Skip to content
2000
Volume 17, Issue 3
  • ISSN: 2589-9775
  • E-ISSN: 2589-9783

Abstract

Naturally occurring glycosylated hydroquinone Arbutin, has drawn interest due to its possible function in reducing the risk of neurodegenerative diseases such as Huntington's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. Arbutin is well-known for its anti-inflammatory and antioxidant properties, which are essential in preventing oxidative stress and neuroinflammation. Research has shown that arbutin might alter important physiological pathways connected to protein misfolding, synapse function, and neuronal survival processes linked to the development of neurodegenerative diseases. Arbutin can also penetrate the blood-brain barrier, which increases its therapeutic potential. Arbutin's neuroprotective properties and promise as a therapeutic agent for neurodegenerative illnesses are summarized in this review, which also emphasizes the need for further study into the molecular processes behind these effects.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775298987240528050110
2024-06-14
2025-09-18
Loading full text...

Full text loading...

References

  1. NimgampalleM. ChakravarthyH. SharmaS. ShreeS. BhatA.R. PradeepkiranJ.A. DevanathanV. Neurotransmitter systems in the etiology of major neurological disorders: Emerging insights and therapeutic implications.Ageing Res. Rev.20238910199410.1016/j.arr.2023.10199437385351
    [Google Scholar]
  2. LuoL. Architectures of neuronal circuits.Science20213736559eabg728510.1126/science.abg728534516844
    [Google Scholar]
  3. ForrestS.L. KovacsG.G. Current concepts of mixed pathologies in neurodegenerative diseases.Can. J. Neurol. Sci.202350332934510.1017/cjn.2022.3435356856
    [Google Scholar]
  4. PandyaV.A. PataniR. Region-specific vulnerability in neurodegeneration: Lessons from normal ageing.Ageing Res. Rev.20216710131110.1016/j.arr.2021.10131133639280
    [Google Scholar]
  5. McDonaldT.S. LerskiatiphanichT. WoodruffT.M. McCombeP.A. LeeJ.D. Potential mechanisms to modify impaired glucose metabolism in neurodegenerative disorders.J. Cereb. Blood Flow Metab.2023431264310.1177/0271678X22113506136281012
    [Google Scholar]
  6. GandhiJ. AntonelliA.C. AfridiA. VatsiaS. JoshiG. RomanovV. MurrayI.V.J. KhanS.A. Protein misfolding and aggregation in neurodegenerative diseases: A review of pathogeneses, novel detection strategies, and potential therapeutics.Rev. Neurosci.201930433935810.1515/revneuro‑2016‑003530742586
    [Google Scholar]
  7. DurãesF. PintoM. SousaE. Old drugs as new treatments for neurodegenerative diseases.Pharmaceuticals20181124410.3390/ph1102004429751602
    [Google Scholar]
  8. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019.J. Nat. Prod.202083377080310.1021/acs.jnatprod.9b0128532162523
    [Google Scholar]
  9. LukasB. SchmidererC. MittereggerU. NovakJ. Arbutin in marjoram and oregano.Food Chem.2010121118519010.1016/j.foodchem.2009.12.028
    [Google Scholar]
  10. XuW.H. LiangQ. ZhangY.J. ZhaoP. Naturally occurring arbutin derivatives and their bioactivities.Chem. Biodivers.2015121548110.1002/cbdv.20130026925641837
    [Google Scholar]
  11. XuK.X. XueM.G. LiZ. YeB.C. ZhangB. Recent progress on feasible strategies for arbutin production.Front. Bioeng. Biotechnol.20221091428010.3389/fbioe.2022.91428035615473
    [Google Scholar]
  12. ZhouH. ZhaoJ. LiA. ReetzM.T. Chemical and biocatalytic routes to arbutin †.Molecules20192418330310.3390/molecules2418330331514332
    [Google Scholar]
  13. BhallaM. MittalR. KumarM. KushwahA.S. Pharmacological aspects of a bioactive compound arbutin: A comprehensive review. Biointerface res.J. Appl. Chem.202213119
    [Google Scholar]
  14. KumarM. KumarA. SindhuR.K. KushwahA.S. Arbutin attenuates monosodium L-glutamate induced neurotoxicity and cognitive dysfunction in rats.Neurochem. Int.202115110521710.1016/j.neuint.2021.10521734710534
    [Google Scholar]
  15. YuanZ. ZhaoJ. KumarM. SharmaJ. Arbutin effectively ameliorates the symptoms of Parkinson’s disease: The role of adenosine receptors and cyclic adenosine monophosphate.Neural Regen. Res.202116102030204010.4103/1673‑5374.30810233642391
    [Google Scholar]
  16. Ghasemi-KasmanM. BaliH. Y. AbdiS. Arbutin as a natural soluble glycosylated phenol and usage in neuroinflammation.InTreatments, nutraceuticals, supplements, and herbal medicine in neurological disordersAcademic Press202352553910.1016/B978‑0‑323‑90052‑2.00045‑7
    [Google Scholar]
  17. ShenZ. WangY. GuoZ. TanT. ZhangY. Novel tyrosinase inhibitory peptide with free radical scavenging ability.J. Enzyme Inhib. Med. Chem.20193411633164010.1080/14756366.2019.166140131496313
    [Google Scholar]
  18. TeleanuD.M. NiculescuA.G. LunguI.I. RaduC.I. VladâcencoO. RozaE. CostăchescuB. GrumezescuA.M. TeleanuR.I. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases.Int. J. Mol. Sci.20222311593810.3390/ijms2311593835682615
    [Google Scholar]
  19. HiramotoK. KidaT. KikugawaK. Increased urinary hydrogen peroxide levels caused by coffee drinking.Biol. Pharm. Bull.200225111467147110.1248/bpb.25.146712419961
    [Google Scholar]
  20. GalloF.R. PagliucaG. MultariG. PanziniG. D’amoreE. AltieriI. New high-performance liquid chromatography-DAD method for analytical determination of arbutin and hydroquinone in rat plasma.Indian J. Pharm. Sci.201577553053510.4103/0250‑474X.16903126798166
    [Google Scholar]
  21. JuricaK. Brčić KaračonjiI. KopjarN. Shek-VugrovečkiA. CikačT. BenkovićV. The effects of strawberry tree water leaf extract, arbutin and hydroquinone on haematological parameters and levels of primary DNA damage in white blood cells of rats.J. Ethnopharmacol.2018215839010.1016/j.jep.2017.12.03929288828
    [Google Scholar]
  22. AndersenF.A. BergfeldW.F. BelsitoD.V. HillR.A. KlaassenC.D. LieblerD.C. MarksJ.G.Jr ShankR.C. SlagaT.J. SnyderP.W. Final amended safety assessment of hydroquinone as used in cosmetics.Int. J. Toxicol.2010296_supplSuppl.274S287S10.1177/109158181038595721164074
    [Google Scholar]
  23. WangX. ZhangC. ZhengN. MaJ. ZhuY. Determination of arbutin in rat plasma using liquid chromatography–tandem mass spectrometry: Application to a pharmacokinetic study after oral administration of the extract of Vaccinium vitis-idaea.J. Chromatogr. Sci.20165491508151310.1093/chromsci/bmw08527270416
    [Google Scholar]
  24. KwonH.S. KohS.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes.Transl. Neurodegener.2020914210.1186/s40035‑020‑00221‑233239064
    [Google Scholar]
  25. ChenZ. TrappB.D. Microglia and neuroprotection.J. Neurochem.2016136S1Suppl. 1101710.1111/jnc.1306225693054
    [Google Scholar]
  26. HongH. KimB.S. ImH.I. Pathophysiological role of neuroinflammation in neurodegenerative diseases and psychiatric disorders.Int. Neurourol. J.201620Suppl. 1S2S710.5213/inj.1632604.30227230456
    [Google Scholar]
  27. PalmerA.L. OusmanS.S. Astrocytes and aging.Front. Aging Neurosci.20181033710.3389/fnagi.2018.0033730416441
    [Google Scholar]
  28. ReedT.T. Lipid peroxidation and neurodegenerative disease.Free Radic. Biol. Med.20115171302131910.1016/j.freeradbiomed.2011.06.02721782935
    [Google Scholar]
  29. Negre-SalvayreA. AugeN. AyalaV. BasagaH. BoadaJ. BrenkeR. ChappleS. CohenG. FeherJ. GruneT. LengyelG. MannG.E. PamplonaR. PoliG. Portero-OtinM. RiahiY. SalvayreR. SassonS. SerranoJ. ShamniO. SiemsW. SiowR.C.M. WiswedelI. ZarkovicK. ZarkovicN. Pathological aspects of lipid peroxidation.Free Radic. Res.201044101125117110.3109/10715762.2010.49847820836660
    [Google Scholar]
  30. SinghA. KukretiR. SasoL. KukretiS. Oxidative stress: A key modulator in neurodegenerative diseases.Molecules2019248158310.3390/molecules2408158331013638
    [Google Scholar]
  31. OtongS. Adansonia digitata ameliorates lead-induced memory impairments in rats by reducing glutamate concentration and oxidative stress.Egypt. J. Basic Appl. Sci.20229111010.1080/2314808X.2021.2009678
    [Google Scholar]
  32. BalogiZ. MulthoffG. JensenT.K. Lloyd-EvansE. YamashimaT. JäätteläM. HarwoodJ.L. VíghL. Hsp70 interactions with membrane lipids regulate cellular functions in health and disease.Prog. Lipid Res.201974183010.1016/j.plipres.2019.01.00430710597
    [Google Scholar]
  33. KhadirF. PouramirM. JoorsaraeeS.G. FeiziF. SorkhiH. YousefiF. The effect of arbutin on lipid peroxidation and antioxidant capacity in the serum of cyclosporine-treated rats.Caspian J. Intern. Med.20156419620026644892
    [Google Scholar]
  34. OliverA.E. HinchaD.K. CroweL.M. CroweJ.H. Interactions of arbutin with dry and hydrated bilayers.Biochim. Biophys. Acta Biomembr.199813701879710.1016/S0005‑2736(97)00246‑09518563
    [Google Scholar]
  35. GolpichM. AminiE. MohamedZ. Azman AliR. Mohamed IbrahimN. AhmadianiA. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: Pathogenesis and treatment.CNS Neurosci. Ther.201723152210.1111/cns.1265527873462
    [Google Scholar]
  36. JuanC.A. Pérez de la LastraJ.M. PlouF.J. Pérez-LebeñaE. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies.Int. J. Mol. Sci.2021229464210.3390/ijms2209464233924958
    [Google Scholar]
  37. HuangZ. ChenY. ZhangY. Mitochondrial reactive oxygen species cause major oxidative mitochondrial DNA damages and repair pathways.J. Biosci.20204518410.1007/s12038‑020‑00055‑032661211
    [Google Scholar]
  38. VendittiP. Di MeoS. The role of reactive oxygen species in the life cycle of the mitochondrion.Int. J. Mol. Sci.2020216217310.3390/ijms2106217332245255
    [Google Scholar]
  39. ChanD.C. Mitochondrial dynamics and its involvement in disease.Annu. Rev. Pathol.202015123525910.1146/annurev‑pathmechdis‑012419‑03271131585519
    [Google Scholar]
  40. FoudahA.I. DeviS. AlamA. SalkiniM.A. RossS.A. Anticholinergic effect of resveratrol with vitamin E on scopolamine-induced Alzheimer’s disease in rats: Mechanistic approach to prevent inflammation.Front. Pharmacol.202314111572110.3389/fphar.2023.111572136817151
    [Google Scholar]
  41. SurmeierD.J. Determinants of dopaminergic neuron loss in Parkinson’s disease.FEBS J.2018285193657366810.1111/febs.1460730028088
    [Google Scholar]
  42. WangX. SunH. FanY. LiL. MakinoT. KanoY. Analysis and bioactive evaluation of the compounds absorbed into blood after oral administration of the extracts of Vaccinium vitis-idaea in rat.Biol. Pharm. Bull.20052861106110810.1248/bpb.28.110615930756
    [Google Scholar]
  43. DeenathayalanU. BrindhaD. Arbutin aids in the recovery of dyskinesia in Alzheimer’s zebrafish by decreasing the function of acetylcholinesterase.Res. J. Biotechnol.2023184
    [Google Scholar]
  44. DingY. KongD. ZhouT. YangN. XinC. XuJ. WangQ. ZhangH. WuQ. LuX. LimK. MaB. ZhangC. LiL. HuangW. α-arbutin protects against Parkinson’s disease-associated mitochondrial dysfunction in vitro and in vivo.Neuromolecular Med.2020221566710.1007/s12017‑019‑08562‑631401719
    [Google Scholar]
  45. RyanK.C. AshkavandZ. NormanK.R. The role of mitochondrial calcium homeostasis in Alzheimer’s and related diseases.Int. J. Mol. Sci.20202123915310.3390/ijms2123915333271784
    [Google Scholar]
  46. WescottA.P. KaoJ.P.Y. LedererW.J. BoymanL. Voltage-energized calcium-sensitive ATP production by mitochondria.Nat. Metab.201911097598410.1038/s42255‑019‑0126‑831950102
    [Google Scholar]
  47. HeT. LinX. SuA. ZhangY. XingZ. MiL. WeiT. LiZ. WuW. Mitochondrial dysfunction-targeting therapeutics of natural products in Parkinson’s disease.Front. Pharmacol.202314111733710.3389/fphar.2023.111733737234707
    [Google Scholar]
  48. GiorgiC. BaldassariF. BononiA. BonoraM. De MarchiE. MarchiS. MissiroliS. PatergnaniS. RimessiA. SuskiJ.M. WieckowskiM.R. PintonP. Mitochondrial Ca2+ and apoptosis.Cell Calcium2012521364310.1016/j.ceca.2012.02.00822480931
    [Google Scholar]
  49. Calvo-RodriguezM. BacskaiB.J. Mitochondria and calcium in Alzheimer’s disease: From cell signaling to neuronal cell death.Trends Neurosci.202144213615110.1016/j.tins.2020.10.00433160650
    [Google Scholar]
  50. Matuz-MaresD. González-AndradeM. Araiza-VillanuevaM.G. Vilchis-LanderosM.M. Vázquez-MezaH. Mitochondrial calcium: Effects of its imbalance in disease.Antioxidants202211580110.3390/antiox1105080135624667
    [Google Scholar]
  51. CarmoC. NaiaL. LopesC. RegoA.C. Mitochondrial dysfunction in Huntington’s disease.Adv Exp Med Biol.20181049598310.1007/978‑3‑319‑71779‑1_3
    [Google Scholar]
  52. VecchioI. SorrentinoL. PaolettiA. MarraR. ArbitrioM. The state of the art on acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease.J. Cent. Nerv. Syst. Dis.20211310.1177/1179573521102911334285627
    [Google Scholar]
  53. AlkholifiF.K. DeviS. AldawsariM.F. FoudahA.I. AlqarniM.H. SalkiniM.A. SweilamS.H. Effects of tiliroside and lisuride co-treatment on the PI3K/Akt signal pathway: Modulating neuroinflammation and apoptosis in parkinson’s disease.Biomedicines20231110273510.3390/biomedicines1110273537893109
    [Google Scholar]
  54. Ebrahim-TabarF. NazariA. PouramirM. AshrafpourM. PourabdolhosseinF. Arbutin improves functional recovery and attenuates glial activation in lysolecethin-induced demyelination model in rat optic chiasm.Mol. Neurobiol.20205773228324210.1007/s12035‑020‑01962‑x32506379
    [Google Scholar]
  55. LeeH.J. KimK.W. Anti-inflammatory effects of arbutin in lipopolysaccharide-stimulated BV2 microglial cells.Inflamm. Res.201261881782510.1007/s00011‑012‑0474‑222487852
    [Google Scholar]
  56. DastanZ. PouramirM. Ghasemi-KasmanM. GhasemzadehZ. DadgarM. GolM. AshrafpourM. PourghasemM. MoghadamniaA.A. KhafriS. Arbutin reduces cognitive deficit and oxidative stress in animal model of Alzheimer’s disease.Int. J. Neurosci.2019129111145115310.1080/00207454.2019.163837631251091
    [Google Scholar]
  57. DadgarM. PouramirM. DastanZ. Ghasemi-KasmanM. AshrafpourM. MoghadamniaA.A. KhafriS. PourghasemM. Arbutin attenuates behavioral impairment and oxidative stress in an animal model of Parkinson’s disease.Avicenna J. Phytomed.20188653354230456201
    [Google Scholar]
  58. SinghG. UpadhayayS. NavikU. KumarP. Neuroprotection by arbutin against haloperidol-induced Tardive Dyskinesia in rats and reducing neurotoxicity in SHSY-5Y cells.Research Square202210.21203/rs.3.rs‑2211641/v1
    [Google Scholar]
  59. TanJ. YadavM.K. DeviS. KumarM. Neuroprotective effects of arbutin against oxygen and glucose deprivation-induced oxidative stress and neuroinflammation in rat cortical neurons.Acta Pharm.202272112313410.2478/acph‑2022‑000236651531
    [Google Scholar]
  60. UvarajanD. RavikumarM. DurairajB. Network analysis and molecular mapping for alzheimer’s disease to reveal the drug targets of arbutin.Research Square.202312410.21203/rs.3.rs‑3474607/v1
    [Google Scholar]
  61. LiuZ. KumarM. KabraA. Cucurbitacin B exerts neuroprotection in a murine Alzheimer’s disease model by modulating oxidative stress, inflammation, and neurotransmitter levels.Frontiers in Bioscience-Landmark202227207110.31083/j.fbl270207135227014
    [Google Scholar]
  62. HuangM. SinghN. KainthR. KhalidM. KushwahA.S. KumarM. Mechanistic insight into diosmin-induced neuroprotection and memory improvement in intracerebroventricular-quinolinic acid rat model: Resurrection of mitochondrial functions and antioxidants.Evid. Based Complement. Alternat. Med.2022202211410.1155/2022/858455835300069
    [Google Scholar]
  63. ChoiS. ParkY-I. LeeS-K. KimJ-E. ChungM-H. Aloesin inhibits hyperpigmentation induced by UV radiation.Clin. Exp. Dermatol.200227651351510.1046/j.1365‑2230.2002.01120.x12372097
    [Google Scholar]
  64. ErtamI. MutluB. UnalI. AlperS. KivçakB. OzerO. Efficiency of ellagic acid and arbutin in melasma: A randomized, prospective, open-label study.J. Dermatol.200835957057410.1111/j.1346‑8138.2008.00522.x18837701
    [Google Scholar]
  65. MoragM. NawrotJ. SiatkowskiI. AdamskiZ. FedorowiczT. Dawid-PacR. UrbanskaM. NowakG. A double-blind, placebo-controlled randomized trial of Serratulae quinquefoliae folium, a new source of β -arbutin, in selected skin hyperpigmentations.J. Cosmet. Dermatol.201514318519010.1111/jocd.1214726119285
    [Google Scholar]
  66. AnwarA.I. AsmaraniY. MadjidA. PatellongiI. AdrianiA. As’adS. KurniadiI. Comparison of 2% deoxyarbutin and 4% hydroquinone as a depigmenting agent in healthy individuals: A double-blind randomized controlled clinical trial.J. Cosmet. Dermatol.202120123953395910.1111/jocd.1405033683782
    [Google Scholar]
  67. ThawabtehA.M. JibreenA. KaramanD. ThawabtehA. KaramanR. Skin pigmentation types, causes and treatment—a review.Molecules20232812483910.3390/molecules2812483937375394
    [Google Scholar]
  68. BooY.C. Arbutin as a skin depigmenting agent with antimelanogenic and antioxidant properties.Antioxidants2021107112910.3390/antiox1007112934356362
    [Google Scholar]
  69. BernauerU. BodinL. ChaudhryQ. CoenraadsP.J. DusinskaM. EzendamJ. SCCS OPINION on the safety of alpha-arbutin and beta-arbutin in cosmetic products-SCCS/1642/22–final opinion.(Doctoral dissertation, European commission)2023
    [Google Scholar]
  70. NaharL. Al-GroshiA. KumarA. SarkerS.D. Arbutin: Occurrence in plants, and its potential as an anticancer agent.Molecules20222724878610.3390/molecules2724878636557918
    [Google Scholar]
  71. KangM.J. HaH.W. KimH.G. LeeD.H. KongM.J. AhnY.T. KimD.H. ShinB.S. KangW. JeongH.G. JeongT.C. Role of metabolism by intestinal bacteria in arbutin-induced toxicity in vitro.Arch. Pharm. Res.201134468769310.1007/s12272‑011‑0420‑921544735
    [Google Scholar]
  72. ChengS.L. LiuR.H. SheuJ.N. ChenS.T. SinchaikulS. TsayG.J. Toxicogenomics of A375 human malignant melanoma cells treated with arbutin.J. Biomed. Sci.20071418710510.1007/s11373‑006‑9130‑617103032
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775298987240528050110
Loading
/content/journals/cdrr/10.2174/0125899775298987240528050110
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test