Jaafari M.R. Mashreghi M. Mehrabian A. Alavizadeh S.H. Zamani P. Zarqi J. Darvishi M.H. Gheybi F. Liposomal doxorubicin targeting mitochondria: A novel formulation to enhance anti-tumor effects of Doxil® in vitro and in vivo. J. Drug Deliv. Sci. Technol. 2021 62 102351 10.1016/j.jddst.2021.102351
    [Google Scholar]
  89. Puri A. Loomis K. Smith B. Lee J.H. Yavlovich A. Heldman E. Blumenthal R. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst. 2009 26 6 523 580 10.1615/CritRevTherDrugCarrierSyst.v26.i6.10 20402623
    [Google Scholar]
  90. Pandian S.R.K. Vijayakumar K.K. Murugesan S. Kunjiappan S. Liposomes: An emerging carrier for targeting Alzheimer’s and Parkinson’s diseases. Heliyon 2022 8 6 e09575 10.1016/j.heliyon.2022.e09575 35706935
    [Google Scholar]
  91. Khot K. B. Enhancing selegiline hydrochloride efficacy: Box Behnken-optimized liposomal delivery via intranasal route for Parkinson's disease intervention. J Liposome Res 2024 34 4 575 592 10.1080/08982104.2024.2336549 38591935
    [Google Scholar]
  92. Ansari M.S. Ali A. Rashid M.A. Alhamhoom Y. Sultana N. Waheed A. Alam M.S. Aqil M. Sultana Y. BBD assisted in-situ nanoliposomes of esculin hydrate via intranasal delivery for the amelioration of Parkinson’s disease. J. Drug Deliv. Sci. Technol. 2024 96 105658 10.1016/j.jddst.2024.105658
    [Google Scholar]
  93. Ahmed M.R. Inayathullah M. Morton M. Pothineni V.R. Kim K. Ahmed M.S. Babar M.M. Rajadas J. Intranasal delivery of liposome encapsulated flavonoids ameliorates l-DOPA induced dyskinesia in hemiparkinsonian mice. Biomaterials 2024 311 122680 10.1016/j.biomaterials.2024.122680 38959534
    [Google Scholar]
  94. Pitta S.K. Dudhipala N. Narala A. Veerabrahma K. Development of zolmitriptan transfersomes by Box–Behnken design for nasal delivery: In vitro and in vivo evaluation. Drug Dev. Ind. Pharm. 2018 44 3 484 492 10.1080/03639045.2017.1402918 29124986
    [Google Scholar]
  95. Fernández-García R. Lalatsa A. Statts L. Bolás-Fernández F. Ballesteros M.P. Serrano D.R. Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. Int. J. Pharm. 2020 573 118817 10.1016/j.ijpharm.2019.118817 31678520
    [Google Scholar]
  96. ElShagea H.N. Makar R.R. Salama A.H. Elkasabgy N.A. Basalious E.B. Investigating the targeting power to brain tissues of intranasal rasagiline mesylate-loaded transferosomal in situ gel for efficient treatment of Parkinson’s disease. Pharmaceutics 2023 15 2 533 10.3390/pharmaceutics15020533 36839855
    [Google Scholar]
  97. Salem H.F. Kharshoum R.M. Abou-Taleb H.A. Naguib D.M. Nanosized transferosome-based intranasal in situ gel for brain targeting of resveratrol: Formulation, optimization, in vitro evaluation, and in vivo pharmacokinetic study. AAPS PharmSciTech 2019 20 5 181 10.1208/s12249‑019‑1353‑8 31049748
    [Google Scholar]
  98. Shukla R. Kumar A. Flora S.J.S. Pardeshi C.V. Souto E.B. Nanotechnological advances in direct nose-to-brain drug delivery for neurodegenerative disorders and other neuroailments. Direct Nose-to-Brain Drug Delivery. Academic Press 2021 73 91 10.1016/B978‑0‑12‑822522‑6.00005‑9
    [Google Scholar]
  99. Mishra N. Tiwari D.K. Mishra K. Gupta A. Suman S. Mishra S. Development of intranasal deformable ethosomes of rasagiline mesylate for the effective management of parkinsonism. Int. J. Pharm. Biol. Sci. 2020 10 25 33
    [Google Scholar]
  100. Battaglia L. Panciani P.P. Muntoni E. Capucchio M.T. Biasibetti E. De Bonis P. Mioletti S. Fontanella M. Swaminathan S. Lipid nanoparticles for intranasal administration: Application to nose-to-brain delivery. Expert Opin. Drug Deliv. 2018 15 4 369 378 10.1080/17425247.2018.1429401 29338427
    [Google Scholar]
  101. Yasir M. Vir Singh Sara U. Som I. Gaur P. Singh M. Nose to brain drug delivery: A novel approach through solid lipid nanoparticles. Curr Nanomed. 2016 6 2 1 21 10.2174/246818730666616060312
    [Google Scholar]
  102. Uppuluri C.T. Ravi P.R. Dalvi A.V. Design, optimization and pharmacokinetic evaluation of Piribedil loaded solid lipid nanoparticles dispersed in nasal in situ gelling system for effective management of Parkinson’s disease. Int. J. Pharm. 2021 606 120881 10.1016/j.ijpharm.2021.120881 34273426
    [Google Scholar]
  103. Prajapati J.B. Patel G.C. Nose to brain delivery of Rotigotine loaded solid lipid nanoparticles: Quality by design based optimization and characterization. J. Drug Deliv. Sci. Technol. 2021 63 102377 10.1016/j.jddst.2021.102377
    [Google Scholar]
  104. Trapani A. Castellani S. Guerra L. De Giglio E. Fracchiolla G. Corbo F. Cioffi N. Passantino G. Poeta M.L. Montemurro P. Mallamaci R. Cardone R.A. Conese M. Combined dopamine and grape seed extract-loaded solid lipid nanoparticles: Nasal mucosa permeation, and uptake by olfactory ensheathing cells and neuronal SH-SY5Y cells. Pharmaceutics 2023 15 3 881 10.3390/pharmaceutics15030881 36986742
    [Google Scholar]
  105. Müller R.H. Alexiev U. Sinambela P. Keck C.M. Dragicevic N. Maibach H.I. Nanostructured Lipid Carriers (NLC): The Second Generation of Solid Lipid Nanoparticles. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Nanocarriers. Springer Berlin, Heidelberg 2016 161 185 10.1007/978‑3‑662‑47862‑2_11
    [Google Scholar]
  106. Iqbal M.A. Md S. Sahni J.K. Baboota S. Dang S. Ali J. Nanostructured lipid carriers system: Recent advances in drug delivery. J. Drug Target. 2012 20 10 813 830 10.3109/1061186X.2012.716845 22931500
    [Google Scholar]
  107. Cunha S. Forbes B. Lobo Sousa Improving drug delivery for Alzheimer's disease through nose-to-brain delivery using nanoemulsions, Nanostructured Lipid Carriers (NLC) and in situ hydrogels. Int. J. Nanomedicine 2021 16 4373 4390 10.2147/IJN.S305851 34234432
    [Google Scholar]
  108. Neha S.L. Mishra A.K. Rani L. Paroha S. Dewangan H.K. Sahoo P.K. Design and evaluations of a nanostructured lipid carrier loaded with dopamine hydrochloride for intranasal bypass drug delivery in Parkinson’s disease. J. Microencapsul. 2023 40 8 599 612 10.1080/02652048.2023.2264386 37787159
    [Google Scholar]
  109. Gartziandia O. Herrán E. Ruiz-Ortega J.A. Miguelez C. Igartua M. Lafuente J.V. Pedraz J.L. Ugedo L. Hernández R.M. Intranasal administration of chitosan-coated nanostructured lipid carriers loaded with GDNF improves behavioral and histological recovery in a partial lesion model of Parkinson’s disease. J. Biomed. Nanotechnol. 2016 12 12 2220 2280 10.1166/jbn.2016.2313 29372975
    [Google Scholar]
  110. Bender T.S. Migliore M.M. Campbell R.B. John Gatley S. Waszczak B.L. Intranasal administration of glial-derived neurotrophic factor (GDNF) rapidly and significantly increases whole-brain GDNF level in rats. Neuroscience 2015 303 569 576 10.1016/j.neuroscience.2015.07.016 26166725
    [Google Scholar]
  111. Allegritti E. Battista S. Maggi M.A. Marconi C. Galantini L. Giansanti L. Novel liposomal formulations for protection and delivery of levodopa: Structure-properties correlation. Int. J. Pharm. 2023 643 123230 10.1016/j.ijpharm.2023.123230 37454830
    [Google Scholar]
  112. Pardeshi C.V. Rajput P.V. Belgamwar V.S. Tekade A.R. Surana S.J. Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: Application of factorial design approach. Drug Deliv. 2013 20 1 47 56 10.3109/10717544.2012.752421 23311653
    [Google Scholar]
  113. Chandra Bhatt P. Srivastava P. Pandey P. Khan W. Panda B.P. Nose to brain delivery of astaxanthin-loaded solid lipid nanoparticles: Fabrication, radio labeling, optimization and biological studies. RSC Advances 2016 6 12 10001 10010 10.1039/C5RA19113K
    [Google Scholar]
  114. Megala Mani S.B. Kishore R. Neuroprotective potential of Naringenin-loaded solid-lipid nanoparticles against rotenone-induced Parkinson’s disease model. J Appl Pharm Sci. 2021 11 2 19 28 10.7324/JAPS.2021.110203
    [Google Scholar]
  115. Hassan D.M. El-Kamel A.H. Allam E.A. Bakr B.A. Ashour A.A. Chitosan-coated nanostructured lipid carriers for effective brain delivery of Tanshinone IIA in Parkinson’s disease: Interplay between nuclear factor-kappa β and cathepsin B. Drug Deliv. Transl. Res. 2024 14 2 400 417 10.1007/s13346‑023‑01407‑7 37598133
    [Google Scholar]
  116. Mishra N. Sharma S. Deshmukh R. Kumar A. Sharma R. Development and characterization of nasal delivery of selegiline hydrochloride loaded nanolipid carriers for the management of Parkinson's disease. Cent. Nerv. Syst. Agents Med. Chem. 2019 19 1 46 56 10.2174/1871524919666181126124846 30474538
    [Google Scholar]
  117. Hernando S. Herran E. Figueiro-Silva J. Pedraz J.L. Igartua M. Carro E. Hernandez R.M. Intranasal administration of TAT-conjugated lipid nanocarriers loading GDNF for Parkinson’s disease. Mol. Neurobiol. 2018 55 1 145 155 10.1007/s12035‑017‑0728‑7 28866799
    [Google Scholar]
  118. Zafar A. Awad Alsaidan O. Alruwaili N.K. Sarim Imam S. Yasir M. Saad Alharbi K. Singh L. Muqtader Ahmed M. Formulation of intranasal surface engineered nanostructured lipid carriers of rotigotine: Full factorial design optimization, in vitro characterization, and pharmacokinetic evaluation. Int. J. Pharm. 2022 627 122232 10.1016/j.ijpharm.2022.122232 36155794
    [Google Scholar]
  119. Elkomy M.H. Zaki R.M. Alsaidan O.A. Elmowafy M. Zafar A. Shalaby K. Abdelgawad M.A. Abo El-Ela F.I. Rateb M.E. Naguib I.A. Eid H.M. Intranasal nanotransferosomal gel for quercetin brain targeting: I. optimization, characterization, brain localization, and cytotoxic studies. Pharmaceutics 2023 15 7 1805 10.3390/pharmaceutics15071805 37513991
    [Google Scholar]
  120. Mustafa G. Ahuja A. Ali J. Shadab M. Kumar N. Singh T. Bhatnagar A. Baboota S. Nose to brain targeting potential of a chitosancoated nano-formulation: Pharmacodynamic and pharmacoscintigraphic evaluation. Sci. Adv. Mater. 2013 5 9 1236 1249 10.1166/sam.2013.1578
    [Google Scholar]
  121. Gaba B. Khan T. Haider M.F. Alam T. Baboota S. Parvez S. Ali J. Vitamin E. Vitamin E loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA Parkinson’s disease model. BioMed Res. Int. 2019 2019 1 1 20 10.1155/2019/2382563 31111044
    [Google Scholar]
  122. Pangeni R. Sharma S. Mustafa G. Ali J. Baboota S. Vitamin E loaded resveratrol nanoemulsion for brain targeting for the treatment of Parkinson’s disease by reducing oxidative stress. Nanotechnology 2014 25 48 485102 10.1088/0957‑4484/25/48/485102 25392203
    [Google Scholar]
  123. Usama Ashhar M. Vyas P. Vohora D. Kumar Sahoo P. Nigam K. Dang S. Ali J. Baboota S. Amelioration of oxidative stress utilizing nanoemulsion loaded with bromocriptine and glutathione for the management of Parkinson’s disease. Int. J. Pharm. 2022 618 121683 10.1016/j.ijpharm.2022.121683 35314276
    [Google Scholar]
  124. Khatri D.K. Preeti K. Tonape S. Bhattacharjee S. Patel M. Shah S. Singh P.K. Srivastava S. Gugulothu D. Vora L. Singh S.B. Nanotechnological advances for nose to brain delivery of therapeutics to improve the Parkinson therapy. Curr. Neuropharmacol. 2023 21 3 493 516 10.2174/1570159X20666220507022701 35524671
    [Google Scholar]
  125. Bonferoni M.C. Rossi S. Sandri G. Ferrari F. Gavini E. Rassu G. Giunchedi P. Nanoemulsions for “nose-to-brain” drug delivery. Pharmaceutics 2019 11 2 84 10.3390/pharmaceutics11020084 30781585
    [Google Scholar]
  126. Boyuklieva R. Pilicheva B. Micro- and nanosized carriers for nose-to-brain drug delivery in neurodegenerative disorders. Biomedicines 2022 10 7 1706 10.3390/biomedicines10071706 35885011
    [Google Scholar]
  127. Kumar S. Ali J. Baboota S. Design Expert ® supported optimization and predictive analysis of selegiline nanoemulsion via the olfactory region with enhanced behavioural performance in Parkinson’s disease. Nanotechnology 2016 27 43 435101 10.1088/0957‑4484/27/43/435101 27655136
    [Google Scholar]
  128. Misra S.K. Pathak K. Nose-to-brain targeting via nanoemulsion: Significance and evidence. Colloids and Interfaces 2023 7 1 23 10.3390/colloids7010023
    [Google Scholar]
  129. Nehal N. Nabi B. Rehman S. Pathak A. Iqubal A. Khan S.A. Yar M.S. Parvez S. Baboota S. Ali J. Chitosan coated synergistically engineered nanoemulsion of Ropinirole and nigella oil in the management of Parkinson’s disease: Formulation perspective and in vitro and in vivo assessment. Int. J. Biol. Macromol. 2021 167 605 619 10.1016/j.ijbiomac.2020.11.207 33278450
    [Google Scholar]
  130. Choudhury H. Zakaria N.F.B. Tilang P.A.B. Tzeyung A.S. Pandey M. Chatterjee B. Alhakamy N.A. Bhattamishra S.K. Kesharwani P. Gorain B. Md S. Formulation development and evaluation of rotigotine mucoadhesive nanoemulsion for intranasal delivery. J. Drug Deliv. Sci. Technol. 2019 54 101301 10.1016/j.jddst.2019.101301
    [Google Scholar]
  131. Al-Jipouri A. Eritja À. Bozic M. Unraveling the multifaceted roles of extracellular vesicles: Insights into biology, pharmacology, and pharmaceutical applications for drug delivery. Int. J. Mol. Sci. 2023 25 1 485 10.3390/ijms25010485 38203656
    [Google Scholar]
  132. Maacha S. Bhat A.A. Jimenez L. Raza A. Haris M. Uddin S. Grivel J.C. Extracellular vesicles-mediated intercellular communication: Roles in the tumor microenvironment and anti-cancer drug resistance. Mol. Cancer 2019 18 1 55 10.1186/s12943‑019‑0965‑7 30925923
    [Google Scholar]
  133. Claridge B. Lozano J. Poh Q.H. Greening D.W. Development of extracellular vesicle therapeutics: Challenges, considerations, and opportunities. Front. Cell Dev. Biol. 2021 9 734720 10.3389/fcell.2021.734720 34616741
    [Google Scholar]
  134. Richter M. Vader P. Fuhrmann G. Approaches to surface engineering of extracellular vesicles. Adv. Drug Deliv. Rev. 2021 173 416 426 10.1016/j.addr.2021.03.020 33831479
    [Google Scholar]
  135. Tieu A. Extracellular Vesicles Derived from Mesenchymal Stromal Cells: A Multidisciplinary Analysis of Methodology, Efficacy and Biodistribution in Lung Disease. Université d'Ottawa/University of Ottawa 2023
    [Google Scholar]
  136. Wang S. Kong H. Zhuo C. Liu L. Lv S. Cheng D. Lao Y.H. Tao Y. Li M. Functionalized extracellular nanovesicles as advanced CRISPR delivery systems. Biomater. Sci. 2024 12 14 3480 3499 10.1039/D4BM00054D 38808607
    [Google Scholar]
  137. Tikhonov A. Kachanov A. Yudaeva A. Danilik O. Ponomareva N. Karandashov I. Kostyusheva A. Zamyatnin A.A. Jr Parodi A. Chulanov V. Brezgin S. Kostyushev D. Biomimetic nanoparticles for basic drug delivery. Pharmaceutics 2024 16 10 1306 10.3390/pharmaceutics16101306 39458635
    [Google Scholar]
  138. Chen Y. Wei C. Lyu Y. Chen H. Jiang G. Gao X. Biomimetic drug-delivery systems for the management of brain diseases. Biomater. Sci. 2020 8 4 1073 1088 10.1039/C9BM01395D 31728485
    [Google Scholar]
  139. Liu Y. Luo J. Liu Y. Liu W. Yu G. Huang Y. Yang Y. Chen X. Chen T. Brain-targeted biomimetic nanodecoys with neuroprotective effects for precise therapy of Parkinson’s disease. ACS Cent. Sci. 2022 8 9 1336 1349 10.1021/acscentsci.2c00741 36188350
    [Google Scholar]
  140. Gandhi S. Shastri D.H. Shah J. Nair A.B. Jacob S. Nasal delivery to the brain: Harnessing nanoparticles for effective drug transport. Pharmaceutics 2024 16 4 481 10.3390/pharmaceutics16040481 38675142
    [Google Scholar]
  141. Paul W. Sharma C. P. Inorganic nanoparticles for targeted drug delivery. Biointegration of Medical Implant Materials Woodhead Publishing 2020 333 373
    [Google Scholar]
  142. Unnikrishnan G. Joy A. Megha M. Kolanthai E. Senthilkumar M. Exploration of inorganic nanoparticles for revolutionary drug delivery applications: A critical review. Discov. Nano 2023 18 1 157 10.1186/s11671‑023‑03943‑0 38112849
    [Google Scholar]
  143. de Barros C. Portugal I. Batain F. Portella D. Severino P. Cardoso J. Arcuri P. Chaud M. Alves T. Formulation, design and strategies for efficient nanotechnology-based nasal delivery systems. 2022 1 1 rqac003 10.1093/rpsppr/rqac003
    [Google Scholar]
  144. Inbaraj B. S. Chen B.-H. An overview on recent in vivo biological application of cerium oxide nanoparticles. Asian J Pharm Sci 2020 15 5 558 575 10.1016/j.ajps.2019.10.005 33193860
    [Google Scholar]
  145. Chen B.H. Stephen Inbaraj B. Various physicochemical and surface properties controlling the bioactivity of cerium oxide nanoparticles. Crit. Rev. Biotechnol. 2018 38 7 1003 1024 10.1080/07388551.2018.1426555 29402135
    [Google Scholar]
  146. Mohammad Khan U.A. Saifi Z. Bora J. Warsi M.H. Abourehab M.A.S. Jain G.K. Kesharwani P. Ali A. Intranasal inorganic cerium oxide nanoparticles ameliorate oxidative stress induced motor manifestations in haloperidol-induced parkinsonism. Inflammopharmacology 2023 31 5 2571 2585 10.1007/s10787‑023‑01274‑1 37432554
    [Google Scholar]
  147. Kulkarni V. Shaw C. Formulation and characterization of nasal sprays. An examination of nasal spray formulation parameters and excipients and their influence on key in vitro tests. Inhalation 2012 1015
    [Google Scholar]
  148. Bhatt M. Bhatt G.K. An overview: Formulation and product development of nasal spray. World J. Pharm. Res. 2017 6 404 413 10.20959/wjpr20176‑8557
    [Google Scholar]
  149. Xia X. Zhong Z. Wei C. Wang G. Zhao Z. He J. Zhai Z. Zhou Y. Wang W. Guo H. Jin Y. Liu C. Yue X. Wu C. Huang Y. Zhang X. Lyotropic liquid crystalline based nasal spray for improved Parkinson’s treatment: Enhanced superior nasal tract deposition and antioxidation strategy. Adv. Funct. Mater. 2025 35 1 2411426 10.1002/adfm.202411426
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775352044250519092112
Loading
/content/journals/cdrr/10.2174/0125899775352044250519092112
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test