Skip to content
2000
image of Plant Endophytes and their Secondary Metabolites: A Source of Bioactive Compounds

Abstract

Plant endophytes are microorganisms in plant tissues that help generate many secondary metabolites that are responsible for biological activity. These naturally occurring chemicals have lured the attention of researchers due to their applications in the fields of healthcare, agriculture, and cosmetics. Endophytic metabolites in the pharmaceutical field play an imperative role in the treatment of anticancer, anti-inflammatory, and antioxidant agents. These features provide opportunities for new medication development, especially for conditions where present treatments are inadequate. Similarly, in the field of cosmetics, these metabolites provide 
advantages such as anti-aging properties and the ability to preserve the skin, thereby creating opportunities for the development of natural and efficient skincare solutions. Apart from this, they enhance productivity in agriculture and promote plant growth, especially by providing 
resistance against diseases, pests, and environmental stresses. Although such secondary metabolites have potential, there are still difficulties in extraction, purification, and standardization. Additional research and technology improvements will play a vital role in fully realizing their capabilities, ultimately leading to progress in the fields of agriculture, medicine, and cosmetics. The study explores the wide range of secondary metabolites synthesized by plant endophytes and emphasizes their biological effects against different diseases. In addition, the authors also highlighted the efficacy of these metabolites in combating infections that affect plants, humans, and animals.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775372804250402051832
2025-04-23
2025-10-19
Loading full text...

Full text loading...

References

  1. Dutta D. Puzari K.C. Gogoi R. Dutta P. Endophytes: Exploitation as a tool in plant protection. Braz. Arch. Biol. Technol. 2014 57 5 621 629 10.1590/S1516‑8913201402043
    [Google Scholar]
  2. Fadiji A.E. Babalola O.O. Exploring the potentialities of beneficial endophytes for improved plant growth. Saudi J. Biol. Sci. 2020 27 12 3622 3633 10.1016/j.sjbs.2020.08.002 33304173
    [Google Scholar]
  3. Divekar P.A. Narayana S. Divekar B.A. Kumar R. Gadratagi B.G. Ray A. Singh A.K. Rani V. Singh V. Singh A.K. Kumar A. Singh R.P. Meena R.S. Behera T.K. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int. J. Mol. Sci. 2022 23 5 2690 10.3390/ijms23052690 35269836
    [Google Scholar]
  4. Eid A.M. Fouda A. Abdel-Rahman M.A. Salem S.S. Elsaied A. Oelmüller R. Hijri M. Bhowmik A. Elkelish A. Hassan S.E.D. Harnessing bacterial endophytes for promotion of plant growth and biotechnological applications: An overview. Plants 2021 10 5 935 10.3390/plants10050935 34067154
    [Google Scholar]
  5. Rana K.L. Kour D. Kaur T. Devi R. Yadav A.N. Yadav N. Dhaliwal H.S. Saxena A.K. Endophytic microbes: Biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie van Leeuwenhoek 2020 113 8 1075 1107 10.1007/s10482‑020‑01429‑y 32488494
    [Google Scholar]
  6. Jakubiec-Krzesniak K. Rajnisz-Mateusiak A. Guspiel A. Ziemska J. Solecka J. Secondary metabolites of actinomycetes and their antibacterial, antifungal and antiviral properties. Pol. J. Microbiol. 2018 67 3 259 272 10.21307/pjm‑2018‑048 30451442
    [Google Scholar]
  7. Omomowo O.I. Babalola O.O. Bacterial and fungal endophytes: Tiny giants with immense beneficial potential for plant growth and sustainable agricultural productivity. Microorganisms 2019 7 11 481 10.3390/microorganisms7110481 31652843
    [Google Scholar]
  8. Wang S. Chen S. Wang B. Li Q. Zu J. Yu J. Ding Z. Zhou F. Screening of endophytic fungi from Cremastra appendiculata and their potential for plant growth promotion and biological control. Folia Microbiol. 2023 68 1 121 133 10.1007/s12223‑022‑00995‑0 35982376
    [Google Scholar]
  9. Thirumurugan D. Cholarajan A. Raja S. Vijayakumar R. An introductory chapter: Secondary metabolites. Secondary Metabolites-Sources Application InTech 2018 1 13
    [Google Scholar]
  10. Kessler A. Kalske A. Plant secondary metabolite diversity and species interactions. Annu. Rev. Ecol. Evol. Syst. 2018 49 1 115 138 10.1146/annurev‑ecolsys‑110617‑062406
    [Google Scholar]
  11. Bhatla S.C. Lal M.A. Secondary metabolites. Plant physiology, development and metabolism. Springer 2023 765 808 10.1007/978‑981‑99‑5736‑1_33
    [Google Scholar]
  12. Kumar S Plant natural products as a source of modern medicines.
    [Google Scholar]
  13. Bruce SO Secondary metabolites from natural products. Secondary Metabolites: Trends Reviews IntechOpen 2022 51
    [Google Scholar]
  14. Nica I.C. Mernea M. Stoian G. Dinischiotu A. Natural aspirin-like compounds from white willow (Salix alba) bark extract prevent structural changes of human hemoglobin during in vitro non-enzymatic glycation and fructation, preserving its peroxidase and esterase activity. Med Sci Forum 2021 2 23 10.3390/CAHD2020‑08602
    [Google Scholar]
  15. Deep A. Kumar D. Bansal N. Narasimhan B. Marwaha R.K. Sharma P.C. Understanding mechanistic aspects and therapeutic potential of natural substances as anticancer agents. Phytomed. Plus 2023 3 2 100418 10.1016/j.phyplu.2023.100418
    [Google Scholar]
  16. Michalak M. Plant-derived antioxidants: Significance in skin health and the ageing process. Int. J. Mol. Sci. 2022 23 2 585 10.3390/ijms23020585 35054770
    [Google Scholar]
  17. Abegaz B.M. Kinfe H.H. Secondary metabolites, their structural diversity, bioactivity, and ecological functions: An overview. Phys. Sci. Rev. 2019 4 6 20180100 10.1515/psr‑2018‑0100
    [Google Scholar]
  18. Sikarwar V Ranawat MS Endophytes: An overview. Pharm Chem J 2023 10 1 21 32
    [Google Scholar]
  19. Okonkwo-Uzor N.J. Obi C. Enwelum A. Okezie U.M. Eze P.M. Okoye F.B.C. Esimone C.O. Antimicrobial and antioxidant activities of secondary metabolites of an endophytic fungus of Azadirachta indica. J. Drug Deliv. Ther. 2022 12 5-S 112 117 10.22270/jddt.v12i5‑S.5642
    [Google Scholar]
  20. Yang Y.H. Mao J.W. Tan X.L. Research progress on the source, production, and anti-cancer mechanisms of paclitaxel. Chin. J. Nat. Med. 2020 18 12 890 897 10.1016/S1875‑5364(20)60032‑2 33357719
    [Google Scholar]
  21. Gupta P. Verma A. Rai N. Singh A.K. Singh S.K. Kumar B. Kumar R. Gautam V. Mass spectrometry-based technology and workflows for studying the chemistry of fungal endophyte derived bioactive compounds. ACS Chem. Biol. 2021 16 11 2068 2086 10.1021/acschembio.1c00581 34724607
    [Google Scholar]
  22. Li Z. Wen W. Qin M. He Y. Xu D. Li L. Biosynthetic mechanisms of secondary metabolites promoted by the interaction between endophytes and plant hosts. Front. Microbiol. 2022 13 928967 10.3389/fmicb.2022.928967 35898919
    [Google Scholar]
  23. Nascimento F.X. Rossi M.J. Glick B.R. Ethylene and 1-aminocyclopropane-1-carboxylate (ACC) in plant–bacterial interactions. Front. Plant Sci. 2018 9 114 10.3389/fpls.2018.00114 29520283
    [Google Scholar]
  24. Rana K.L. Kour D. Kaur T. Negi R. Devi R. Yadav N. Endophytic nitrogen-fixing bacteria: Untapped treasurer for agricultural sustainability. J. Appl. Biol. Biotechnol. 2023 11 2 75 93
    [Google Scholar]
  25. Molina J. de Guzman R.C. Wicaksono A. Muth T. Pedales R. Diaz D. Kusuma A.B. Li C. Margolis H. Karnitskiy F. Estopace A. Atanelov P. Bukhbinder M. Tandang D. Callado J.R. Morin J.W. Fontanilla I. Davis D. Jones S. Erickson M. Adams J. Wallick K. Kidwell-Slak D. Novy A. Pell S. The endophyte’s endophytes: The microbial partners of the endangered plant parasite Rafflesia speciosa (Rafflesiaceae) reveal clues about its cryptic biology and cues for cultivation. J. Plant Interact. 2024 19 1 2304221 10.1080/17429145.2024.2304221
    [Google Scholar]
  26. Silva L.L.D. Pereira M.C. Phosphorus-solubilizing microorganisms: A key to sustainable agriculture. Agriculture 2023 13 2 462
    [Google Scholar]
  27. Meena R.S. Vijayakumar V. Yadav G.S. Mitran T. Response and interaction of Bradyrhizobium japonicum and arbuscular mycorrhizal fungi in the soybean rhizosphere. Plant Growth Regul. 2018 84 2 207 223 10.1007/s10725‑017‑0334‑8
    [Google Scholar]
  28. Alam B. Lǐ J. Gě Q. Khan M.A. Gōng J. Mehmood S. Yuán Y. Gǒng W. Endophytic fungi: from symbiosis to secondary metabolite communications or vice versa? Front. Plant Sci. 2021 12 791033 10.3389/fpls.2021.791033 34975976
    [Google Scholar]
  29. Shurigin V. Alaylar B. Davranov K. Wirth S. Bellingrath-Kimura S.D. Egamberdieva D. Diversity and biological activity of culturable endophytic bacteria associated with marigold (Calendula officinalis L.). AIMS Microbiol. 2021 7 3 336 353 10.3934/microbiol.2021021 34708176
    [Google Scholar]
  30. Ji X. Xia Y. Zhang H. Cui J.L. The microscopic mechanism between endophytic fungi and host plants: From recognition to building stable mutually beneficial relationships. Microbiol. Res. 2022 261 127056 10.1016/j.micres.2022.127056 35552099
    [Google Scholar]
  31. Douglas A.E. The symbiotic habit. Princeton University Press 2021 10.2307/j.ctv1pzk2rq
    [Google Scholar]
  32. Kamran M. Imran Q.M. Ahmed M.B. Falak N. Khatoon A. Yun B.W. Endophyte-mediated stress tolerance in plants: A sustainable strategy to enhance resilience and assist crop improvement. Cells 2022 11 20 3292 10.3390/cells11203292 36291157
    [Google Scholar]
  33. Harman G.E. Uphoff N. Symbiotic root‐endophytic soil microbes improve crop productivity and provide environmental benefits. Scientifica 2019 2019 1 1 25 10.1155/2019/9106395 31065398
    [Google Scholar]
  34. Fahad S. Bajwa A.A. Nazir U. Anjum S.A. Farooq A. Zohaib A. Sadia S. Nasim W. Adkins S. Saud S. Ihsan M.Z. Alharby H. Wu C. Wang D. Huang J. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 2017 8 1147 10.3389/fpls.2017.01147 28706531
    [Google Scholar]
  35. Elliott J. Deryng D. Müller C. Frieler K. Konzmann M. Gerten D. Glotter M. Flörke M. Wada Y. Best N. Eisner S. Fekete B.M. Folberth C. Foster I. Gosling S.N. Haddeland I. Khabarov N. Ludwig F. Masaki Y. Olin S. Rosenzweig C. Ruane A.C. Satoh Y. Schmid E. Stacke T. Tang Q. Wisser D. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA 2014 111 9 3239 3244 10.1073/pnas.1222474110 24344283
    [Google Scholar]
  36. Falkenmark M. Growing water scarcity in agriculture: Future challenge to global water security. Philos Trans A Math Phys Eng Sci 2013 371 2002 20120410 10.1098/rsta.2012.0410
    [Google Scholar]
  37. Franco-Navarro J.D. Díaz-Rueda P. Rivero-Núñez C.M. Brumós J. Rubio-Casal A.E. de Cires A. Colmenero-Flores J.M. Rosales M.A. Chloride nutrition improves drought resistance by enhancing water deficit avoidance and tolerance mechanisms. J. Exp. Bot. 2021 72 14 5246 5261 10.1093/jxb/erab143 33783493
    [Google Scholar]
  38. Hacke U.G. Jacobsen A.L. Brandon Pratt R. Maurel C. Lachenbruch B. Zwiazek J. New research on plant–water relations examines the molecular, structural, and physiological mechanisms of plant responses to their environment. New Phytol. 2012 196 2 345 348 10.1111/j.1469‑8137.2012.04335.x 22978612
    [Google Scholar]
  39. Naveed M. Hussain M.B. Zahir Z.A. Mitter B. Sessitsch A. Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul. 2014 73 2 121 131 10.1007/s10725‑013‑9874‑8
    [Google Scholar]
  40. Sun C. Johnson J.M. Cai D. Sherameti I. Oelmüller R. Lou B. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J. Plant Physiol. 2010 167 12 1009 1017 10.1016/j.jplph.2010.02.013 20471134
    [Google Scholar]
  41. Gagné-Bourque F. Bertrand A. Claessens A. Aliferis K.A. Jabaji S. Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26. Front. Plant Sci. 2016 7 584 10.3389/fpls.2016.00584 27200057
    [Google Scholar]
  42. Hua M.D.S. Senthil Kumar R. Shyur L.F. Cheng Y.B. Tian Z. Oelmüller R. Yeh K.W. Metabolomic compounds identified in Piriformospora indica-colonized Chinese cabbage roots delineate symbiotic functions of the interaction. Sci. Rep. 2017 7 1 9291 10.1038/s41598‑017‑08715‑2 28839213
    [Google Scholar]
  43. Acosta-Motos J. Ortuño M. Bernal-Vicente A. Diaz-Vivancos P. Sanchez-Blanco M. Hernandez J. Plant responses to salt stress: Adaptive mechanisms. Agronomy 2017 7 1 18 10.3390/agronomy7010018
    [Google Scholar]
  44. Kamran M. Parveen A. Ahmar S. Malik Z. Hussain S. Chattha M.S. Saleem M.H. Adil M. Heidari P. Chen J.T. An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. Int. J. Mol. Sci. 2019 21 1 148 10.3390/ijms21010148 31878296
    [Google Scholar]
  45. Singh V.K. Singh A.K. Singh P.P. Kumar A. Interaction of plant growth promoting bacteria with tomato under abiotic stress: A review. Agric. Ecosyst. Environ. 2018 267 129 140 10.1016/j.agee.2018.08.020
    [Google Scholar]
  46. Almeida D.M. Oliveira M.M. Saibo N.J.M. Regulation of Na+ and K+ homeostasis in plants: Towards improved salt stress tolerance in crop plants. Genet. Mol. Biol. 2017 40 1 suppl 1 326 345 10.1590/1678‑4685‑gmb‑2016‑0106 28350038
    [Google Scholar]
  47. Shahid M.A. Sarkhosh A. Khan N. Balal R.M. Ali S. Rossi L. Gómez C. Mattson N. Nasim W. Garcia-Sanchez F. Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 2020 10 7 938 10.3390/agronomy10070938
    [Google Scholar]
  48. Pan X. Qin Y. Yuan Z. Potential of a halophyte-associated endophytic fungus for sustaining Chinese white poplar growth under salinity. Symbiosis 2018 76 2 109 116 10.1007/s13199‑018‑0541‑8
    [Google Scholar]
  49. Barnawal D. Bharti N. Tripathi A. Pandey S.S. Chanotiya C.S. Kalra A. ACC-deaminase-producing endophyte Brachybacterium paraconglomeratum strain SMR20 ameliorates Chlorophytum salinity stress via altering phytohormone generation. J. Plant Growth Regul. 2016 35 2 553 564 10.1007/s00344‑015‑9560‑3
    [Google Scholar]
  50. Jaemsaeng R. Jantasuriyarat C. Thamchaipenet A. Molecular interaction of 1-aminocyclopropane-1-carboxylate deaminase (ACCD)-producing endophytic Streptomyces sp. GMKU 336 towards salt-stress resistance of Oryza sativa L. cv. KDML105. Sci. Rep. 2018 8 1 1950 10.1038/s41598‑018‑19799‑9 29386629
    [Google Scholar]
  51. Reyad A.M. Radwan T.E. Hemida K.A. Al-Qassem N.A. Ali R.M. Salt tolerant endophytic bacteria from Carthamus tinctorius and their role in plant salt tolerance improvement. Int. J. Curr. Sci. Res. 2017 3 12
    [Google Scholar]
  52. Chaudhary P. Agri U. Chaudhary A. Kumar A. Endophytes and their potential in biotic stress management and crop production. 2022 13 933017
    [Google Scholar]
  53. Baek D. Rokibuzzaman M. Khan A. Kim M.C. Park H.J. Yun D. Chung Y.R. Plant-growth promoting Bacillus oryzicola YC7007 modulates stress-response gene expression and provides protection from salt stress. Front. Plant Sci. 2020 10 1646 10.3389/fpls.2019.01646 31998336
    [Google Scholar]
  54. Zhang X. Guo X. Wu C. Li C. Zhang D. Zhu B. Isolation, heterologous expression, and purification of a novel antifungal protein from Bacillus subtilis strain Z-14. Microb. Cell Fact. 2020 19 1 214 10.1186/s12934‑020‑01475‑1 33228718
    [Google Scholar]
  55. Wang X Zhao D Shen L Jing C Zhang C Application and mechanisms of Bacillus subtilis in biological control of plant disease. Role of Rhizospheric Microbes in Soil. Springer Singapore 2018 222 250 10.1007/978‑981‑10‑8402‑7_9
    [Google Scholar]
  56. Ji C. Wang X. Song X. Zhou Q. Li C. Chen Z. Gao Q. Li H. Li J. Zhang P. Cao H. Effect of Bacillus velezensis JC-K3 on endophytic bacterial and fungal diversity in wheat under salt stress. Front. Microbiol. 2021 12 802054 10.3389/fmicb.2021.802054 34987493
    [Google Scholar]
  57. Bard N.W. Cronk Q.C.B. Davies T.J. Fungal endophytes can modulate plant invasion. Biol. Rev. Camb. Philos. Soc. 2024 99 5 1652 1671 10.1111/brv.13085 38629189
    [Google Scholar]
  58. Ragavendran C. Kamaraj C. Natarajan D. Nakouti I. Cherian T. Manigandan V. Manimaran K. Malafaia G. Endophytic fungus Alternaria macrospora: A promising and eco-friendly source for controlling Aedes aegypti and its toxicity assessment on non-targeted organism, zebrafish (Danio rerio) embryos. Biocatal. Agric. Biotechnol. 2024 56 103009 10.1016/j.bcab.2023.103009
    [Google Scholar]
  59. Ashfaq M. Mushtaq I. Mehmood M.A. Ahmad F. Ergot alkaloids from Claviceps: Production and pharmacological properties. Fungal Secondary Metabolites Elsevier 2024 241 257
    [Google Scholar]
  60. Li S.J. Zhang X. Wang X.H. Zhao C.Q. Novel natural compounds from endophytic fungi with anticancer activity. Eur. J. Med. Chem. 2018 156 316 343 10.1016/j.ejmech.2018.07.015 30015071
    [Google Scholar]
  61. Subban K. Subramani R. Srinivasan V.P.M. Johnpaul M. Chelliah J. Salicylic acid as an effective elicitor for improved taxol production in endophytic fungus Pestalotiopsis microspora. PLoS One 2019 14 2 e0212736 10.1371/journal.pone.0212736 30794656
    [Google Scholar]
  62. Falah F. Samie A. Mortazavi S.A. Danesh A. Yazdi F.T. Ramezani M. Bio-synthesis, purification and structural analysis of Cyclosporine-A produced by Tolypocladium inflatum with valorization of agro-industrial wastes. Sci. Rep. 2024 14 1 12540 10.1038/s41598‑024‑63110‑y 38822034
    [Google Scholar]
  63. Jacob J. Krishnan G.V. Thankappan D. Amma D.K.B.N.S. Endophytic bacterial strains induced systemic resistance in agriculturally important crop plants. Microbial endophytes. Elsevier 2020 75 105
    [Google Scholar]
  64. Afzal I. Shinwari Z.K. Sikandar S. Shahzad S. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol. Res. 2019 221 36 49 10.1016/j.micres.2019.02.001 30825940
    [Google Scholar]
  65. Gallego-Jara J. Lozano-Terol G. Sola-Martínez R.A. Cánovas-Díaz M. de Diego Puente T. A compressive review about Taxol®: History and future challenges. Molecules 2020 25 24 5986 10.3390/molecules25245986 33348838
    [Google Scholar]
  66. Toghueo R.M.K. Boyom F.F. Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications. 3 Biotech 2020 10 3 107 10.1007/s13205‑020‑2081‑1 32095421
    [Google Scholar]
  67. Linnakoski R. Reshamwala D. Veteli P. Cortina-Escribano M. Vanhanen H. Marjomäki V. Antiviral agents from fungi: Diversity, mechanisms and potential applications. Front. Microbiol. 2018 9 2325 10.3389/fmicb.2018.02325 30333807
    [Google Scholar]
  68. Ramana Murthy M.V. Mohan E.V.S. Sadhukhan A.K. Cyclosporin-A production by Tolypocladium inflatum using solid state fermentation. Process Biochem. 1999 34 3 269 280 10.1016/S0032‑9592(98)00095‑8
    [Google Scholar]
  69. Juan M.Y. Chou C.C. Enhancement of antioxidant activity, total phenolic and flavonoid content of black soybeans by solid state fermentation with Bacillus subtilis BCRC 14715. Food Microbiol. 2010 27 5 586 591 10.1016/j.fm.2009.11.002 20510775
    [Google Scholar]
  70. Sasirekha B. Srividya S. Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. Agric. Nat. Resour. 2016 50 4 250 256 10.1016/j.anres.2016.02.003
    [Google Scholar]
  71. Leong J. Siderophores: Their biochemistry and possible role in the biocontrol of plant pathogens. Annu. Rev. Phytopathol. 1986 24 1 187 209 10.1146/annurev.py.24.090186.001155
    [Google Scholar]
  72. Nutaratat P. Monprasit A. Srisuk N. High-yield production of indole-3-acetic acid by Enterobacter sp. DMKU-RP206, a rice phyllosphere bacterium that possesses plant growth-promoting traits. 3 Biotech 2017 7 5 305 10.1007/s13205‑017‑0937‑9 28948133
    [Google Scholar]
  73. Torres-Rubio M.G. Valencia-Plata S.A. Bernal-Castillo J. Martínez-Nieto P. Isolation of Enterobacteria, Azotobacter sp. and Pseudomonas sp., producers of indole-3-acetic acid and siderophores, from Colombian rice rhizosphere. Rev. Latinoam. Microbiol. 2000 42 4 171 176
    [Google Scholar]
  74. Coleman J.J. Ghosh S. Okoli I. Mylonakis E. Antifungal activity of microbial secondary metabolites. PLoS One 2011 6 9 e25321 10.1371/journal.pone.0025321 21966496
    [Google Scholar]
  75. Carberry S. Molloy E. Hammel S. O’Keeffe G. Jones G.W. Kavanagh K. Doyle S. Gliotoxin effects on fungal growth: Mechanisms and exploitation. Fungal Genet. Biol. 2012 49 4 302 312 10.1016/j.fgb.2012.02.003 22405895
    [Google Scholar]
  76. Procópio RE Antibiotics produced by Streptomyces. Braz. J. Infect. Dis. 2012 16 5 466 471 10.1016/j.bjid.2012.08.014
    [Google Scholar]
  77. Elsalam RM Goh KW Mahadi M Mohammad N Kassab YW Zin NM The antibacterial activities of secondary metabolites derived from Streptomyces sp. Prog Microbes Mol Biol 2022 5 1 10.36877/pmmb.a0000281
    [Google Scholar]
  78. Segaran G. Sathiavelu M. Fungal endophytes: A potent biocontrol agent and a bioactive metabolites reservoir. Biocatal. Agric. Biotechnol. 2019 21 101284 10.1016/j.bcab.2019.101284
    [Google Scholar]
  79. Mascarin G.M. Jaronski S.T. The production and uses of Beauveria bassiana as a microbial insecticide. World J. Microbiol. Biotechnol. 2016 32 11 177 10.1007/s11274‑016‑2131‑3 27628337
    [Google Scholar]
  80. Jakovljevic V. Nikolic M. Vrvic M. Antioxidant and free radical scavenging activities of Trichoderma harzianum ethanolic extract. Oxid. Commun. 2018 41 1
    [Google Scholar]
  81. Saravanakumar K. Park S. Sathiyaseelan A. Mariadoss A.V.A. Park S. Kim S.J. Wang M.H. Isolation of polysaccharides from Trichoderma harzianum with antioxidant, anticancer, and enzyme inhibition properties. Antioxidants 2021 10 9 1372 10.3390/antiox10091372 34573005
    [Google Scholar]
  82. Kim J.W. Shim S.H. The fungus Colletotrichum as a source for bioactive secondary metabolites. Arch. Pharm. Res. 2019 42 9 735 753 10.1007/s12272‑019‑01142‑z 30915681
    [Google Scholar]
  83. Barthélemy M. Guérineau V. Genta-Jouve G. Roy M. Chave J. Guillot R. Pellissier L. Wolfender J.L. Stien D. Eparvier V. Touboul D. Identification and dereplication of endophytic Colletotrichum strains by MALDI TOF mass spectrometry and molecular networking. Sci. Rep. 2020 10 1 19788 10.1038/s41598‑020‑74852‑w 33188275
    [Google Scholar]
  84. Ismail A. Elshewy E. El-Ganainy S. Magistà D. Hamouda A. Alhudaib K. Ebrahim W. Almaghasla M. Mycotoxins from tomato pathogenic Alternaria alternata and their combined cytotoxic effects on human cell lines and male albino rats. J. Fungi 2023 9 3 282 10.3390/jof9030282 36983450
    [Google Scholar]
  85. Das S.K. Samantray D. Thatoi H.N. Pharmacological applications of metabolites of mangrove endophytes: A review. Microb. Biotechnol. 2018 331 360
    [Google Scholar]
  86. Saeedi M. Eslamifar M. Khezri K. Kojic acid applications in cosmetic and pharmaceutical preparations. Biomed. Pharmacother. 2019 110 582 593 10.1016/j.biopha.2018.12.006 30537675
    [Google Scholar]
  87. Phasha V. Senabe J. Ndzotoyi P. Okole B. Fouche G. Chuturgoon A. Review on the use of kojic acid—A skin-lightening ingredient. Cosmetics 2022 9 3 64 10.3390/cosmetics9030064
    [Google Scholar]
  88. Saraphanchotiwitthaya A. Sripalakit P. Kojic acid production from rice by Amylomyces rouxii TISTR 3182 and Aspergillus oryzae TISTR 3259 and its cosmeceutical potential. Sci. Asia 2019 45 6 525 531 10.2306/scienceasia1513‑1874.2019.45.525
    [Google Scholar]
  89. Shehata R. Sabry S. Biotechnological production of kojic acid synthesized by endophytic fungi, aspergillus oryzae isolated from Euphorbia peplis. Egypt. Acad. J. Biol. Sci. G Microbiol. 2020 12 2 35 47 10.21608/eajbsg.2020.107645
    [Google Scholar]
  90. Llorente C. Bárcena A. Vera Bahima J. Saparrat M.C.N. Arambarri A.M. Rozas M.F. Mirífico M.V. Balatti P.A. Cladosporium cladosporioides LPSC 1088 produces the 1,8-dihydroxynaphthalene-melanin-like compound and carries a putative pks gene. Mycopathologia 2012 174 5-6 397 408 10.1007/s11046‑012‑9558‑3 22714980
    [Google Scholar]
  91. Théatre A. Hoste A. Rigolet A. Benneceur I. Bechet M. Ongena M. Bacillus sp.: A remarkable source of bioactive lipopeptides. Biosurfactants for the biobased economy. Springer 2022 123 179
    [Google Scholar]
  92. Zhao H. Yan L. Xu X. Jiang C. Shi J. Zhang Y. Liu L. Lei S. Shao D. Huang Q. Potential of Bacillus subtilis lipopeptides in anti-cancer I: induction of apoptosis and paraptosis and inhibition of autophagy in K562 cells. AMB Express 2018 8 1 78 10.1186/s13568‑018‑0606‑3 29777449
    [Google Scholar]
  93. Mishra S. Singh J. Singh V. Types and applications of potential antibiotics produced by fungi. Fungal Secondary Metabolites. Elsevier 2024 493 517 10.1016/B978‑0‑323‑95241‑5.00029‑0
    [Google Scholar]
  94. Eshboev F. Mamadalieva N. Nazarov P. Hussain H. Katanaev V. Egamberdieva D. Azimova S. Antimicrobial action mechanisms of natural compounds isolated from endophytic microorganisms. Antibiotics 2024 13 3 271 10.3390/antibiotics13030271 38534706
    [Google Scholar]
  95. Škubník J. Pavlíčková V. Ruml T. Rimpelová S. Current perspectives on taxanes: Focus on their bioactivity, delivery and combination therapy. Plants 2021 10 3 569 10.3390/plants10030569 33802861
    [Google Scholar]
  96. Uzma F. Mohan C.D. Hashem A. Konappa N.M. Rangappa S. Kamath P.V. Singh B.P. Mudili V. Gupta V.K. Siddaiah C.N. Chowdappa S. Alqarawi A.A. Abd Allah E.F. Endophytic fungi—alternative sources of cytotoxic compounds: A review. Front. Pharmacol. 2018 9 309 10.3389/fphar.2018.00309 29755344
    [Google Scholar]
  97. Jiang L. Ma Q. Li A. Sun R. Tang G. Huang X. Pu H. Bioactive secondary metabolites produced by fungi of the genus Diaporthe (Phomopsis): Structures, biological activities, and biosynthesis. Arab. J. Chem. 2023 16 9 105062 10.1016/j.arabjc.2023.105062
    [Google Scholar]
  98. Kuttikrishnan S. Prabhu K.S. Al Sharie A.H. Al Zu’bi Y.O. Alali F.Q. Oberlies N.H. Ahmad A. El-Elimat T. Uddin S. Natural resorcylic acid lactones: A chemical biology approach for anticancer activity. Drug Discov. Today 2022 27 2 547 557 10.1016/j.drudis.2021.10.001 34655796
    [Google Scholar]
  99. Ramos G.C. Silva-Silva J.V. Watanabe L.A. Siqueira J.E.S. Almeida-Souza F. Calabrese K.S. Marinho A.M.R. Marinho P.S.B. Oliveira A.S. Phomoxanthone A, compound of endophytic fungi paecilomyces sp. and its potential antimicrobial and antiparasitic. Antibiotics 2022 11 10 1332 10.3390/antibiotics11101332 36289990
    [Google Scholar]
  100. Lin L. Xu J. Fungal pigments and their roles associated with human health. J. Fungi 2020 6 4 280 10.3390/jof6040280 33198121
    [Google Scholar]
  101. Rudrappa M. Kumar R.S. Basavarajappa D.S. Bhat M.P. Nagaraja S.K. Almansour A.I. Perumal K. Nayaka S. Penicillium citrinum NP4 mediated production, extraction, physicochemical characterization of the melanin, and its anticancer, apoptotic, photoprotection properties. Int. J. Biol. Macromol. 2023 245 125547 10.1016/j.ijbiomac.2023.125547 37356688
    [Google Scholar]
  102. Yogeswari S. Kamalraj S. Jayabaskaran C. A potential source of medicines from fungi: An overview of biologically active secondary metabolites. Fungal Resources for Sustainable Economy Springer 2023 459 477 10.1007/978‑981‑19‑9103‑5_17
    [Google Scholar]
  103. El-Sayed A.S.A. El-Sayed M.T. Rady A.M. Zein N. Enan G. Shindia A. El-Hefnawy S. Sitohy M. Sitohy B. Exploiting the biosynthetic potency of taxol from fungal endophytes of conifers plants; Genome mining and metabolic manipulation. Molecules 2020 25 13 3000 10.3390/molecules25133000 32630044
    [Google Scholar]
  104. Swamy M.K. Das T. Nandy S. Mukherjee A. Pandey D.K. Dey A. Endophytes for the production of anticancer drug, paclitaxel. Paclitaxel. Elsevier 2022 203 228 10.1016/B978‑0‑323‑90951‑8.00012‑6
    [Google Scholar]
  105. Kousar R. Naeem M. Jamaludin M.I. Arshad A. Shamsuri A.N. Ansari N. Akhtar S. Hazafa A. Uddin J. Khan A. Al-Harrasi A. Exploring the anticancer activities of novel bioactive compounds derived from endophytic fungi: Mechanisms of action, current challenges and future perspectives. Am. J. Cancer Res. 2022 12 7 2897 2919 35968347
    [Google Scholar]
  106. Vandana U.K. Rajkumari J. Singha L.P. Satish L. Alavilli H. Sudheer P.D.V.N. Chauhan S. Ratnala R. Satturu V. Mazumder P.B. Pandey P. The endophytic microbiome as a hotspot of synergistic interactions, with prospects of plant growth promotion. Biology 2021 10 2 101 10.3390/biology10020101 33535706
    [Google Scholar]
  107. Oleńska E. Małek W. Wójcik M. Swiecicka I. Thijs S. Vangronsveld J. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Sci. Total Environ. 2020 743 140682 10.1016/j.scitotenv.2020.140682 32758827
    [Google Scholar]
  108. Basit A Shah ST Ullah I Ullah I Mohamed HI Microbial bioactive compounds produced by endophytes (bacteria and fungi) and their uses in plant health. Plant Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management. Springer Cham 2021 285 318
    [Google Scholar]
  109. He Liping Li Haiyan Li Lina Li Minmin Cui Canwen Jiang Yuejuan Plant endophytic fungus phomopsis D2G7 and application thereof. Patent CN112280694B 2023
  110. Li Tingqiang Wu Keren Luo Jipeng Li Jinxing Song Yuchao The method for improving plant extract efficiency using carbon dioxide plus rich and endophyte interaction. Patent CN107755424A 2019
  111. Li Haiyan Tang Wenting Gao Yonghan Li Shaoshi Jiang Yuejuan Mao Wenqin Plant endophytic fungus Echinospora terrestris D2G24 and application thereof. Patent CN112094760B 2022
  112. Leng Shicong Liang Shiwei Method for improving rice seedling quality and grain yield by using endophytic fungi P-B313. Patent CN115287195B 2022
  113. Bi Yinli Ma Shaopeng Quan Wenzhi Method for acquiring DSE applied dose by thermal infrared monitoring. Patent CN110243478B 2021
  114. Sheng Q Endophytic curvularia lunata with salt tolerance and application thereof. Patent CN107099477B 2021
  115. Hu Zhongyuan Zhang Mingfang Hao Junfang Cheng Li Yang Jinghua >Method for improving nutrient utilization efficiency of watermelons by utilizing endophytic fungi. Patent CN113151008B 2023
  116. Dong Chang Jia Fangfang Gu Jianguo Hong Quanchun Xu Yueqi Yan Haitao Ma Wenhui Liu Dongmei Pseudomonas linusii and application thereof. Patent CN111424004A 2022
  117. Li Haiyan Gong Weijun Gao Xinzhu Xue Han Mao Wenqin Tang Wenting Chenopodium ambrosioides seed endophytic Larimol agrobacterium and application thereof. Patent CN116121147B 2023
  118. Bi Yinli Ren Ying Quan Wenzhi Efficient large-scale production and transportation linkage production method for deep-color endophytic fungus liquid. Patent CN111394256B 2022
  119. Sheng Qin Pan Chen Yuan Gong Xiong Youwei Zhang Chunmei Ke Xing Burdock endophytic streptomycete, microbial agent containing endophytic streptomycete and application. Patent CN110066755B 2020
  120. Jiaqin Xi. Bio-control microorganism of root-knot nematode and application thereof. Patent CN102212498B 2012
  121. Rodriguez R.J. Redman R.S. Compositions and methods involving isolated endophytes. Patent CN105579573B 2020
  122. Geoffrey von Maltzahn Richard Bailey Flavell Gerardo V. Endophytes, associated compositions, and methods of use. Patent US20230329244A1 2023
  123. Geoffrey von Maltzahn Richard Bailey Flavell Gerardo V. Endophytes, associated compositions, and methods of use. Patent US11570993B2 2023
  124. Karen V. Seed endophytes across cultivars and species, associated compositions, and methods of use thereof. Patent US20210076685A1 2021
  125. Birgit MITTER Plants containing beneficial endophytes. Patent US11254908B2 2022
  126. Karen V. Isolated complex endophyte compositions and methods for improved plant traits. Patent US11751571B2 2023
  127. Karen V. Designed complex endophyte compositions and methods for improved plant traits. Patent US11197457B2 2021
  128. von Maltzahn Geoffrey Endophyte compositions and methods for improvement of plant traits in plants of agronomic importance. Patent US11751515B2 2021
  129. Vujanovic Vladimir Endophytic microbial symbionts in plant prenatal care. Patent US11076573B2 2021
  130. Gregory A. Fungal endophytes for improved crop yields and protection from pests. Patent US9756865B2 2017
  131. Karen V. Plant-endophyte combinations and uses therefor. Patent AU2020257079B2 2023
  132. von Maltzahn Geoffrey Flavell Richard Bailey Toledo Gerardo V. Agricultural endophyte-plant compositions, and methods of use. Patent AU2020257079B2 2023
  133. Slavica DJONOVIC Seed-origin endophyte populations, compositions, and methods of use. Patent AU2016202480B2 2016
  134. Birgit MITTER Muhammad NAVEED Teresa BERNINGER Method for propagating microorganisms within plant bioreactors and stably storing microorganisms within agricultural seeds. Patent US11753618B2 2023
  135. Zhu Xuezhu Wang Xuelin Super King Danqin Endophytic bacteria PX1 with polycyclic aromatic hydrocarbon degradation function and application thereof. Patent CN112940972B 2022
  136. Djonovic Slavica Streptomyces endophyte compositions and methods for improved agronomic traits in plants. Patent US11819027B2 2023
  137. Mitter Birgit Sessitsch Angela Naveed Muhammad Process for the production of plant seeds containing endophytic microorganisms. Patent ES2922361T3 2022
  138. Ekanayake Piyumi Forster John White Guthridge Kathryn Michaela Endophytes and related methods. Patent AU2023204395A1 2023
  139. Craven Kelly Grass fungal endophytes and uses thereof. Patent US8975489B2 2015
  140. James F. Compositions and methods comprising endophytic bacterium for application to target plants to increase plant growth, and increase resistance to abiotic and biotic stressors. Patent US20230332168A1 2023
  141. Gregory A. Fungal endophytes for improved crop yields and protection from pests. Patent US20240101492A1 2024
  142. Riley Raymond Endophyte compositions and methods for improvement of plant traits. Patent US11516989B2 2022
  143. Adam Nadia Endophytes for organic nitrogen use for sustainable agriculture. Patent US11293006B1 2022
  144. Can Chen Xie Anqiang Tang Zhide Endophytic fungus S24 capable of promoting growth of China fir. Patent CN114164123B 2022
/content/journals/cdrr/10.2174/0125899775372804250402051832
Loading
/content/journals/cdrr/10.2174/0125899775372804250402051832
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test