Skip to content
2000
image of Diabetic Wound Healing: Mechanism and Treatment Strategies with a Special Focus on Angiogenesis

Abstract

Due to the numerous comorbidities associated with diabetes mellitus (DM), its complications of poor wound healing, persistent ulceration, and subsequent limb amputation, DM is becoming a major global health concern. The need for research attention increases due to delayed and compromised healing. We provide an overview of the latest developments in our knowledge of the pathophysiology of diabetic wounds in this review, with a particular emphasis on impaired angiogenesis, suboptimal chronic inflammatory response, and barrier disruption. We also discuss potential future directions for treating the various pathologies linked to diabetic wounds. The emphasis of this study is diabetic wound healing, with particular attention to the abnormalities reported in the wound angiogenesis proliferative, remodelling, and maturation phases. This evaluation also considers therapies that might hold the key to improved wound healing results. Future treatment options must address many causes of delayed healing in diabetic wounds, given the worrying rise in the prevalence of diabetes and, consequently, diabetic wounds.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775360418250406180636
2025-04-24
2025-09-04
Loading full text...

Full text loading...

References

  1. Health Topics 2024 Available from:https://www.who.int/health-topics
  2. Obesity and overweight. 2024 Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
  3. IDF Diabetes Atlas 2021 2024 Available from: https://diabetesatlas.org/atlas/tenth-edition/
  4. Nandhini J. Karthikeyan E. Rajeshkumar S. Nanomaterials for wound healing: Current status and futuristic frontier. Biomedical Technol. 2024 6 26 45 10.1016/j.bmt.2023.10.001
    [Google Scholar]
  5. Jose DT Uma C Sivagurunathan P Aswini B Dinesh MD Extraction and antibacterial evaluation of marine AMPs against diabetic wound pathogens. J. Appl Pharm Sci. 2020 10 11 087 092 2020
    [Google Scholar]
  6. Patel Satish Srivastava Shikha Singh Manju Rawat Singh Deependra Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing Biomed Pharmacother. 2019 112 108615 10.1016/j.biopha.2019.108615
    [Google Scholar]
  7. Guo S. DiPietro L.A. Factors affecting wound healing. J. Dent. Res. 2010 89 3 219 229 10.1177/0022034509359125 20139336
    [Google Scholar]
  8. Sharp A. Clark J. Diabetes and its effects on wound healing. Nurs. Stand. 2011 25 45 41 47 10.7748/ns.25.45.41.s48 21850847
    [Google Scholar]
  9. Wang Xuan Enhancing angiogenesis: Innovative drug delivery systems to facilitate diabetic wound healing. Biomed Pharmacother. 2024 170 116035 10.1016/j.biopha.2023.116035.
    [Google Scholar]
  10. Gosain A. DiPietro L.A. Aging and wound healing. World J. Surg. 2004 28 3 321 326 10.1007/s00268‑003‑7397‑6 14961191
    [Google Scholar]
  11. Mathieu D. Linke J-C. Wattel F. Non-healing wounds. Handbook on hyperbaric medicine. Mathieu D.E. Netherlands Springer 2006 401 427 10.1007/1‑4020‑4448‑8_20
    [Google Scholar]
  12. Broughton G. II Janis J.E. Attinger C.E. The basic science of wound healing. Plast. Reconstr. Surg. 2006 117 7 Suppl. 12S 34S 10.1097/01.prs.0000225430.42531.c2 16799372
    [Google Scholar]
  13. Campos A.C.L. Groth A.K. Branco A.B. Assessment and nutritional aspects of wound healing. Curr. Opin. Clin. Nutr. Metab. Care 2008 11 3 281 288 10.1097/MCO.0b013e3282fbd35a 18403925
    [Google Scholar]
  14. Meszaros A.J. Reichner J.S. Albina J.E. Macrophage-induced neutrophil apoptosis. J. Immunol. 2000 165 1 435 441 10.4049/jimmunol.165.1.435 10861082
    [Google Scholar]
  15. Mosser D.M. Edwards J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008 8 12 958 969 10.1038/nri2448 19029990
    [Google Scholar]
  16. Swift M.E. Burns A.L. Gray K.L. DiPietro L.A. Age-related alterations in the inflammatory response to dermal injury. J. Invest. Dermatol. 2001 117 5 1027 1035 10.1046/j.0022‑202x.2001.01539.x 11710909
    [Google Scholar]
  17. Park J.E. Barbul A. Understanding the role of immune regulation in wound healing. Am. J. Surg. 2004 187 5 S11 S16 10.1016/S0002‑9610(03)00296‑4 15147986
    [Google Scholar]
  18. Gawronska-Kozak B. Bogacki M. Rim J.S. Monroe W.T. Manuel J.A. Scarless skin repair in immunodeficient mice. Wound Repair Regen. 2006 14 3 265 276 10.1111/j.1743‑6109.2006.00121.x 16808805
    [Google Scholar]
  19. Jameson J. Havran W.L. Skin γδ T‐cell functions in homeostasis and wound healing. Immunol. Rev. 2007 215 1 114 122 10.1111/j.1600‑065X.2006.00483.x 17291283
    [Google Scholar]
  20. Mills R.E. Taylor K.R. Podshivalova K. McKay D.B. Jameson J.M. Defects in skin gamma delta T cell function contribute to delayed wound repair in rapamycin-treated mice. J. Immunol. 2008 181 6 3974 3983 10.4049/jimmunol.181.6.3974 18768852
    [Google Scholar]
  21. Cha J. Falanga V. Stem cells in cutaneous wound healing. Clin. Dermatol. 2007 25 1 73 78 10.1016/j.clindermatol.2006.10.002 17276204
    [Google Scholar]
  22. Rea S. Giles N.L. Webb S. Adcroft K.F. Evill L.M. Strickland D.H. Wood F.M. Fear M.W. Bone marrow-derived cells in the healing burn wound: More than just inflammation. Burns 2009 35 3 356 364 10.1016/j.burns.2008.07.011 18952376
    [Google Scholar]
  23. Wu Y. Wang J. Scott P.G. Tredget E.E. Bone marrow‐derived stem cells in wound healing: a review. Wound Repair Regen. 2007 15 s1 Suppl. 1 S18 S26 10.1111/j.1524‑475X.2007.00221.x 17727462
    [Google Scholar]
  24. Liu Z.J. Velazquez O.C. Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing. Antioxid. Redox Signal. 2008 10 11 1869 1882 10.1089/ars.2008.2121 18627349
    [Google Scholar]
  25. Falanga V. Wound healing and its impairment in the diabetic foot. Lancet 2005 366 9498 1736 1743 10.1016/S0140‑6736(05)67700‑8 16291068
    [Google Scholar]
  26. Menke N.B. Ward K.R. Witten T.M. Bonchev D.G. Diegelmann R.F. Impaired wound healing. Clin. Dermatol. 2007 25 1 19 25 10.1016/j.clindermatol.2006.12.005 17276197
    [Google Scholar]
  27. Stadelmann W.K. Digenis A.G. Tobin G.R. Impediments to wound healing. Am. J. Surg. 1998 176 2 Suppl. 39S 47S 10.1016/S0002‑9610(98)00184‑6 9777971
    [Google Scholar]
  28. Hunt T.K. Pai M.P. The effect of varying ambient oxygen tensions on wound metabolism and collagen synthesis. Surg. Gynecol. Obstet. 1972 135 4 561 567 5077722
    [Google Scholar]
  29. Lioupis C. Effects of diabetes mellitus on wound healing: An update. J. Wound Care 2005 14 2 84 86 10.12968/jowc.2005.14.2.26738 15739657
    [Google Scholar]
  30. Kidman K. Tissue repair and regeneration: The effects of diabetes on wound healing. Diabetic Foot Journal. 2008 11 2 73 79
    [Google Scholar]
  31. Adamson R. Role of macrophages in normal wound healing: An overview. J. Wound Care 2009 18 8 349 351 10.12968/jowc.2009.18.8.43636 19862875
    [Google Scholar]
  32. Davis P. The immunology of wound healing: The body as a battlefield. Wound Healing Science. 2008 4 4 54 69
    [Google Scholar]
  33. White R. Wound management clinical practice guidelines tissue viability service. 2003 Available from: https://www.elft.nhs.uk/sites/default/files/Wound%20Management%20Guidelines%206.0.pdf
  34. Dovi J.V. He L.K. DiPietro L.A. Accelerated wound closure in neutrophil-depleted mice. J. Leukoc. Biol. 2003 73 4 448 455 10.1189/jlb.0802406 12660219
    [Google Scholar]
  35. Penhallow K. A review of studies that examine the impact of infection on the normal wound-healing process. J. Wound Care 2005 14 3 123 126 10.12968/jowc.2005.14.3.26747 15779643
    [Google Scholar]
  36. Edmonds M.E. Foster A.V.M. Diabetic foot ulcers. BMJ 2006 332 7538 407 410 10.1136/bmj.332.7538.407 16484268
    [Google Scholar]
  37. Marshall P.J. Wound Care. Australia Fast Books 1993
    [Google Scholar]
  38. McIntosh C. Diabetic Foot Ulcers. Aberdeen Wounds-UK 2006
    [Google Scholar]
  39. Talbot T.R. Diabetes mellitus and cardiothoracic surgical site infections. Am. J. Infect. Control 2005 33 6 353 359 10.1016/j.ajic.2004.10.008 16061142
    [Google Scholar]
  40. Zerr K.J. Furnary A.P. Grunkemeier G.L. Bookin S. Kanhere V. Starr A. Glucose control lowers the risk of wound infection in diabetics after open heart operations. Ann. Thorac. Surg. 1997 63 2 356 361 10.1016/S0003‑4975(96)01044‑2 9033300
    [Google Scholar]
  41. Loots M.A.M. Kenter S.B. Au F.L. van Galen W.J.M. Middelkoop E. Bos J.D. Mekkes J.R. Fibroblasts derived from chronic diabetic ulcers differ in their response to stimulation with EGF, IGF-I, bFGF and PDGF-AB compared to controls. Eur. J. Cell Biol. 2002 81 3 153 160 10.1078/0171‑9335‑00228 11998867
    [Google Scholar]
  42. Lobmann R. Ambrosch A. Schultz G. Waldmann K. Schiweck S. Lehnert H. Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients. Diabetologia 2002 45 7 1011 1016 10.1007/s00125‑002‑0868‑8 12136400
    [Google Scholar]
  43. Bitar M.S. Labbad Z.N. Transforming growth factor-beta and insulin-like growth factor-I in relation to diabetes-induced impairment of wound healing. J. Surg. Res. 1996 61 1 113 119 10.1006/jsre.1996.0090 8769952
    [Google Scholar]
  44. Dougherty D.B. Sparks-Defriese B. Wound Healing Physiology. Acute and Chronic Wounds. Elsevier Health Sciences 2007
    [Google Scholar]
  45. Ko K. Sculean A. Graves D.T. Diabetic wound healing in soft and hard oral tissues. Transl. Res. 2021 236 72 86 10.1016/j.trsl.2021.05.001 33992825
    [Google Scholar]
  46. Wan G. Chen Y. Chen J. Yan C. Wang C. Li W. Mao R. Machens H.G. Yang X. Chen Z. Regulation of endothelial progenitor cell functions during hyperglycemia: New therapeutic targets in diabetic wound healing. J. Mol. Med. (Berl.) 2022 100 4 485 498 10.1007/s00109‑021‑02172‑1 34997250
    [Google Scholar]
  47. Xiong Y. Chen L. Yan C. Zhou W. Endo Y. Liu J. Hu L. Hu Y. Mi B. Liu G. Circulating exosomal miR‐20b‐5p inhibition restores wnt9b signaling and reverses diabetes‐associated impaired wound healing. Small 2020 16 3 1904044 10.1002/smll.201904044 31867895
    [Google Scholar]
  48. Nouvong A. Ambrus A.M. Zhang E.R. Hultman L. Coller H.A. Reactive oxygen species and bacterial biofilms in diabetic wound healing. Physiol. Genomics 2016 48 12 889 896 10.1152/physiolgenomics.00066.2016 27764766
    [Google Scholar]
  49. Xiong Y. Chu X. Yu T. Knoedler S. Schroeter A. Lu L. Zha K. Lin Z. Jiang D. Rinkevich Y. Panayi A.C. Mi B. Liu G. Zhao Y. Reactive oxygen species-scavenging nanosystems in the treatment of diabetic wounds. Adv Healthc Mater. 2023 12 25 e2300779 10.1002/adhm.202300779
    [Google Scholar]
  50. Tejada S. Batle J.M. Ferrer M.D. Busquets-Cortés C. Monserrat-Mesquida M. Nabavi S.M. del Mar Bibiloni M. Pons A. Sureda A. Therapeutic effects of hyperbaric oxygen in the process of wound healing. Curr. Pharm. Des. 2019 25 15 1682 1693 10.2174/1381612825666190703162648 31269879
    [Google Scholar]
  51. Liu W. Yu M. Xie D. Wang L. Ye C. Zhu Q. Liu F. Yang L. Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway. Stem Cell Res. Ther. 2020 11 1 259 10.1186/s13287‑020‑01756‑x 32600435
    [Google Scholar]
  52. Navarro J. Morafernández C. The role of TNF-α in diabetic nephropathy: Pathogenic and therapeutic implications. Cytokine Growth Factor Rev. 2006 17 6 441 450 10.1016/j.cytogfr.2006.09.011 17113815
    [Google Scholar]
  53. Hassan W.U. Greiser U. Wang W. Role of adipose‐derived stem cells in wound healing. Wound Repair Regen. 2014 22 3 313 325 10.1111/wrr.12173 24844331
    [Google Scholar]
  54. Schönborn M. Łączak P. Pasieka P. Borys S. Płotek A. Maga P. Pro- and anti-angiogenic factors: Their relevance in diabetic foot syndrome: A review. Angiology 2022 73 4 299 311 10.1177/00033197211042684 34541892
    [Google Scholar]
  55. Borys S. Hohendorff J. Frankfurter C. Kiec-Wilk B. Malecki M.T. Negative pressure wound therapy use in diabetic foot syndrome—from mechanisms of action to clinical practice. Eur. J. Clin. Invest. 2019 49 4 e13067 10.1111/eci.13067 30600541
    [Google Scholar]
  56. Sheets A.R. Massey C.J. Cronk S.M. Iafrati M.D. Herman I.M. Matrix- and plasma-derived peptides promote tissue-specific injury responses and wound healing in diabetic swine. J. Transl. Med. 2016 14 1 197 10.1186/s12967‑016‑0946‑1 27369317
    [Google Scholar]
  57. Bi H. Li H. Zhang C. Mao Y. Nie F. Xing Y. Sha W. Wang X. Irwin D.M. Tan H. Stromal vascular fraction promotes migration of fibroblasts and angiogenesis through regulation of extracellular matrix in the skin wound healing process. Stem Cell Res. Ther. 2019 10 1 302 10.1186/s13287‑019‑1415‑6 31623669
    [Google Scholar]
  58. Jiang Y. Li Y. Li J. Han Y. Zhang P. Yi Z. Ke Q. Xu H. A mussel-inspired extracellular matrix-mimicking composite scaffold for diabetic wound healing. ACS Appl. Bio Mater. 2020 3 7 4052 4061 10.1021/acsabm.0c00143 35025480
    [Google Scholar]
  59. Liu W. Gao R. Yang C. Feng Z. Ou-Yang W. Pan X. Huang P. Zhang C. Kong D. Wang W. ECM-mimetic immunomodulatory hydrogel for methicillin-resistant Staphylococcus aureus –infected chronic skin wound healing. Sci. Adv. 2022 8 27 eabn7006 10.1126/sciadv.abn7006 35857459
    [Google Scholar]
  60. Tie L. Chen L.Y. Chen D.D. Xie H.H. Channon K.M. Chen A.F. GTP cyclohydrolase I prevents diabetic-impaired endothelial progenitor cells and wound healing by suppressing oxidative stress/thrombospondin-1. Am. J. Physiol. Endocrinol. Metab. 2014 306 10 E1120 E1131 10.1152/ajpendo.00696.2013 24644242
    [Google Scholar]
  61. Wang T. Wang W. Li F. Chen Y. Jiang D. Chen Y. Yang H. Liu L. Lu M. Sun J. Gu D. Wang J. Wang A. Maggot excretions/secretions promote diabetic wound angiogenesis via miR18a/19a – TSP-1 axis. Diabetes Res. Clin. Pract. 2020 165 108140 10.1016/j.diabres.2020.108140 32277954
    [Google Scholar]
  62. Wang Q. Navitskaya S. Chakravarthy H. Huang C. Kady N. Lydic T.A. Chen Y.E. Yin K.J. Powell F.L. Martin P.M. Grant M.B. Busik J.V. Dual anti-inflammatory and anti-angiogenic action of miR-15a in diabetic retinopathy. EBioMedicine 2016 11 138 150 10.1016/j.ebiom.2016.08.013 27531575
    [Google Scholar]
  63. Wang C.M. Lincoln J. Cook J.E. Becker D.L. Abnormal connexin expression underlies delayed wound healing in diabetic skin, 2809-17. Diabetes 2007 56 11 2809 10.2337/db07‑0613
    [Google Scholar]
  64. Xu F. Zhang C. Graves D.T. Abnormal cell responses and role of TNF-α in impaired diabetic wound healing. BioMed Res. Int. 2013 2013 1 9 10.1155/2013/754802 23484152
    [Google Scholar]
  65. Lerman O.Z. Galiano R.D. Armour M. Levine J.P. Gurtner G.C. Cellular dysfunction in the diabetic fibroblast: Impairment in migration, vascular endothelial growth factor production, and response to hypoxia. Am. J. Pathol. 2003 162 1 303 312 10.1016/S0002‑9440(10)63821‑7 12507913
    [Google Scholar]
  66. Shaikh-Kader A. Houreld N.N. Rajendran N.K. Abrahamse H. The link between advanced glycation end products and apoptosis in delayed wound healing. Cell Biochem. Funct. 2019 37 6 432 442 10.1002/cbf.3424 31318458
    [Google Scholar]
  67. Bitar M.S. Al-Mulla F. Upregulation of CREM/ICER suppresses wound endothelial CRE-HIF-1α-VEGF-dependent signaling and impairs angiogenesis in type 2 diabetes. Dis. Model. Mech. 2015 8 1 65 80 25381014
    [Google Scholar]
  68. Zhong P. Wu L. Qian Y. Fang Q. Liang D. Wang J. Zeng C. Wang Y. Liang G. Blockage of ROS and NF-κB-mediated inflammation by a new chalcone L6H9 protects cardiomyocytes from hyperglycemia-induced injuries. Biochim. Biophys. Acta Mol. Basis Dis. 2015 1852 7 1230 1241 10.1016/j.bbadis.2015.02.011 25736300
    [Google Scholar]
  69. Rasouli M. Rahimi A. Soleimani M. keshel S.H. The interplay between extracellular matrix and progenitor/stem cells during wound healing: Opportunities and future directions. Acta Histochem. 2021 123 7 151785 10.1016/j.acthis.2021.151785 34500185
    [Google Scholar]
  70. Zgheib C. Xu J. Liechty K.W. Targeting inflammatory cytokines and extracellular matrix composition to promote wound regeneration. Adv. Wound. Care. (New Rochelle). 2014 3 4 344 355
    [Google Scholar]
  71. Zhu Y. Wang Y. Jia Y. Xu J. Chai Y. Roxadustat promotes angiogenesis through HIF‐1α/VEGF/VEGFR2 signaling and accelerates cutaneous wound healing in diabetic rats. Wound Repair Regen. 2019 27 4 324 334 10.1111/wrr.12708 30817065
    [Google Scholar]
  72. Basra R. Papanas N. Farrow F. Karalliedde J. Vas P. Diabetic foot ulcers and cardiac autonomic neuropathy. Clin. Ther. 2022 44 2 323 330 10.1016/j.clinthera.2021.12.002 34974945
    [Google Scholar]
  73. Theocharidis G. Veves A. Autonomic nerve dysfunction and impaired diabetic wound healing: The role of neuropeptides. Auton. Neurosci. 2020 223 102610 10.1016/j.autneu.2019.102610 31790954
    [Google Scholar]
  74. Ivanov E. Akhmetshina M. Erdiakov A. Gavrilova S. Sympathetic system in wound healing: Multistage control in normal and diabetic skin. Int. J. Mol. Sci. 2023 24 3 2045 10.3390/ijms24032045 36768369
    [Google Scholar]
  75. Wang S. Zhang Y. Sun F. Xi K. Sun Z. Zheng X. Guo F. Zhong H. Yang M. Shao Y. Huang B. Dong M. Ni S. Sun L. Catalase-like nanozymes combined with hydrogel to facilitate wound healing by improving the microenvironment of diabetic ulcers. Mater. Des. 2023 225 111557 10.1016/j.matdes.2022.111557
    [Google Scholar]
  76. Wang M. Wang C. Chen M. Xi Y. Cheng W. Mao C. Xu T. Zhang X. Lin C. Gao W. Guo Y. Lei B. Efficient angiogenesis-based diabetic wound healing/skin reconstruction through bioactive antibacterial adhesive ultraviolet shielding nanodressing with exosome release. ACS Nano 2019 13 9 10279 10293 10.1021/acsnano.9b03656 31483606
    [Google Scholar]
  77. Wang Y. Cao Z. Wei Q. Ma K. Hu W. Huang Q. Su J. Li H. Zhang C. Fu X. VH298-loaded extracellular vesicles released from gelatin methacryloyl hydrogel facilitate diabetic wound healing by HIF-1α-mediated enhancement of angiogenesis. Acta Biomater. 2022 147 342 355 10.1016/j.actbio.2022.05.018 35580827
    [Google Scholar]
  78. Shiekh P.A. Singh A. Kumar A. Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing. Biomaterials 2020 249 120020 10.1016/j.biomaterials.2020.120020 32305816
    [Google Scholar]
  79. Long G. Liu D. He X. Shen Y. Zhao Y. Hou X. Chen B. OuYang W. Dai J. Li X. A dual functional collagen scaffold coordinates angiogenesis and inflammation for diabetic wound healing. Biomater. Sci. 2020 8 22 6337 6349 10.1039/D0BM00999G 33025970
    [Google Scholar]
  80. Mony M.P. Shenoy S.J. Raj R. Geetha C.S. Pratheesh K.V. Nair R.S. Purnima C. Anilkumar T.V. Gelatin-modified cholecyst-derived scaffold promotes angiogenesis and faster healing of diabetic wounds. ACS Appl. Bio Mater. 2021 4 4 3320 3331 10.1021/acsabm.0c01648 35014418
    [Google Scholar]
  81. Wang S. Zhang Y. Shi Y. He Q. Tan Q. Peng Z. Liu Y. Li D. Li X. Ke D. Wang J. Rhubarb charcoal-crosslinked chitosan/silk fibroin sponge scaffold with efficient hemostasis, inflammation, and angiogenesis for promoting diabetic wound healing. Int. J. Biol. Macromol. 2023 253 Pt 2 126796 10.1016/j.ijbiomac.2023.126796 37689294
    [Google Scholar]
  82. O’Loughlin A. Kulkarni M. Creane M. Vaughan E.E. Mooney E. Shaw G. Murphy M. Dockery P. Pandit A. O’Brien T. Topical administration of allogeneic mesenchymal stromal cells seeded in a collagen scaffold augments wound healing and increases angiogenesis in the diabetic rabbit ulcer. Diabetes 2013 62 7 2588 2594 10.2337/db12‑1822 23423568
    [Google Scholar]
  83. Jiang Y. Han Y. Wang J. Lv F. Yi Z. Ke Q. Xu H. Space-oriented nanofibrous scaffold with silicon-doped amorphous calcium phosphate nanocoating for diabetic wound healing. ACS Appl. Bio Mater. 2019 2 2 787 795 10.1021/acsabm.8b00657 35016283
    [Google Scholar]
  84. Zhu Y. Zhou W. Xiang J. Wu M. Chen Z. Yang Z. Wei R. Cai L. Deferoxamine-loaded Janus electrospun nanofiber dressing with spatially designed structure for diabetic wound healing. Mater. Des. 2023 233 112166 10.1016/j.matdes.2023.112166
    [Google Scholar]
  85. Hou Y. Huang H. Gong W. Wang R. He W. Wang X. Hu J. Co-assembling of natural drug-food homologous molecule into composite hydrogel for accelerating diabetic wound healing. Biomaterials Advances 2022 140 213034 10.1016/j.bioadv.2022.213034 35914325
    [Google Scholar]
  86. Pang L. Tian P. Cui X. Wu X. Zhao X. Wang H. Wang D. Pan H. In situ photo-cross-linking hydrogel accelerates diabetic wound healing through restored hypoxia-inducible factor 1-alpha pathway and regulated inflammation. ACS Appl. Mater. Interfaces 2021 13 25 29363 29379 10.1021/acsami.1c07103 34128630
    [Google Scholar]
  87. Liao H.T. Lai Y.T. Kuo C.Y. Chen J.P. A bioactive multi-functional heparin-grafted aligned poly(lactide-co-glycolide)/curcumin nanofiber membrane to accelerate diabetic wound healing. Mater. Sci. Eng. C 2021 120 111689 10.1016/j.msec.2020.111689 33545851
    [Google Scholar]
  88. Amarjargal A. Moazzami Goudarzi Z. Cegielska O. Gradys A. Kolbuk D. Kalaska B. Ruszczyńska A. Sajkiewicz P. A facile one-stone-two-birds strategy for fabricating multifunctional 3D nanofibrous scaffolds. Biomater. Sci. 2023 11 16 5502 5516 10.1039/D3BM00837A 37378581
    [Google Scholar]
  89. Yuan X. Yang W. Fu Y. Tao Z. Xiao L. Zheng Q. Wu D. Zhang M. Li L. Lu Z. Wu Y. Gao J. Li Y. Four-arm polymer-guided formation of curcumin-loaded flower-like porous microspheres as injectable cell carriers for diabetic wound healing. Adv Healthc Mater. 2023 12 30 ?e2301486 10.1002/adhm.202301486. 2023
    [Google Scholar]
  90. Xiong Y. Chen L. Liu P. Yu T. Lin C. Yan C. Hu Y. Zhou W. Sun Y. Panayi A.C. Cao F. Xue H. Hu L. Lin Z. Xie X. Xiao X. Feng Q. Mi B. Liu G. All‐in‐One: Multifunctional hydrogel accelerates oxidative diabetic wound healing through timed‐release of exosome and fibroblast growth factor. Small 2022 18 1 2104229 10.1002/smll.202104229 34791802
    [Google Scholar]
  91. Guan Y. Niu H. Liu Z. Dang Y. Shen J. Zayed M. Ma L. Guan J. Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation. Sci. Adv. 2021 7 35 eabj0153 10.1126/sciadv.abj0153 34452918
    [Google Scholar]
  92. Xu Z. Liu G. Liu P. Hu Y. Chen Y. Fang Y. Sun G. Huang H. Wu J. Hyaluronic acid-based glucose-responsive antioxidant hydrogel platform for enhanced diabetic wound repair. Acta Biomater. 2022 147 147 157 10.1016/j.actbio.2022.05.047 35649507
    [Google Scholar]
  93. Liu J. Qu M. Wang C. Xue Y. Huang H. Chen Q. Sun W. Zhou X. Xu G. Jiang X. A dual-cross-linked hydrogel patch for promoting diabetic wound healing. Small 2022 18 17 2106172 10.1002/smll.202106172 35319815
    [Google Scholar]
  94. Ahmed R. Augustine R. Chaudhry M. Akhtar U.A. Zahid A.A. Tariq M. Falahati M. Ahmad I.S. Hasan A. Nitric oxide-releasing biomaterials for promoting wound healing in impaired diabetic wounds: State of the art and recent trends. Biomed. Pharmacother. 2022 149 112707 10.1016/j.biopha.2022.112707 35303565
    [Google Scholar]
  95. Chen T.Y. Wen T.K. Dai N.T. Hsu S. Cryogel/hydrogel biomaterials and acupuncture combined to promote diabetic skin wound healing through immunomodulation. Biomaterials 2021 269 120608 10.1016/j.biomaterials.2020.120608 33388690
    [Google Scholar]
  96. Gourishetti K. Keni R. Nayak P.G. Jitta S.R. Bhaskaran N.A. Kumar L. Kumar N. Nandakumar K. Shenoy R. Sesamol-Loaded P.L.G.A. Sesamol-loaded PLGA nanosuspension for accelerating wound healing in diabetic foot ulcer in rats. Int. J. Nanomedicine 2020 15 9265 9282 10.2147/IJN.S268941 33262587
    [Google Scholar]
  97. Yang J. Chen Z. Pan D. Li H. Shen J. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration. Int. J. Nanomedicine 2020 15 5911 5926 10.2147/IJN.S249129 32848396
    [Google Scholar]
  98. Xiong Y. Mi B.B. Lin Z. Hu Y.Q. Yu L. Zha K.K. Panayi A.C. Yu T. Chen L. Liu Z.P. Patel A. Feng Q. Zhou S.H. Liu G.H. The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: From mechanism to therapeutic opportunity. Mil. Med. Res. 2022 9 1 65 10.1186/s40779‑022‑00426‑8 36401295
    [Google Scholar]
  99. Liu S. Yu J.M. Gan Y.C. Qiu X.Z. Gao Z.C. Wang H. Chen S.X. Xiong Y. Liu G.H. Lin S.E. McCarthy A. John J.V. Wei D.X. Hou H.H. Biomimetic natural biomaterials for tissue engineering and regenerative medicine: New biosynthesis methods, recent advances, and emerging applications. Mil. Med. Res. 2023 10 1 16 10.1186/s40779‑023‑00448‑w 36978167
    [Google Scholar]
  100. Boomi P. Ganesan R. Prabu Poorani G. Jegatheeswaran S. Balakumar C. Gurumallesh Prabu H. Anand K. Marimuthu Prabhu N. Jeyakanthan J. Saravanan M. Phyto-Engineered Gold Nanoparticles (AuNPs) with potential antibacterial, antioxidant, and wound healing activities under in vitro and in vivo conditions. Int. J. Nanomedicine 2020 15 7553 7568 10.2147/IJN.S257499 33116487
    [Google Scholar]
  101. Wang S. Yan C. Zhang X. Shi D. Chi L. Luo G. Deng J. Antimicrobial peptide modification enhances the gene delivery and bactericidal efficiency of gold nanoparticles for accelerating diabetic wound healing. Biomater. Sci. 2018 6 10 2757 2772 10.1039/C8BM00807H 30187036
    [Google Scholar]
  102. Zheng L. Gu B. Li S. Luo B. Wen Y. Chen M. Li X. Zha Z. Zhang H.T. Wang X. An antibacterial hemostatic AuNPs@corn stalk/chitin composite sponge with shape recovery for promoting wound healing. Carbohydr. Polym. 2022 296 119924 10.1016/j.carbpol.2022.119924 36088022
    [Google Scholar]
  103. Wang Y. Ji J.Y. Guo K. Zhang T. Zhong X.C. Zhuang Z.M. Zhong Y.F. Lin X.Y. Du Y.Z. Chen J. Tan W.Q. Gene liposome nanocomplex-loaded dermal substitute promotes diabetic chronic wound healing and angiogenesis in rat. Biomed. Pharmacother. 2023 163 114794 10.1016/j.biopha.2023.114794 37121150
    [Google Scholar]
  104. Eid H.M. Ali A.A. Ali A.M.A. Eissa E.M. Hassan R.M. Abo El-Ela F.I. Hassan A.H. Potential use of tailored citicoline chitosan-coated liposomes for effective wound healing in diabetic rat model. Int. J. Nanomedicine 2022 17 555 575 10.2147/IJN.S342504 35153481
    [Google Scholar]
  105. Yu J.R. Varrey P. Liang B.J. Huang H.C. Fisher J.P. Liposomal SDF-1 alpha delivery in nanocomposite hydrogels promotes macrophage phenotype changes and skin tissue regeneration. ACS Biomater. Sci. Eng. 2021 7 11 5230 5241 10.1021/acsbiomaterials.1c01140 34699182
    [Google Scholar]
  106. Liu Y. Zhou S. Gao Y. Zhai Y. Electrospun nanofibers as a wound dressing for treating diabetic foot ulcer. Asian J. Pharm. Sci." 2019 14 2 130 143 10.1016/j.ajps.2018.04.004 32104445
    [Google Scholar]
  107. Zehra M. Zubairi W. Hasan A. Butt H. Ramzan A. Azam M. Mehmood A. Falahati M. Chaudhry A.A. Rehman I.U. Yar M. Oxygen generating polymeric nano fibers that stimulate angiogenesis and show efficient wound healing in a diabetic wound model. Int. J. Nanomedicine 2020 15 3511 3522 10.2147/IJN.S248911 32547010
    [Google Scholar]
  108. Gao S. Chen T. Wang Z. Ji P. Xu L. Cui W. Wang Y. Immuno-activated mesenchymal stem cell living electrospun nanofibers for promoting diabetic wound repair. J. Nanobiotechnol. 2022 20 1 294 10.1186/s12951‑022‑01503‑9 35729570
    [Google Scholar]
  109. Wang C. Wang M. Xu T. Zhang X. Lin C. Gao W. Xu H. Lei B. Mao C. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration. Theranostics 2019 9 1 65 76 10.7150/thno.29766 30662554
    [Google Scholar]
  110. Xue J. Sun N. Liu Y. Self-assembled nano-peptide hydrogels with human umbilical cord mesenchymal stem cell spheroids accelerate diabetic skin wound healing by inhibiting inflammation and promoting angiogenesis. Int. J. Nanomedicine 2022 17 2459 2474 10.2147/IJN.S363777 35669002
    [Google Scholar]
  111. Qian Z. Wang H. Bai Y. Wang Y. Tao L. Wei Y. Fan Y. Guo X. Liu H. Improving chronic diabetic wound healing through an injectable and self-healing hydrogel with platelet-rich plasma release. ACS Appl. Mater. Interfaces 2020 12 50 55659 55674 10.1021/acsami.0c17142 33327053
    [Google Scholar]
  112. Ma W. Zhang X. Liu Y. Fan L. Gan J. Liu W. Zhao Y. Sun L. Polydopamine decorated microneedles with Fe‐MSC‐derived nanovesicles encapsulation for wound healing. Adv. Sci. (Weinh.) 2022 9 13 2103317 10.1002/advs.202103317 35266637
    [Google Scholar]
  113. Xu Z. Liu G. Huang J. Wu J. Novel glucose-responsive antioxidant hybrid hydrogel for enhanced diabetic wound repair. ACS Appl. Mater. Interfaces 2022 14 6 7680 7689 10.1021/acsami.1c23461 35129966
    [Google Scholar]
  114. Xu K. Deng S. Zhu Y. Yang W. Chen W. Huang L. Zhang C. Li M. Ao L. Jiang Y. Wang X. Zhang Q. Platelet rich plasma loaded multifunctional hydrogel accelerates diabetic wound healing via regulating the continuously abnormal microenvironments. Adv. Health Mater 2023 12 28 e2301370 10.1002/adhm.202301370 2023
    [Google Scholar]
  115. Li Y. Zhang X. He D. Ma Z. Xue K. Li H. 45S5 Bioglass® works synergistically with siRNA to downregulate the expression of matrix metalloproteinase-9 in diabetic wounds. Acta Biomater. 2022 145 372 389 10.1016/j.actbio.2022.04.010 35421617
    [Google Scholar]
  116. Chen H. Jia P. Kang H. Zhang H. Liu Y. Yang P. Yan Y. Zuo G. Guo L. Jiang M. Qi J. Liu Y. Cui W. Santos H.A. Deng L. Upregulating Hif‐1α by hydrogel nanofibrous scaffolds for rapidly recruiting angiogenesis relative cells in diabetic wound. Adv. Healthc. Mater. 2016 5 8 907 918 10.1002/adhm.201501018 26891197
    [Google Scholar]
  117. Li Y. Xu T. Tu Z. Dai W. Xue Y. Tang C. Gao W. Mao C. Lei B. Lin C. Bioactive antibacterial silica-based nanocomposites hydrogel scaffolds with high angiogenesis for promoting diabetic wound healing and skin repair. Theranostics 2020 10 11 4929 4943 10.7150/thno.41839 32308759
    [Google Scholar]
  118. Huang X. Wang Q. Mao R. Wang Z. Shen S.G.F. Mou J. Dai J. Two-dimensional nanovermiculite and polycaprolactone electrospun fibers composite scaffolds promoting diabetic wound healing. J. Nanobiotechnology 2022 20 1 343 10.1186/s12951‑022‑01556‑w 35883146
    [Google Scholar]
  119. Li J. Zhang T. Pan M. Xue F. Lv F. Ke Q. Xu H. Nanofiber/hydrogel core–shell scaffolds with three-dimensional multilayer patterned structure for accelerating diabetic wound healing. J. Nanobiotechnology 2022 20 1 28 10.1186/s12951‑021‑01208‑5 34998407
    [Google Scholar]
  120. Deng T. Gao D. Song X. Zhou Z. Zhou L. Tao M. Jiang Z. Yang L. Luo L. Zhou A. Hu L. Qin H. Wu M. A natural biological adhesive from snail mucus for wound repair. Nat. Commun. 2023 14 1 396 10.1038/s41467‑023‑35907‑4 36693849
    [Google Scholar]
  121. Prasathkumar M. Sadhasivam S. Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing—Know-how. Int. J. Biol. Macromol. 2021 186 656 685 10.1016/j.ijbiomac.2021.07.067 34271047
    [Google Scholar]
  122. Hu Y. Xiong Y. Zhu Y. Zhou F. Liu X. Chen S. Li Z. Qi S. Chen L. Copper-epigallocatechin gallate enhances therapeutic effects of 3D-printed dermal scaffolds in mitigating diabetic wound scarring. ACS Appl. Mater. Interfaces. 2023 15 32 38230 37535406 2023
    [Google Scholar]
  123. Milan P.B. Lotfibakhshaiesh N. Joghataie M.T. Ai J. Pazouki A. Kaplan D.L. Kargozar S. Amini N. Hamblin M.R. Mozafari M. Samadikuchaksaraei A. Accelerated wound healing in a diabetic rat model using decellularized dermal matrix and human umbilical cord perivascular cells. Acta Biomater. 2016 45 234 246 10.1016/j.actbio.2016.08.053 27591919
    [Google Scholar]
  124. Xiong Y. Lin Z. Bu P. Yu T. Endo Y. Zhou W. Sun Y. Cao F. Dai G. Hu Y. Lu L. Chen L. Cheng P. Zha K. Shahbazi M.A. Feng Q. Mi B. Liu G. A whole‐course‐repair system based on neurogenesis‐angiogenesis crosstalk and macrophage reprogramming promotes diabetic wound healing. Adv. Mater. 2023 35 19 2212300 10.1002/adma.202212300 36811203
    [Google Scholar]
  125. Shao S. Pan R. Chen Y. Autologous platelet-rich plasma for diabetic foot ulcer. Trends Endocrinol. Metab. 2020 31 12 885 890 10.1016/j.tem.2020.10.003 33199085
    [Google Scholar]
  126. John J.V. Sharma N.S. Tang G. Luo Z. Su Y. Weihs S. Shahriar S.M.S. Wang G. McCarthy A. Dyke J. Zhang Y.S. Khademhosseini A. Xie J. Nanofiber aerogels with precision macrochannels and LL‐37‐mimic peptides synergistically promote diabetic wound healing. Adv. Funct. Mater. 2023 33 1 2206936 10.1002/adfm.202206936 36714167
    [Google Scholar]
  127. Applewhite A. Chowdhry S.A. Desvigne M. Gabriel A. Hill R. Obst M.A. Shepherd D. Speyrer M. Treadwell T. Waddell L. Inpatient and outpatient wound treatment recommendations: Assessing use of negative pressure wound therapy systems or oxidized regenerated cellulose (ORC)/ Collagen/Silver-ORC dressings. Wounds 2018 30 8 Suppl. S19 S35 30102238
    [Google Scholar]
  128. Hollister C. Li V.W. Using angiogenesis in chronic wound care with becaplermin and oxidized regenerated cellulose/collagen. Nurs. Clin. North Am. 2007 42 3 457 465, vii 10.1016/j.cnur.2007.05.002 17825664
    [Google Scholar]
  129. Wu H. Ni R. Shi Y. Hu Y. Shen Z. Pang Q. Zhu Y. The promising hydrogel candidates for preclinically treating diabetic foot ulcer: A systematic review and meta-analysis. Adv. Wound Care (N. Rochelle) 2023 12 28 37
    [Google Scholar]
  130. Ceccarelli J. Putnam A.J. Sculpting the blank slate: How fibrin’s support of vascularization can inspire biomaterial design. Acta Biomater. 2014 10 4 1515 1523 10.1016/j.actbio.2013.07.043 23933102
    [Google Scholar]
  131. Gould L.J. Orgill D.P. Armstrong D.G. Galiano R.D. Glat P.M. Zelen C.M. DiDomenico L.A. Carter M.J. Li W.W. Improved healing of chronic diabetic foot wounds in a prospective randomised controlled multi‐centre clinical trial with a microvascular tissue allograft. Int. Wound J. 2022 19 4 811 825 10.1111/iwj.13679 34469077
    [Google Scholar]
  132. Zelen C.M. Gould L. Serena T.E. Carter M.J. Keller J. Li W.W. A prospective, randomised, controlled, multi‐centre comparative effectiveness study of healing using dehydrated human amnion/chorion membrane allograft, bioengineered skin substitute or standard of care for treatment of chronic lower extremity diabetic ulcers. Int. Wound J. 2015 12 6 724 732 10.1111/iwj.12395
    [Google Scholar]
  133. Zelen C.M. Serena T.E. Gould L. Le L. Carter M.J. Keller J. Li W.W. Treatment of chronic diabetic lower extremity ulcers with advanced therapies: A prospective, randomised, controlled, multi‐centre comparative study examining clinical efficacy and cost. Int. Wound J. 2016 13 2 272 282 10.1111/iwj.12566
    [Google Scholar]
  134. Abdollahimajd F. Pourani M.R. Mahdavi H. Mirzadeh H. Younespour S. Moravvej H. Efficacy and safety of chitosan‐based bio‐compatible dressing versus nanosilver (Acticoat TM ) dressing in treatment of recalcitrant diabetic wounds: A randomized clinical trial. Dermatol. Ther. 2022 35 9 e15682 10.1111/dth.15682 35778935
    [Google Scholar]
  135. Liu J. Shen H. Clinical efficacy of chitosan‐based hydrocolloid dressing in the treatment of chronic refractory wounds. Int. Wound J. 2022 19 8 2012 2018 10.1111/iwj.13801 35524492
    [Google Scholar]
  136. Meamar R. Ghasemi-Mobarakeh L. Norouzi M.R. Siavash M. Hamblin M.R. Fesharaki M. Improved wound healing of diabetic foot ulcers using human placenta-derived mesenchymal stem cells in gelatin electrospun nanofibrous scaffolds plus a platelet-rich plasma gel: A randomized clinical trial. Int. Immunopharmacol. 2021 101 Pt B 108282 10.1016/j.intimp.2021.108282 34737130
    [Google Scholar]
  137. Mohammadi S. Nasiri S. Mohammadi M.H. Malek Mohammadi A. Nikbakht M. Zahed Panah M. Safar H. Mostafaei S. Norooznezhad A.H. Soroosh A.R. Alimoghaddam K. Ghavamzadeh A. Evaluation of platelet-rich plasma gel potential in acceleration of wound healing duration in patients underwent pilonidal sinus surgery: A randomized controlled parallel clinical trial. Transfus. Apheresis Sci. 2017 56 2 226 232 10.1016/j.transci.2016.12.032 28119114
    [Google Scholar]
  138. Morimoto N. Kakudo N. Matsui M. Ogura T. Hara T. Suzuki K. Yamamoto M. Tabata Y. Kusumoto K. Exploratory clinical trial of combination wound therapy with a gelatin sheet and platelet-rich plasma in patients with chronic skin ulcers: Study protocol. BMJ Open 2015 5 5 e007733 10.1136/bmjopen‑2015‑007733 25968005
    [Google Scholar]
  139. Stern G.A. Engel H.M. Driebe W.T. Jr The treatment of postoperative endophthalmitis. Results of differing approaches to treatment. Ophthalmology 1989 96 1 62 67 10.1016/S0161‑6420(89)32938‑1 2783996
    [Google Scholar]
  140. Qin W. Wu Y. Liu J. Yuan X. Gao J. A comprehensive review of the application of nanoparticles in diabetic wound healing: Therapeutic potential and future perspectives. Int. J. Nanomedicine 2022 17 6007 6029 10.2147/IJN.S386585 36506345
    [Google Scholar]
  141. Yu R. Zhang H. Guo B. Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-Micro Lett. 2022 14 1 1 10.1007/s40820‑021‑00751‑y 34859323
    [Google Scholar]
  142. Zhu H. Zheng J. Oh X.Y. Chan C.Y. Low B.Q.L. Tor J.Q. Jiang W. Ye E. Loh X.J. Li Z. Nanoarchitecture-integrated hydrogel systems toward therapeutic applications. ACS Nano 2023 17 9 7953 7978 10.1021/acsnano.2c12448 37071059
    [Google Scholar]
  143. Bharkhavy K.V. Pushpalatha C. Anandakrishna L. Silver, the magic bullet in dentistry: A review. Mater. Today Proc. 2020 50 11 10.1016/j.matpr.2021.12.200
    [Google Scholar]
  144. El-Waseif A.A. Abd El-Ghani G.S. Abo El Maaty S.A. Hassan M.G. Cytotoxicity and promising anti-biofilm of curcuma silver nanoparticles against Candida albicans. Res. J. Pharm. Technol. 2022 15 3355 3359 10.52711/0974‑360X.2022.00561
    [Google Scholar]
  145. Riazunnisa K. Antimicrobial activity of biosynthesized silver nanoparticles of Bauhinia racemosa leaf extracts. Res. J. Pharm. Technol. 2023 16 745 749 10.52711/0974‑360X.2023.00127
    [Google Scholar]
  146. Lemons J.E. Biomaterials, dental materials, and device retrieval and analysis. Biomaterials Science CRC Press 2016
    [Google Scholar]
  147. Liu C. Zhu Y. Lun X. Sheng H. Yan A. Effects of wound dressing based on the combination of silver@curcumin nanoparticles and electrospun chitosan nanofibers on wound healing. Bioengineered 2022 13 2 4328 4339 10.1080/21655979.2022.2031415 35137655
    [Google Scholar]
  148. He C. Liu X. Zhou Z. Liu N. Ning X. Miao Y. Long Y. Wu T. Leng X. Harnessing biocompatible nanofibers and silver nanoparticles for wound healing: Sandwich wound dressing versus commercial silver sulfadiazine dressing. Mater. Sci. Eng. 2021 128 112342 10.1016/j.msec.2021.112342
    [Google Scholar]
  149. Nqakala Z.B. Sibuyi N.R.S. Fadaka A.O. Meyer M. Onani M.O. Madiehe A.M. Advances in nanotechnology towards development of silver nanoparticle-based wound-healing agents. Int. J. Mol. Sci. 2021 22 20 11272 10.3390/ijms222011272 34681930
    [Google Scholar]
  150. Aramwit P. Bang N. Ratanavaraporn J. Ekgasit S. Green synthesis of silk sericincapped silver nanoparticles and their potent anti-bacterial activity. Nanoscale Res. Lett. 2014 ••• 9
    [Google Scholar]
  151. Nesovic K. Miskovic-Stankovic V. A comprehensive review of the polymer-based hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications. Polym. Eng. Sci. 2020 60 25410 1419 10.1002/pen.25410
    [Google Scholar]
  152. Boroumand Z. Golmakani N. Boroumand S. Clinical trials on silver nanoparticles for wound healing. Nanomed. J. 2018 ••• 5 [review].
    [Google Scholar]
  153. Sharma R. Sharma K.S. Kumar D. Introduction to nanotechnology. Nanomaterials in Clinical Therapeutics: Synthesis and Applications. Wiley 2022
    [Google Scholar]
  154. Thakkar K.N. Mhatre S.S. Parikh R.Y. Biological synthesis of metallic nanoparticles. Nanomedicine 2010 6 2 257 262 10.1016/j.nano.2009.07.002 19616126
    [Google Scholar]
  155. Stoica A.E. Chircov C. Grumezescu A.M. Nanomaterials for wound dressings: An up-to-date overview. Molecules 2020 25 11 2699 10.3390/molecules25112699 32532089
    [Google Scholar]
  156. Mihai M.M. Preda M. Lungu I. Gestal M.C. Popa M.I. Holban A.M. Nanocoatings for chronic wound repair—modulation of microbial colonization and biofilm formation. Int. J. Mol. Sci. 2018 19 4 1179 10.3390/ijms19041179 29649179
    [Google Scholar]
  157. Naskar A. Kim K. Recent advances in nanomaterial-based wound-healing therapeutics. Pharmaceutics 2020 12 6 499 10.3390/pharmaceutics12060499 32486142
    [Google Scholar]
  158. Ko W.C. Wang S.J. Hsiao C.Y. Hung C.T. Hsu Y.J. Chang D.C. Hung C.F. Pharmacological role of functionalized gold nanoparticles in disease applications. Molecules 2022 27 5 1551 10.3390/molecules27051551 35268651
    [Google Scholar]
  159. Amina S.J. Guo B. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int. J. Nanomed 2020 15 9823 9857 33324054
    [Google Scholar]
  160. Hashem A.H. Shehabeldine A.M. Ali O.M. Salem S.S. Synthesis of chitosanbased gold nanoparticles: antimicrobial and wound-healing activities. Polymers 2022 14 11 2293 10.3390/polym14112293 35683965
    [Google Scholar]
  161. Toczek J. Sadłocha M. Major K. Stojko R. Benefit of silver and gold nanoparticles in wound healing process after endometrial cancer protocol. Biomedicines 2022 10 3 679 10.3390/biomedicines10030679 35327481
    [Google Scholar]
  162. Batool Z. Muhammad G. Iqbal M.M. Aslam M.S. Raza M.A. Sajjad N. Abdullah M. Akhtar N. Syed A. Elgorban A.M. Al-Rejaie S.S. Shafiq Z. Hydrogel assisted synthesis of gold nanoparticles with enhanced microbicidal and in vivo wound healing potential. Sci. Rep. 2022 12 1 6575 10.1038/s41598‑022‑10495‑3 35449438
    [Google Scholar]
  163. Singh H. Du J. Singh P. Yi T.H. Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications. Artif. Cells Nanomed. Biotechnol. 2018 46 6 1163 1170 10.1080/21691401.2017.1362417 28784039
    [Google Scholar]
  164. Lorenzo-Anota H.Y. Zarate-Trivi~no D.G. Uribe-Echeverría J.A.. Chitosan-coated gold nanoparticles induce low cytotoxicity and low ros production in primary leucocytes, independent of their proliferative status. Pharmaceutics 2021 13 7 942
    [Google Scholar]
  165. Shariatinia Z. Biopolymeric nanocomposites in drug delivery Advanced Biopolymeric Systems for Drug Delivery Springer 2020 233 290 10.1007/978‑3‑030‑46923‑8_10
    [Google Scholar]
  166. Yadav P. Singh S.P. Rengan A.K. Shanavas A. Srivastava R. Gold laced bio-macromolecules for theranostic application. Int. J. Biol. Macromol. 2018 110 39 53 10.1016/j.ijbiomac.2017.10.124 29056467
    [Google Scholar]
  167. Fuster M.G. Carissimi G. Lima B. Antibacterial effect of chitosan–gold nanoparticles and computational modeling of the interaction between chitosan and a lipid bilayer model. Nanomaterials 2020 10 12 2340 10.3390/nano10122340.
    [Google Scholar]
  168. Volkova N. Yukhta M. Pavlovich O. Goltsev A. Application of cryopreserved fibroblast culture with Au nanoparticles to treat burns. Nanoscale Res. Lett. 2016 11 1 22 10.1186/s11671‑016‑1242‑y 26762263
    [Google Scholar]
  169. Mahmoodi S. Elmi A. Hallaj Nezhadi S. Copper nanoparticles as antibacterial agents. J. Mol. Pharm. Org. Proc. Res 2018 6 1 10.4172/2329‑9053.1000140
    [Google Scholar]
  170. Raffi M. Mehrwan S. Bhatti T.M. Akhter J.I. Hameed A. Yawar W. ul Hasan M.M. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann. Microbiol. 2010 60 1 75 80 10.1007/s13213‑010‑0015‑6
    [Google Scholar]
  171. Gunalan S. Sivaraj R. Rajendran V. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog. Nat. Sci. 2012 22 6 693 700 10.1016/j.pnsc.2012.11.015
    [Google Scholar]
  172. Sinno H. Prakash S. Complements and the wound healing cascade: An updated review. Plast. Surg. Int. 2013 2013 1 7 10.1155/2013/146764 23984063
    [Google Scholar]
  173. Zhang T. Gao Y. Cui W. Li Y. Xiao D. Zhou R. Nanomaterials-based cell osteogenic differentiation and bone regeneration. Curr. Stem Cell Res. Ther. 2020 ••• 16 32436831
    [Google Scholar]
  174. Pakpahan F.D. Rahmiyani I. Sukmawan Y.P. Wound healing activity of the Clitoria ternatea L. Flower ethanolic extract gel preparation in diabetic animal model. Res. J. Pharm. Technol. 2023 16 140 144 10.52711/0974‑360X.2023.00026
    [Google Scholar]
  175. Spampinato S.F. Caruso G.I. De Pasquale R. Sortino M.A. Merlo S. The treatment of impaired wound healing in diabetes: Looking among old drugs. Pharmaceuticals 2020 13 4 60 10.3390/ph13040060 32244718
    [Google Scholar]
  176. a Amirsadeghi A. Jafari A. Eggermont L.J. Hashemi S.S. Bencherif S.A. Khorram M. Vascularization strategies for skin tissue engineering. Biomaterials Science 2020 8 15 4073 4094 10.1039/D0BM01161D
    [Google Scholar]
  177. b Amirsadeghi Armin, Jafari Arman, Eggermont Loek J, Hashemi Seyedeh-Sara, Bencherif Sidi A, Khorram Mohammad. Vascularization strategies for skin tissue engineering. Biomater. Sci. 2020 8 4073 4094 10.1039/D0BM00266F
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775360418250406180636
Loading
/content/journals/cdrr/10.2174/0125899775360418250406180636
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: angiogenesis ; Diabetes ; diabetic wound ; cytokines ; haemostasis ; hyperglycaemia ; inflammation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test