Skip to content
2000
image of The Potential of Coenzyme Q10 in Alzheimer's Disease: Reducing IL-17 Induced Inflammation and Oxidative Stress for Neuroprotection

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder primarily marked by amyloid-beta (Aβ) plaque accumulation and neurofibrillary tangles, which lead to cognitive decline. Oxidative stress and neuroinflammation are key contributors to the disease's progression, with elevated production of Reactive Oxygen Species (ROS) exacerbating neuronal damage. Coenzyme Q10 (CoQ10), a naturally occurring antioxidant, has been identified for its potential neuroprotective effects due to its roles in mitochondrial function, energy production, and antioxidant defense. The cytokine interleukin-17 (IL-17) is also implicated in AD, promoting neuroinflammation by disrupting the blood-brain barrier (BBB) and activating glial cells. This review explores the impact of CoQ10 on neuroinflammation and oxidative stress in AD, focusing on its role in mitigating IL-17-mediated pathways. Preclinical studies indicate that CoQ10 reduces Aβ plaques, improves cognitive functions, and restores mitochondrial stability. However, clinical trials have yielded mixed results, often limited by bioavailability challenges. This research highlights the necessity of further human trials better to understand CoQ10's therapeutic potential in AD management.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775373406250411104442
2025-04-24
2025-10-19
Loading full text...

Full text loading...

References

  1. Anwal L. a Comprehensive review on Alzheimer’S disease. World J. Pharm. Pharm. Sci. 2021 10 7 1170
    [Google Scholar]
  2. Huang L.K. Kuan Y.C. Lin H.W. Hu C.J. Clinical trials of new drugs for Alzheimer disease: A 2020–2023 update. J. Biomed. Sci. 2023 30 1 83 10.1186/s12929‑023‑00976‑6 37784171
    [Google Scholar]
  3. Bagheri S. Haddadi R. Saki S. Kourosh-Arami M. Rashno M. Mojaver A. Komaki A. Neuroprotective effects of coenzyme Q10 on neurological diseases: A review article. Front. Neurosci. 2023 17 1188839 10.3389/fnins.2023.1188839 37424991
    [Google Scholar]
  4. von Büdingen H.C. Bar-Or A. Zamvil S.S. B cells in multiple sclerosis: Connecting the dots. Curr. Opin. Immunol. 2011 23 6 713 720 10.1016/j.coi.2011.09.003 21983151
    [Google Scholar]
  5. Pradhan N. Singh C. Singh A. Coenzyme Q10 a mitochondrial restorer for various brain disorders. Naunyn Schmiedebergs Arch. Pharmacol. 2021 394 11 2197 2222 10.1007/s00210‑021‑02161‑8 34596729
    [Google Scholar]
  6. Xin N. Namaka M.P. Dou C. Zhang Y. Exploring the role of interleukin-22 in neurological and autoimmune disorders. Int. Immunopharmacol. 2015 28 2 1076 1083 10.1016/j.intimp.2015.08.016 26311525
    [Google Scholar]
  7. Milovanovic J. Arsenijevic A. Stojanovic B. Kanjevac T. Arsenijevic D. Radosavljevic G. Milovanovic M. Arsenijevic N. Interleukin-17 in chronic inflammatory neurological diseases. Front. Immunol. 2020 11 947 10.3389/fimmu.2020.00947 32582147
    [Google Scholar]
  8. Zhang X.X. Tian Y. Wang Z.T. Ma Y.H. Tan L. Yu J.T. The epidemiology of Alzheimer’s disease modifiable risk factors and prevention. J. Prev. Alzheimers Dis. 2021 8 3 313 321 10.14283/jpad.2021.15 34101789
    [Google Scholar]
  9. Tam K.Y. Ju Y. Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural Regen. Res. 2022 17 3 543 549 10.4103/1673‑5374.320970 34380884
    [Google Scholar]
  10. Stone J. Carson A. Functional neurologic symptoms: Assessment and management. Neurol. Clin. 2011 29 1 1 18, vii 10.1016/j.ncl.2010.10.011 21172567
    [Google Scholar]
  11. Ganguly U Kaur U Chakrabarti SS Sharma P Agrawal BK Saso L Oxidative stress, neuroinflammation, and NADPH oxidase: Implications in the pathogenesis and treatment of Alzheimer's disease. Oxid Med Cell Longev 2021 2021 7086512
    [Google Scholar]
  12. Young A.J. Johnson S. Steffens D.C. Doraiswamy P.M. A.J. Y Coenzyme Q10: A review of its promise as a neuroprotectant. CNS Spectr. 2007 12 1 62 68 10.1017/S1092852900020538 17192765
    [Google Scholar]
  13. Barnham K.J. Masters C.L. Bush A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 2004 3 3 205 214 10.1038/nrd1330 15031734
    [Google Scholar]
  14. Gutierrez-Mariscal F.M. Arenas-de Larriva A.P. Limia-Perez L. Romero-Cabrera J.L. Yubero-Serrano E.M. López-Miranda J. Coenzyme q10 supplementation for the reduction of oxidative stress: Clinical implications in the treatment of chronic diseases. Int. J. Mol. Sci. 2020 21 21 7870 10.3390/ijms21217870 33114148
    [Google Scholar]
  15. Teleanu D.M. Niculescu A.G. Lungu I.I. Radu C.I. Vladâcenco O. Roza E. Costăchescu B. Grumezescu A.M. Teleanu R.I. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int. J. Mol. Sci. 2022 23 11 5938 10.3390/ijms23115938 35682615
    [Google Scholar]
  16. Ozben T. Ozben S. Neuro-inflammation and anti-inflammatory treatment options for Alzheimer’s disease. Clin. Biochem. 2019 72 87 89 10.1016/j.clinbiochem.2019.04.001 30954437
    [Google Scholar]
  17. Afsar A. Chacon Castro M.C. Soladogun A.S. Zhang L. Recent development in the understanding of molecular and cellular mechanisms underlying the etiopathogenesis of Alzheimer’s disease. Int. J. Mol. Sci. 2023 24 8 7258 10.3390/ijms24087258 37108421
    [Google Scholar]
  18. Chaney A. Williams S.R. Boutin H. In vivo molecular imaging of neuroinflammation in Alzheimer’s disease. J. Neurochem. 2019 149 4 438 451 10.1111/jnc.14615 30339715
    [Google Scholar]
  19. Song T. Song X. Zhu C. Patrick R. Skurla M. Santangelo I. Green M. Harper D. Ren B. Forester B.P. Öngür D. Du F. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer’s disease: A meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res. Rev. 2021 72 101503 10.1016/j.arr.2021.101503 34751136
    [Google Scholar]
  20. Egeberg A. Gisondi P. Carrascosa J.M. Warren R.B. Mrowietz U. The role of the interleukin‐23/Th17 pathway in cardiometabolic comorbidity associated with psoriasis. J. Eur. Acad. Dermatol. Venereol. 2020 34 8 1695 1706 10.1111/jdv.16273 32022950
    [Google Scholar]
  21. Elipenahli C. Stack C. Jainuddin S. Gerges M. Yang L. Starkov A. Beal M.F. Dumont M. Behavioral improvement after chronic administration of coenzyme Q10 in P301S transgenic mice. J. Alzheimers Dis. 2012 28 1 173 182 10.3233/JAD‑2011‑111190 21971408
    [Google Scholar]
  22. Arenas-Jal M. Suñé-Negre J.M. García-Montoya E. Coenzyme Q10 supplementation: Efficacy, safety, and formulation challenges. Compr. Rev. Food Sci. Food Saf. 2020 19 2 574 594 10.1111/1541‑4337.12539 33325173
    [Google Scholar]
  23. Moreira P. Santos M. Sena C. Nunes E. Seiça R. Oliveira C. CoQ10 therapy attenuates amyloid β-peptide toxicity in brain mitochondria isolated from aged diabetic rats. Exp. Neurol. 2005 196 1 112 119 10.1016/j.expneurol.2005.07.012 16126199
    [Google Scholar]
  24. Fakhrolmobasheri M. Hosseini M.S. Shahrokh S.G. Mohammadi Z. Kahlani M.J. Majidi S.E. Zeinalian M. Coenzyme Q10 and its therapeutic potencies against COVID-19 and other similar infections: A molecular review. Adv. Pharm. Bull. 2023 13 2 233 243 10.34172/apb.2023.026 37342382
    [Google Scholar]
  25. Wang W.Y. Tan M.S. Yu J.T. Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl. Med. 2015 3 10 136 26207229
    [Google Scholar]
  26. Rudinskiy N. Fuerer C. Demurtas D. Zamorano S. De Piano C. Herrmann A.G. Spires-Jones T.L. Oeckl P. Otto M. Frosch M.P. Moniatte M. Hyman B.T. Schmid A.W. Amyloid‐beta oligomerization is associated with the generation of a typical peptide fragment fingerprint. Alzheimers Dement. 2016 12 9 996 1013 10.1016/j.jalz.2016.03.011 27130892
    [Google Scholar]
  27. Shichita T. Sugiyama Y. Ooboshi H. Sugimori H. Nakagawa R. Takada I. Iwaki T. Okada Y. Iida M. Cua D.J. Iwakura Y. Yoshimura A. Pivotal role of cerebral interleukin-17–producing γδT cells in the delayed phase of ischemic brain injury. Nat. Med. 2009 15 8 946 950 10.1038/nm.1999 19648929
    [Google Scholar]
  28. Sutton C.E. Lalor S.J. Sweeney C.M. Brereton C.F. Lavelle E.C. Mills K.H.G. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 2009 31 2 331 341 10.1016/j.immuni.2009.08.001 19682929
    [Google Scholar]
  29. Gelderblom M. Weymar A. Bernreuther C. Velden J. Arunachalam P. Steinbach K. Orthey E. Arumugam T.V. Leypoldt F. Simova O. Thom V. Friese M.A. Prinz I. Hölscher C. Glatzel M. Korn T. Gerloff C. Tolosa E. Magnus T. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood 2012 120 18 3793 3802 10.1182/blood‑2012‑02‑412726 22976954
    [Google Scholar]
  30. Benakis C. Brea D. Caballero S. Faraco G. Moore J. Murphy M. Sita G. Racchumi G. Ling L. Pamer E.G. Iadecola C. Anrather J. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat. Med. 2016 22 5 516 523 10.1038/nm.4068 27019327
    [Google Scholar]
  31. Brigas H.C. Ribeiro M. Coelho J.E. Gomes R. Gomez-Murcia V. Carvalho K. Faivre E. Costa-Pereira S. Darrigues J. de Almeida A.A. Buée L. Dunot J. Marie H. Pousinha P.A. Blum D. Silva-Santos B. Lopes L.V. Ribot J.C. IL-17 triggers the onset of cognitive and synaptic deficits in early stages of Alzheimer’s disease. Cell Rep. 2021 36 9 109574 10.1016/j.celrep.2021.109574 34469732
    [Google Scholar]
  32. Shichita T. Ago T. Kamouchi M. Kitazono T. Yoshimura A. Ooboshi H. Novel therapeutic strategies targeting innate immune responses and early inflammation after stroke. J. Neurochem. 2012 123 s2 Suppl. 2 29 38 10.1111/j.1471‑4159.2012.07941.x 23050640
    [Google Scholar]
  33. Sheykhhasan M. Amini R. Soleimani Asl S. Saidijam M. Hashemi S.M. Najafi R. Neuroprotective effects of coenzyme Q10-loaded exosomes obtained from adipose-derived stem cells in a rat model of Alzheimer’s disease. Biomed. Pharmacother. 2022 152 May 113224 10.1016/j.biopha.2022.113224 35679720
    [Google Scholar]
  34. Bagyinszky E. Giau V.V. Shim K. Suk K. An S.S.A. Kim S. Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis. J. Neurol. Sci. 2017 376 242 254 10.1016/j.jns.2017.03.031 28431620
    [Google Scholar]
  35. Gillespie W. Tyagi N. Tyagi S.C. Role of PPARgamma, a nuclear hormone receptor in neuroprotection. Indian J. Biochem. Biophys. 2011 48 2 73 81 21682137
    [Google Scholar]
  36. Gutzmann H Hadler D Sustained efficacy and safety of idebenone in the treatment of Alzheimer's disease: Update on a 2-year double-blind multicentre study. J Neural Transm Suppl 1998 54 301 310
    [Google Scholar]
  37. Reddy A. Handbook of refugee health: For healthcare professionals and humanitarians providing care to forced migrants. CRC Press 2021 277 282
    [Google Scholar]
  38. Arshiya Banu S. Asadulla S. Subbaiah M.V. Coenzyme Q10-A review of its promise IOSR J Pharm Biol Sci 11 3 14 19
    [Google Scholar]
  39. GÜRKAN A.S Coenzyme q10: Koenzim q10 Ank. Univ. Eczac. Fak. Derg. 2005 34 2 1 27
    [Google Scholar]
  40. Pastor-Maldonado C.J. Suárez-Rivero J.M. Povea-Cabello S. Álvarez-Córdoba M. Villalón-García I. Munuera-Cabeza M. Coenzyme Q10: Novel formulations and medical trends. Int J Mol Sci. 2020 21 22 8432
    [Google Scholar]
  41. Varela-López A. Giampieri F. Battino M. Quiles J.L. Coenzyme Q and its role in the dietary therapy against aging. Molecules 2016 21 3 373
    [Google Scholar]
  42. Testai L. Martelli A. Flori L. Colletti A. Cicero A.F.G. Coenzyme Q10: Clinical applications beyond cardiovascular diseases. Nutrients 2021 13 5 1697
    [Google Scholar]
  43. Fišar Z. Hroudová J. CoQ10 and mitochondrial dysfunction in Alzheimer's disease. Antioxidants 2024 13 2 191
    [Google Scholar]
  44. Silva S.V. Gallia M.C. Luz J.R.D. Rezende A.A. Bongiovanni G.A. Araujo-Silva G. Almeida M.G. Antioxidant effect of coenzyme Q10 in the prevention of oxidative stress in arsenic-treated CHO-K1 cells and possible participation of zinc as a pro-oxidant agent. Nutrients 2022 14 16 3265 10.3390/nu14163265 36014770
    [Google Scholar]
  45. Yubero-Serrano E.M. Garcia-Rios A. Delgado-Lista J. Prez-Martinez P. Camargo A. Perez-Jimenez F. Coenzyme Q10 as an Antioxidant in the Elderly. Aging: Oxidative Stress and Dietary Antioxidants. Elsevier Inc. 2014 109 117 10.1016/B978‑0‑12‑405933‑7.00011‑1
    [Google Scholar]
  46. Littarru G.P. Tiano L. Bioenergetic and antioxidant properties of coenzyme Q10: Recent developments. Mol Biotechnol. 2007 37 1 31 37
    [Google Scholar]
  47. Lee S.Y. Lee S.H. Yang E.J. Kim J.K. Kim E.K. Jung K. Jung H. Lee K. Lee H.H. Lee B.I. Park S.H. Shin D.Y. Cho M.L. Coenzyme Q10 inhibits Th17 and STAT3 signaling pathways to ameliorate colitis in mice. J. Med. Food 2017 20 9 821 829 10.1089/jmf.2016.3859 28816577
    [Google Scholar]
  48. Kostulas N. Pelidou S.H. Kivisäkk P. Kostulas V. Link H. Increased IL-1β, IL-8, and IL-17 mRNA expression in blood mononuclear cells observed in a prospective ischemic stroke study. Stroke 1999 30 10 2174 2179 10.1161/01.STR.30.10.2174 10512924
    [Google Scholar]
  49. Hargreaves IP Coenzyme Q10 as a therapy for mitochondrial disease. Int J Biochem Cell Biol 2014 49 105 111 10.1016/j.biocel.2014.01.020
    [Google Scholar]
  50. Ishrat T Coenzyme Q10 modulates cognitive impairment against intracerebroventricular injection of streptozotocin in rats. Behav Brain Res. 2006 171 1 9 16 10.1016/j.bbr.2006.03.009
    [Google Scholar]
  51. Akbari A Mobini GR Agah S Morvaridzadeh M Omidi A Potter E Coenzyme Q10 supplementation and oxidative stress parameters: A systematic review and meta-analysis of clinical trials. Eur J Clin Pharmacol 2020 76 11 1483 1499 10.1007/s00228‑020‑02919‑8
    [Google Scholar]
  52. Liu Y. Huang Y. Xu C. An P. Luo Y. Jiao L. Mitochondrial dysfunction and therapeutic perspectives in cardiovascular diseases. Int J Mol Sci. 2022 23 24 16053
    [Google Scholar]
  53. Cirilli I. Damiani E. Dludla P.V. Hargreaves I. Marcheggiani F. Millichap L.E. Role of Coenzyme Q10 in health and disease: An update on the last 10 years (2010-2020). Antioxidants 2021 10 8 1325
    [Google Scholar]
  54. Zhang Y. Huang X. Liu N. Liu M. Sun C. Qi B. Discovering the potential value of Coenzyme Q10 in oxidative stress: Enlightenment from a synthesis of clinical evidence based on various population. Front Pharmacol. 2022 13 936233
    [Google Scholar]
  55. Sanz A. Navas P. Editorial: Coenzyme Q Redox state and cellular homeostasis. Front Physiol. 2018 9 912
    [Google Scholar]
  56. Fu J Huang Y Bao T Liu C Liu X Chen X. The role of Th17 cells/IL-17A in AD, PD, ALS and the strategic therapy targeting on IL-17A. J Neuroinflammation 2022 19 1 98
    [Google Scholar]
  57. Lu Y. Zhang P. Xu F. Zheng Y. Zhao H. Advances in the study of IL-17 in neurological diseases and mental disorders. Front Neurol. 2023 14 1284304
    [Google Scholar]
  58. Cao M. Liu J. Zhang X. Wang Y. Hou Y. Song Q. Cui Y. Zhao Y. Wang P. IL-17A promotes the progression of Alzheimer’s disease in APP/PS1 mice. Immun. Ageing 2023 20 1 74 10.1186/s12979‑023‑00397‑x 38098004
    [Google Scholar]
  59. Dhapola R. Beura S.K. Sharma P. Singh S.K. Oxidative stress in Alzheimer's disease: Current knowledge of signaling pathways and therapeutics. Mol Biol Rep. 2024 51 1 48
    [Google Scholar]
  60. Zheng Z. Wang X. Ouyang L. Chen W. Zhang L. Cao Y. Antioxidants improve the proliferation and efficacy of hUC-MSCs against H2O2-induced senescence. Antioxidants 2023 12 7 1334 10.3390/antiox12071334 37507874
    [Google Scholar]
  61. Singh A. Kumar A. Microglial inhibitory mechanism of coenzyme Q10 against Aβ (1-42) induced cognitive dysfunctions: Possible behavioral, biochemical, cellular, and histopathological alterations. Front. Pharmacol. 2015 6 NOV 268 10.3389/fphar.2015.00268 26617520
    [Google Scholar]
  62. Muthukumaran K. Kanwar A. Vegh C. Marginean A. Elliott A. Guilbeault N. Badour A. Sikorska M. Cohen J. Pandey S. Ubisol-Q10 (a nanomicellar water-soluble formulation of CoQ10) treatment inhibits Alzheimer-type behavioral and pathological symptoms in a double transgenic mouse (TgAPEswe, PSEN1dE9) model of Alzheimer’s disease. J. Alzheimers Dis. 2017 61 1 221 236 10.3233/JAD‑170275 29154270
    [Google Scholar]
  63. Clemente-Suárez V.J. Redondo-Flórez L. Beltrán-Velasco A.I. Ramos-Campo D.J. Belinchón-deMiguel P. Martinez-Guardado I. Mitochondria and brain disease: A comprehensive review of pathological mechanisms and therapeutic opportunities. Biomedicines 2023 11 9 2488
    [Google Scholar]
  64. Higashi C. Kawaji A. Tsuda N. Hayashi M. Saito R. Yagishita Y. Suzuki T. Uruno A. Nakamura M. Nakao K. Furusako S. Yamamoto M. The novel Nrf2 inducer TFM-735 ameliorates experimental autoimmune encephalomyelitis in mice. Eur. J. Pharmacol. 2017 802 76 84 10.1016/j.ejphar.2017.02.044 28246026
    [Google Scholar]
  65. Durán-Prado M. Frontiñán J. Santiago-Mora R. Peinado J.R. Parrado-Fernández C. Gómez-Almagro M.V. Moreno M. López-Domínguez J.A. Villalba J.M. Alcaín F.J. Coenzyme Q10 protects human endothelial cells from β-amyloid uptake and oxidative stress-induced injury. PLoS One 2014 9 10 e109223 10.1371/journal.pone.0109223 25272163
    [Google Scholar]
  66. Dumont M. Kipiani K. Yu F. Wille E. Katz M. Calingasan N.Y. Gouras G.K. Lin M.T. Beal M.F. Coenzyme Q10 decreases amyloid pathology and improves behavior in a transgenic mouse model of Alzheimer’s disease. J. Alzheimers Dis. 2011 27 1 211 223 10.3233/JAD‑2011‑110209 21799249
    [Google Scholar]
  67. Chen J. Liu X. Zhong Y. Interleukin-17A: The key cytokine in neurodegenerative diseases. Front. Aging Neurosci. 2020 12 566922 10.3389/fnagi.2020.566922 33132897
    [Google Scholar]
  68. Kandlur A. Satyamoorthy K. Gangadharan G. Oxidative stress in cognitive and epigenetic aging: A retrospective glance. Front Mol Neurosci. 2020 13 41
    [Google Scholar]
  69. Franzoni F. Scarfò G. Guidotti S. Fusi J. Asomov M. Pruneti C. Oxidative stress and cognitive decline: The neuroprotective role of natural antioxidants. Front Neurosci. 2021 15 729757
    [Google Scholar]
  70. Xu G. Lu H. Dong Y. Shapoval D. Soriano S.G. Liu X. Coenzyme Q10 reduces sevoflurane-induced cognitive deficiency in young mice. Br J Anaesth. 2017 119 3 481 491
    [Google Scholar]
  71. Moseley T.A. Haudenschild D.R. Rose L. Reddi A.H. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 2003 14 2 155 174 10.1016/S1359‑6101(03)00002‑9 12651226
    [Google Scholar]
  72. Ge Y. Huang M. Yao Y.M. Biology of interleukin-17 and its pathophysiological significance in sepsis. Front Immunol. 2020 11 1558
    [Google Scholar]
  73. Martin B. Hirota K. Cua D.J. Stockinger B. Veldhoen M. Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 2009 31 2 321 330 10.1016/j.immuni.2009.06.020 19682928
    [Google Scholar]
  74. Gaffen S.L. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol. 2009 9 8 556 567
    [Google Scholar]
  75. Kawaguchi M. Adachi M. Oda N. Kokubu F. Huang S.K. IL-17 cytokine family. J. Allergy Clin. Immunol. 2004 114 6 1265 1273 10.1016/j.jaci.2004.10.019 15577820
    [Google Scholar]
  76. Huppert J. Closhen D. Croxford A. White R. Kulig P. Pietrowski E. Bechmann I. Becher B. Luhmann H.J. Waisman A. Kuhlmann C.R.W. Cellular mechanisms of IL‐17‐induced blood‐brain barrier disruption. FASEB J. 2010 24 4 1023 1034 10.1096/fj.09‑141978 19940258
    [Google Scholar]
  77. Tzartos J.S. Friese M.A. Craner M.J. Palace J. Newcombe J. Esiri M.M. Fugger L. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am. J. Pathol. 2008 172 1 146 155 10.2353/ajpath.2008.070690 18156204
    [Google Scholar]
  78. Kuwabara T. Ishikawa F. Kondo M. Kakiuchi T. The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediators Inflamm. 2017 2017 1 1 11 10.1155/2017/3908061 28316374
    [Google Scholar]
  79. Jovanovic D.V. Di Battista J.A. Martel-Pelletier J. Jolicoeur F.C. He Y. Zhang M. Mineau F. Pelletier J.P. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-β and TNF-α, by human macrophages. J. Immunol. 1998 160 7 3513 3521 10.4049/jimmunol.160.7.3513 9531313
    [Google Scholar]
  80. Waisman A. Hauptmann J. Regen T. The role of IL-17 in CNS diseases. Acta Neuropathol. 2015 129 5 625 637 10.1007/s00401‑015‑1402‑7 25716179
    [Google Scholar]
  81. Chen J.M. Jiang G.X. Li Q.W. Zhou Z.M. Cheng Q. Increased serum levels of interleukin-18, -23 and -17 in Chinese patients with Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2014 38 5-6 321 329 10.1159/000360606 25138786
    [Google Scholar]
  82. Yang Z. Yuan C. IL-17A promotes the neuroinflammation and cognitive function in sevoflurane anesthetized aged rats via activation of NF-κB signaling pathway. BMC Anesthesiol. 2018 18 1 147 10.1186/s12871‑018‑0607‑4
    [Google Scholar]
  83. Sun D Novotny M Bulek K Liu C Li X Hamilton T. Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF). Nat Immunol 2011 12 9 853 860
    [Google Scholar]
  84. Zenaro E. Pietronigro E. Bianca V.D. Piacentino G. Marongiu L. Budui S. Turano E. Rossi B. Angiari S. Dusi S. Montresor A. Carlucci T. Nanì S. Tosadori G. Calciano L. Catalucci D. Berton G. Bonetti B. Constantin G. Neutrophils promote Alzheimer’s disease–like pathology and cognitive decline via LFA-1 integrin. Nat. Med. 2015 21 8 880 886 10.1038/nm.3913 26214837
    [Google Scholar]
  85. Pezzulo A.A. Tudas R.A. Stewart C.G. Buonfiglio L.G.V. Lindsay B.D. Taft P.J. Gansemer N.D. Zabner J. HSP90 inhibitor geldanamycin reverts IL-13– and IL-17–induced airway goblet cell metaplasia. J. Clin. Invest. 2019 129 2 744 758 10.1172/JCI123524 30640172
    [Google Scholar]
  86. Zimmermann J. Krauthausen M. Hofer M.J. Heneka M.T. Campbell I.L. Müller M. CNS-targeted production of IL-17A induces glial activation, microvascular pathology and enhances the neuroinflammatory response to systemic endotoxemia. PLoS One 2013 8 2 e57307 10.1371/journal.pone.0057307 23468966
    [Google Scholar]
  87. Block M.L. Zecca L. Hong J.S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat. Rev. Neurosci. 2007 8 1 57 69 10.1038/nrn2038 17180163
    [Google Scholar]
  88. Varvel N.H. Neher J.J. Bosch A. Wang W. Ransohoff R.M. Miller R.J. Dingledine R. Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus. Proc. Natl. Acad. Sci. USA 2016 113 38 E5665 E5674 10.1073/pnas.1604263113 27601660
    [Google Scholar]
  89. Eldik Linda J Van The Janus face of glial-derived S100B: Beneficial and detrimental functions in the brain. Restor Neurol Neurosci. 2003 21 3-4 97 108
    [Google Scholar]
  90. Rothermundt M. Peters M. Prehn J.H.M. Arolt V. S100B in brain damage and neurodegeneration. Microsc. Res. Tech. 2003 60 6 614 632 10.1002/jemt.10303 12645009
    [Google Scholar]
  91. Gella A. Durany N. Oxidative stress in Alzheimer disease. Cell Adh Migr. 2009 3 1 88 93 10.4161/cam.3.1.7402
    [Google Scholar]
  92. Hajam Y.A. Rani R. Ganie S.Y. Sheikh T.A. Javaid D. Qadri S.S. Pramodh S. Alsulimani A. Alkhanani M.F. Harakeh S. Hussain A. Haque S. Reshi M.S. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells 2022 11 3 552 10.3390/cells11030552 35159361
    [Google Scholar]
  93. Radi E. Formichi P. Battisti C. Federico A. Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimers Dis. 2014 42 Suppl 3 S125 S152 10.3233/JAD‑132738
    [Google Scholar]
  94. Manoharan S. Guillemin G.J. Abiramasundari R.S. Essa M.M. Akbar M. Akbar M.D. The role of reactive oxygen species in the pathogenesis of Alzheimer's disease, Parkinson's disease, and Huntington's disease: A mini review Oxid Med Cell Longev. 2016 2016 8590578
    [Google Scholar]
  95. Cheignon C. Tomas M. Bonnefont-Rousselot D. Faller P. Hureau C. Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol. 2018 14 450 464
    [Google Scholar]
  96. Dhapola R. Sarma P. Medhi B. Prakash A. Reddy D.H.K. Recent advances in molecular pathways and therapeutic implications targeting mitochondrial dysfunction for Alzheimer's disease. Mol Neurobiol. 2022 59 1 535 555
    [Google Scholar]
  97. Flannery P.J. Trushina E. Mitochondrial dysfunction in Alzheimer’s disease and progress in mitochondria-targeted therapeutics. Curr Behav Neurosci Rep 2019 6 88 102
    [Google Scholar]
  98. Gu L. Tran J. Jiang L. Guo Z. A new structural model of Alzheimer’s Aβ42 fibrils based on electron paramagnetic resonance data and Rosetta modeling. J. Struct. Biol. 2016 194 1 61 67 10.1016/j.jsb.2016.01.013 26827680
    [Google Scholar]
  99. Lyons B. Friedrich M. Raftery M. Truscott R. Amyloid plaque in the human brain can decompose from Aβ(1-40/1-42) by spontaneous nonenzymatic processes. Anal. Chem. 2016 88 5 2675 2684 10.1021/acs.analchem.5b03891 26844590
    [Google Scholar]
  100. Tripathi A.S. Bansod P. Swathi K.P. Activation of 5-HT 1b/d receptor restores the cognitive function by reducing glutamate release, deposition of β-amyloid and TLR-4 pathway in the brain of scopolamine-induced dementia in rat. J. Pharm. Pharmacol. 2021 73 12 1592 1598 10.1093/jpp/rgab095 34244776
    [Google Scholar]
  101. Perry V.H. Nicoll J.A.R. Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurol. 2010 6 4 193 201 10.1038/nrneurol.2010.17
    [Google Scholar]
  102. Myhre O. Utkilen H. Duale N. Brunborg G. Hofer T. Metal dyshomeostasis and inflammation in Alzheimer’s and Parkinson’s diseases: Possible impact of environmental exposures. Oxid. Med. Cell. Longev. 2013 2013 1 1 19 10.1155/2013/726954 23710288
    [Google Scholar]
  103. Yin Y. Wen S. Li G. Wang D. Hypoxia enhances stimulating effect of amyloid beta peptide (25–35) for interleukin 17 and T helper lymphocyte subtype 17 upregulation in cultured peripheral blood mononuclear cells. Microbiol. Immunol. 2009 53 5 281 286 10.1111/j.1348‑0421.2009.00120.x 19457169
    [Google Scholar]
  104. Wang X. Zhang M. Liu H. LncRNA17A regulates autophagy and apoptosis of SH-SY5Y cell line as an in vitro model for Alzheimer’s disease. Biosci. Biotechnol. Biochem. 2019 83 4 609 621 10.1080/09168451.2018.1562874 30652945
    [Google Scholar]
  105. St-Amour I. Bosoi C.R. Paré I. Ignatius Arokia Doss P.M. Rangachari M. Hébert S.S. Bazin R. Calon F. Peripheral adaptive immunity of the triple transgenic mouse model of Alzheimer’s disease. J. Neuroinflammation 2019 16 1 3 10.1186/s12974‑018‑1380‑5 30611289
    [Google Scholar]
  106. Zhang J. Ke K.F. Liu Z. Qiu Y.H. Peng Y.P. Th17 cell-mediated neuroinflammation is involved in neurodegeneration of aβ1-42-induced Alzheimer’s disease model rats. PLoS One 2013 8 10 e75786 10.1371/journal.pone.0075786 24124514
    [Google Scholar]
  107. Tian A. Ma H. Zhang R. Tan W. Wang X. Wu B. Wang J. Wan C. Interleukin17A promotes postoperative cognitive dysfunction by triggering β-Amyloid accumulation via the transforming growth Factor-β (TGFβ)/Smad signaling pathway. PLoS One 2015 10 10 e0141596 10.1371/journal.pone.0141596 26509545
    [Google Scholar]
  108. Sweeney M.D. Zhao Z. Montagne A. Nelson A.R. Zlokovic B.V. Blood-brain barrier: From physiology to disease and back. Physiol. Rev. 2019 99 1 21 78 10.1152/physrev.00050.2017 30280653
    [Google Scholar]
  109. van de Haar H.J. Jansen J.F.A. Jeukens C.R.L.P.N. Burgmans S. van Buchem M.A. Muller M. Hofman P.A.M. Verhey F.R.J. van Osch M.J.P. Backes W.H. Subtle blood‐brain barrier leakage rate and spatial extent: Considerations for dynamic contrast‐enhanced MRI. Med. Phys. 2017 44 8 4112 4125 10.1002/mp.12328 28493613
    [Google Scholar]
  110. Rahman M.T. Ghosh C. Hossain M. Linfield D. Rezaee F. Janigro D. Marchi N. van Boxel-Dezaire A.H.H. IFN-γ, IL-17A, or zonulin rapidly increase the permeability of the blood-brain and small intestinal epithelial barriers: Relevance for neuro-inflammatory diseases. Biochem. Biophys. Res. Commun. 2018 507 1-4 274 279 10.1016/j.bbrc.2018.11.021 30449598
    [Google Scholar]
  111. Inamdar A. Gurupadayya B. Sharma H. The role of glial cells in autism spectrum disorder: Molecular mechanisms and therapeutic approaches. CNS Neurol. Disord. Drug Targets 2025 24 1 20 10.2174/0118715273337007241115102118 39773050
    [Google Scholar]
  112. Ni P. Dong H. Wang Y. Zhou Q. Xu M. Qian Y. IL-17A contributes to perioperative neurocognitive disorders through blood-brain barrier disruption in aged mice. J. Neuroinflammation 2018 15 1 332 10.1186/s12974‑018‑1374‑3 30501622
    [Google Scholar]
  113. Ghanaatfar F. Ghanaatfar A. Isapour P. Farokhi N. Bozorgniahosseini S. Javadi M. Gholami M. Ulloa L. Coleman-Fuller N. Motaghinejad M. Is lithium neuroprotective? An updated mechanistic illustrated review. Fundam. Clin. Pharmacol. 2023 37 1 4 30 10.1111/fcp.12826 35996185
    [Google Scholar]
  114. Schüler R. Efentakis P. Wild J. Lagrange J. Garlapati V. Molitor M. T cell-derived IL-17A induces vascular dysfunction via perivascular fibrosis formation and Dysregulation of ·NO/cGMP signaling. Oxid Med Cell Longev. 2019 2019 6721531
    [Google Scholar]
  115. Siffrin V. Radbruch H. Glumm R. Niesner R. Paterka M. Herz J. Leuenberger T. Lehmann S.M. Luenstedt S. Rinnenthal J.L. Laube G. Luche H. Lehnardt S. Fehling H.J. Griesbeck O. Zipp F. In vivo imaging of partially reversible th17 cell-induced neuronal dysfunction in the course of encephalomyelitis. Immunity 2010 33 3 424 436 10.1016/j.immuni.2010.08.018 20870176
    [Google Scholar]
  116. Mantle D. Heaton R.A. Hargreaves I.P. Orlando P. Silvestri S. Marcheggiani F. Coenzyme Q10 and immune function: An overview. Antioxidants 2021 10 5 759
    [Google Scholar]
  117. Jhun J. Lee S.H. Byun J.K. Jeong J.H. Kim E.K. Lee J. Jung Y.O. Shin D. Park S.H. Cho M.L. Coenzyme Q10 suppresses Th17 cells and osteoclast differentiation and ameliorates experimental autoimmune arthritis mice. Immunol. Lett. 2015 166 2 92 102 10.1016/j.imlet.2015.05.012 26045320
    [Google Scholar]
  118. Ma S. Zhong D. Ma P. Li G. Hua W. Sun Y. Liu N. Zhang L. Zhang W. Exogenous hydrogen sulfide ameliorates diabetes-associated cognitive decline by regulating the mitochondria-mediated apoptotic pathway and IL-23/IL-17 expression in db/db mice. Cell. Physiol. Biochem. 2017 41 5 1838 1850 10.1159/000471932 28376494
    [Google Scholar]
  119. Sun L. Fu J. Zhou Y. Metabolism controls the balance of Th17/T-regulatory cells. Front. Immunol. 2017 8 NOV 1632 10.3389/fimmu.2017.01632 29230216
    [Google Scholar]
  120. Jing L. He M.T. Chang Y. Mehta S.L. He Q.P. Zhang J.Z. Li P.A. Coenzyme Q10 protects astrocytes from ROS-induced damage through inhibition of mitochondria-mediated cell death pathway. Int. J. Biol. Sci. 2015 11 1 59 66 10.7150/ijbs.10174 25552930
    [Google Scholar]
  121. Rauchová H. Coenzyme Q10 effects in neurological diseases. Physiol Res. 2021 70 Suppl4 S683 S714
    [Google Scholar]
  122. Choi H. Park H.H. Koh S.H. Choi N.Y. Yu H.J. Park J. Lee Y.J. Lee K.Y. Coenzyme Q10 protects against amyloid beta-induced neuronal cell death by inhibiting oxidative stress and activating the P13K pathway. Neurotoxicology 2012 33 1 85 90 10.1016/j.neuro.2011.12.005 22186599
    [Google Scholar]
  123. Matthews R.T. Yang L. Browne S. Baik M. Beal M.F. Coenzyme Q 10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc. Natl. Acad. Sci. USA 1998 95 15 8892 8897 10.1073/pnas.95.15.8892 9671775
    [Google Scholar]
  124. Ferrante R.J. Andreassen O.A. Dedeoglu A. Ferrante K.L. Jenkins B.G. Hersch S.M. Beal M.F. Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington’s disease. J. Neurosci. 2002 22 5 1592 1599 10.1523/JNEUROSCI.22‑05‑01592.2002 11880489
    [Google Scholar]
  125. Yang X. Dai G. Li G. Yang E.S. Coenzyme Q10 reduces beta-amyloid plaque in an APP/PS1 transgenic mouse model of Alzheimer’s disease. J. Mol. Neurosci. 2010 41 1 110 113 10.1007/s12031‑009‑9297‑1 19834824
    [Google Scholar]
  126. Yang X. Yang Y. Li G. Wang J. Yang E.S. Coenzyme Q10 attenuates beta-amyloid pathology in the aged transgenic mice with Alzheimer presenilin 1 mutation. J. Mol. Neurosci. 2008 34 2 165 171 10.1007/s12031‑007‑9033‑7 18181031
    [Google Scholar]
  127. Lee C.H. Jeon S.J. Cho K.S. Moon E. Sapkota A. Jun H.S. Ryu J.H. Choi J.W. Activation of glucagon-like peptide-1 receptor promotes neuroprotection in experimental autoimmune encephalomyelitis by reducing neuroinflammatory responses. Mol. Neurobiol. 2018 55 4 3007 3020 10.1007/s12035‑017‑0550‑2 28456941
    [Google Scholar]
  128. Komaki H. Faraji N. Komaki A. Shahidi S. Etaee F. Raoufi S. Mirzaei F. Investigation of protective effects of coenzyme Q10 on impaired synaptic plasticity in a male rat model of Alzheimer’s disease. Brain Res. Bull. 2019 147 14 21 10.1016/j.brainresbull.2019.01.025 30721766
    [Google Scholar]
  129. Mecocci P. Polidori M.C. Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2012 1822 5 631 638 10.1016/j.bbadis.2011.10.006 22019723
    [Google Scholar]
  130. Khorsheed S.M. Raghif A.R.A. Anti-proliferative, anti-oxidant and anti-inflammatory effects of topical rutin on imiquimod-induced psoriasis in mice. Pak. J. Life Soc. Sci. 2024 22 1 1962 1976 10.57239/PJLSS‑2024‑22.1.00142
    [Google Scholar]
  131. DiMauro S. Quinzii C.M. Hirano M. Mutations in coenzyme Q10 biosynthetic genes. J. Clin. Invest. 2007 117 3 587 589 10.1172/JCI31423 17332886
    [Google Scholar]
  132. Stough C. Nankivell M. Camfield D.A. Perry N.L. Pipingas A. Macpherson H. Wesnes K. Ou R. Hare D. de Haan J. Head G. Lansjoen P. Langsjoen A. Tan B. Pase M.P. King R. Rowsell R. Zwalf O. Rathner Y. Cooke M. Rosenfeldt F. COQ10 and cognition a review and study protocol for a 90-day randomized controlled trial investigating the cognitive effects of ubiquinol in the healthy elderly. Front. Aging Neurosci. 2019 11 MAY 103 10.3389/fnagi.2019.00103 31191293
    [Google Scholar]
  133. Mitrašinović-Brulić M. Dervišević A. Začiragić A. Fočak M. Valjevac A. Hadžović-Džuvo A. Suljević D. Vitamin D3 attenuates oxidative stress and regulates glucose level and leukocyte count in a semi-chronic streptozotocin-induced diabetes model. J. Diabetes Metab. Disord. 2021 20 1 771 779 10.1007/s40200‑021‑00814‑2 34178862
    [Google Scholar]
  134. Chen X. Oxidative stress in neurodegenerative diseases. Chin. J. Neural Regener. Res. 2012 7 5 376 385
    [Google Scholar]
  135. Beal M.F. Biofactors C.S. Effects of Coenzyme Q10 in Huntington's disease and early Parkinson's disease. Biofactors 2003 18 1-4 153 161
    [Google Scholar]
  136. McCarthy S. Somayajulu M. Paraquat induces oxidative stress and neuronal cell death; Neuroprotection by water-soluble Coenzyme Q10. Toxicol Appl Pharmacol 2004 201 1 21 31
    [Google Scholar]
  137. Bessero A. Neuroprotection for optic nerve disorders. Curr Opin Neurol 2010 23 1 10 15
    [Google Scholar]
  138. Clayton K.A. Van Enoo A.A. Ikezu T. Alzheimer’s disease: The role of microglia in brain homeostasis and proteopathy. Front. Neurosci. 2017 11 DEC 680 10.3389/fnins.2017.00680 29311768
    [Google Scholar]
  139. Al Noman A. Dev Sharma P. Jahin Mim T. Al Azad M. Sharma H. Molecular docking and ADMET analysis of coenzyme Q10 as a potential therapeutic agent for Alzheimer’s disease. Aging Pathobiol. Ther. 2024 6 4 1 13 10.31491/APT.2024.12.155
    [Google Scholar]
  140. Inamdar A. Gurupadayya B. Halagali P. Tippavajhala V.K. Khan F. Pathak R. Sharma H. Unraveling neurological drug delivery: Polymeric nanocarriers for enhanced blood-brain barrier penetration. Curr. Drug Targets 2024 26 1 24 10.2174/0113894501339455241101065040 39513304
    [Google Scholar]
  141. Mishra R. Kaur V. Nogai L. Bhandari M. Bajaj M. Pathak R. Lohia R. Saxena A. Sharma H. Emerging insights and novel therapeutics in polycystic ovary syndrome. Biochem. Cell. Arch. 2024 24 2 1613 1626 10.51470/bca.2024.24.2.1613
    [Google Scholar]
  142. Inamdar A. Gurupadayya B. Halagali P. S N. Pathak R. Singh H. Sharma H. Cutting-edge strategies for overcoming therapeutic barriers in Alzheimer’s disease. Curr. Pharm. Des. 2024 1 21 10.2174/0113816128344571241018154506 39492772
    [Google Scholar]
  143. Al Noman A. Afrosa H. Lihu I.K. Sarkar O. Nabin N.R. Datta M. Pathak R. Sharma H. Vitamin D and neurological health: Unraveling risk factors, disease progression, and treatment potential. CNS Neurol. Disord. Drug Targets 2024 24 1 12 10.2174/0118715273330972241009092828 39440730
    [Google Scholar]
  144. Chandra P. Porwal M. Rastogi V. Tyagi S.J. Sharma H. Verma A. Carb‐loaded passion: A comprehensive exploration of carbohydrates in shaping aphrodisiac effects. Macromol. Symp. 2024 413 5 2400064 10.1002/masy.202400064
    [Google Scholar]
  145. Sarkar S. Bhui U. Kumar B. Ashique S. Kumar P. Sharma H. Bhowmick M. Pal R. Kumar T. Correlation between cognitive impairment and peripheral biomarkers - Significance of phosphorylated Tau and Amyloid-β in Alzheimer’s disease: A new insight. Curr. Psychiatry Res. Rev. 2024 21 1 25 10.2174/0126660822329981241007105405
    [Google Scholar]
  146. Sharma H. Chandra P. Pathak R. Bhandari M. Arushi S.V. Advancements in the therapeutic approaches to treat neurological disorders. Cah Magellanes-NS. 2024 6 2 4328 4389
    [Google Scholar]
  147. Chandra P. Sharma H. Phosphodiesterase inhibitors for treatment of Alzheimer’s disease. INDIAN DRUGS 2024 61 7 7 22 10.53879/id.61.07.14382
    [Google Scholar]
  148. Pathak R. Sharma S. Bhandari M. Nogai L. Mishra R. Saxena A. Reena Km S.H. Neuroinflammation at the crossroads of metabolic and neurodegenerative diseases: Causes, consequences and interventions. J. Exp. Zool. India 2024 21 2 2447 2461 10.59467/jez.2024.27.2.2447
    [Google Scholar]
  149. Sharma H. Halagali P. Majumder A. Sharma V. Pathak R. Natural compounds targeting signaling pathways in breast cancer therapy. African J Biol Sci 2024 6 10 5430 5479 10.33472/AFJBS.6.10.2024.5430‑5479
    [Google Scholar]
  150. Sharma H. Pathak R. Biswas D. Unveiling the therapeutic potential of modern probiotics in addressing neurodegenerative disorders: A comprehensive exploration, review and future perspectives on intervention strategies. Curr. Psychiatry Res. Rev. 2024 20 10.2174/0126660822304321240520075036
    [Google Scholar]
  151. Pathak R. Kaur V. Sharma S. Bhandari M. Mishra R. Saxena A. Pazopanib: Effective monotherapy for precise cancer treatment, targeting specific mutations and tumors. Afr.J.Bio.Sc. 2024 6 9 1311 1330 10.33472/AFJBS.6.9.2024.1311‑1330
    [Google Scholar]
  152. Kapoor D.U. Sharma H. Maheshwari R. Pareek A. Gaur M. Prajapati B.G. Castro G.R. Thanawuth K. Suttiruengwong S. Sriamornsak P. Konjac glucomannan: A comprehensive review of its extraction, health benefits, and pharmaceutical applications. Carbohydr. Polym. 2024 339 122266 10.1016/j.carbpol.2024.122266 38823930
    [Google Scholar]
  153. Chandra P. Ali Z. Fatima N. Sharma H. Sachan N. Sharma K.K. Shankhpushpi (Convolvulus pluricaulis): Exploring its cognitive enhancing mechanisms and therapeutic potential in neurodegenerative disorders. Curr. Bioact. Compd. 2024 20 10.2174/0115734072292339240416095600
    [Google Scholar]
  154. Kumar P. Sharma H. Singh A. Durgapal S. Kukreti G. Bhowmick M. Bhowmick P. Ashique S. Targeting the interplay of proteins through PROTACs for management cancer and associated disorders. Curr. Cancer Ther. Rev. 2024 20 10.2174/0115733947304806240417092449
    [Google Scholar]
  155. Sharma H. Chandra P. Effects of natural remedies on memory loss and Alzheimer’s disease. Afr.J.Bio.Sc. 2024 6 7 187 211 10.33472/AFJBS.6.7.2024.187‑211
    [Google Scholar]
  156. Halagali P. Inamdar A. Singh J. Anand A. Sadhu P. Pathak R. Sharma H. Biswas D. Phytochemicals, herbal extracts, and dietary supplements for metabolic disease management. Endocr. Metab. Immune Disord. Drug Targets 2024 24 10.2174/0118715303287911240409055710 38676520
    [Google Scholar]
  157. Das S. Mukherjee T. Mohanty S. Nayak N. Mal P. Ashique S. Pal R. Mohanto S. Sharma H. Impact of NF-κB signaling and Sirtuin-1 protein for targeted inflammatory intervention. Curr. Pharm. Biotechnol. 2024 25 10.2174/0113892010301469240409082212 38638042
    [Google Scholar]
  158. Sharma H. Kaushik M. Goswami P. Sreevani S. Chakraborty A. Ashique S. Pal R. Role of miRNAs in brain development. MicroRNA 2024 13 2 96 109 10.2174/0122115366287127240322054519 38571343
    [Google Scholar]
  159. Ashique S. Pal R. Sharma H. Mishra N. Garg A. Unraveling the emerging niche role of extracellular vesicles (EVs) in traumatic brain injury (TBI). CNS Neurol. Disord. Drug Targets 2024 23 11 1357 1370 10.2174/0118715273288155240201065041 38351688
    [Google Scholar]
  160. Kumar P. Pandey S. Ahmad F. Verma A. Sharma H. Ashique S. Carbon nanotubes: A targeted drug delivery against cancer cell. Curr. Nanosci. 2023 9 1 31 10.2174/0115734137271865231105070727
    [Google Scholar]
  161. Sharma H Chandra P Verma A Pandey SN Kumar P Sigh A Therapeutic approaches of nutraceuticals in the prevention of neurological disorders. Eur Chem Bull. 2023 12 5 1575 1596
    [Google Scholar]
  162. Sharma H. Chandra P. Challenges and future prospects: A benefaction of phytoconstituents on molecular targets pertaining to Alzheimer’s disease. Int. J. Pharm. Investig. 2023 14 1 117 126 10.5530/ijpi.14.1.15
    [Google Scholar]
  163. Pathak R. A brief review on pathogenesis, transmission and management of Monkeypox virus outbreaks. Bull. Environ. Pharmacol. Life Sci. 2023 12 4 244 256
    [Google Scholar]
  164. Sharma H Bhattacharya V Bhatt A Garg S Chaurasia G Akram W Sharma K Mandal S. Optimization of formulation by box Behnken and in-vitro studies of emulsified gel containing zaltoprofen for the management of arthritis. Eur. Chem. Bull 2023 12 SS-4 11734 11744
    [Google Scholar]
  165. Manju Koli Nogai L. Bhandari M. Mishra R. Pathak R. Sharma H. Formulation and evaluation of berberine hydrochloride film coated tablet. J. Pharm. Negat. Results 2023 ••• 3439 3449 10.47750/pnr.2023.14.02.403
    [Google Scholar]
  166. Dwivedi M. Jha K.K. Pandey S. Sachan A. Sharma H. Dwivedi S.K. Formulation and evaluation of herbal medicated chocolate in treatment of intestinal worms and related problems. IJFANS 2022 11 2 1426 1439
    [Google Scholar]
  167. Sharma H. Pathak R. Kumar N. Nogai L. Mishra R. Bhandari M. Koli M. Pandey P. Endocannabinoid system: Role in depression, recompense, and pain control. J Surv Fish Sci. 2023 10 4S 2743 2751 10.17762/sfs.v10i4S.1655
    [Google Scholar]
  168. Sharma H Pathak R Saxena D Kumar N. Emerging role of non-coding RNA in health and disease. Metab Brain Dis 2021 36 6 1119 1134
    [Google Scholar]
  169. Sharma H. Rani T. Khan S. An insight into neuropathic pain: A systemic and up-to-date review. Int. J. Pharm. Sci. Res. 2023 14 2 607 621 10.13040/IJPSR.0975‑8232.14(2).607‑21
    [Google Scholar]
  170. Pandey P. Kumar N. Kaur T. Saini S. Sharma H. Antidiabetic activity of caesalpinia bonducella leaves of hydro alcoholic extracts in albino rats. YMER Digital 2022 21 7 840 846 10.37896/YMER21.07/67
    [Google Scholar]
  171. Pathak R. Sharma H. Kumar N. A brief review on anthocephalus cadamba. Acta Sci Pharmacol. 2022 3 5
    [Google Scholar]
  172. Halagali P. Nayak D. Rathnanand M. Tippavajhala V.K. Sharma H. Biswas D. Koduru T.S. Osmani R.A.M. Singh E. Dutta S.B.T.T.N.R. Synergizing sustainable green nanotechnology and AI/ML for advanced nanocarriers: A paradigm shift in the treatment of neurodegenerative diseases. Academic Press. 2025 373 397 10.1016/B978‑0‑443‑28822‑7.00017‑9
    [Google Scholar]
  173. Datta D. Colaco V. Bandi S.P. Sharma H. Dhas N. Giram P.S. Classes/types of polymers used in oral delivery (natural, semisynthetic, synthetic), their chemical structure and general functionalities. Polymers for Oral Drug Delivery Technologies Woodhead Publishing 2025 263 333 10.1016/B978‑0‑443‑13774‑7.00007‑4
    [Google Scholar]
  174. Sharma H. Rachamalla H.K. Mishra N. Chandra P. Pathak R. Ashique S. Mishra N. Ashique S. Garg A. Chithravel V. Anand K. Introduction to exosome and its role in brain disorders Exosomes Based Drug Delivery Strategies for Brain Disorders. Springer Nature Singapore 2024 1 35 10.1007/978‑981‑99‑8373‑5_1
    [Google Scholar]
  175. Sharma H. Tyagi S.J. Chandra P. Verma A. Kumar P. Ashique S. Mishra N. Ashique S. Garg A. Chithravel V. Anand K. Role of exosomes in Parkinson’s and Alzheimer’s diseases. Exosomes Based Drug Delivery Strategies for Brain Disorders. Springer Nature Singapore 2024 147 182 10.1007/978‑981‑99‑8373‑5_6
    [Google Scholar]
  176. Kumar P. Sharma H. Singh A. Pandey S.N. Chandra P. Mishra N. Ashique S. Garg A. Chithravel V. Anand K. Correlation between exosomes and neuro-inflammation in various brain disorders. Exosomes Based Drug Delivery Strategies for Brain Disorders. Springer Nature Singapore 2024 273 302 10.1007/978‑981‑99‑8373‑5_11
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775373406250411104442
Loading
/content/journals/cdrr/10.2174/0125899775373406250411104442
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test