Skip to content
2000
image of Microwave-assisted Green Extraction of Flavonoids: An Approach for the Development of Antiepileptic Agents

Abstract

Herbal medicine has been used since ancient times for the treatment of various diseases and the improvement of human health. In research, the extraction process serves as a critical initial step for isolating and purifying key bioactive components from crude plant extracts. Despite its importance, the extraction stage often receives less attention and remains underexplored. In India, traditional techniques, such as maceration, Soxhlet extraction, steam distillation, and cold pressing, are still widely used for processing medicinal plants. However, these conventional methods suffer from limitations, including low selectivity, reduced yields, prolonged processing times, and significant environmental and safety concerns due to the extensive use of organic solvents. To address these challenges, innovative extraction techniques have emerged in recent years, offering greater efficiency, selectivity, and environmental sustainability. Notable advancements include Microwave-Assisted Extraction (MAE), Supercritical Fluid Extraction (SCFE), Accelerated Solvent Extraction (ASE), Subcritical Water Extraction (SWE), and Ultrasound-Assisted Extraction (USE). Among these, MAE has garnered significant attention for its potential to optimize extraction efficiency while minimizing resource consumption. This review provides a comprehensive comparison of different extraction methods, with a particular focus on the benefits of MAE. Furthermore, it explores the application of MAE-extracted flavonoids in the treatment of epilepsy, leveraging their proven ability to eliminate free radicals effectively. It also aims to highlight the advantages of adopting MAE in therapeutic contexts, offering novel insights into its role in enhancing the efficacy of flavonoid-based interventions. This work underscores the critical need for advancing extraction technologies to meet modern safety, environmental, and therapeutic demands.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775347899250303041223
2025-04-21
2025-10-19
Loading full text...

Full text loading...

References

  1. Kumar N. Wani Z.A. Dhyani S. Ethnobotanical study of the plants used by the local people of Gulmarg and its allied areas, Jammu & Kashmir, India. Int. J. Curr. Res. Biosci. Plant Biol. 2015 2 9 16 23
    [Google Scholar]
  2. Akerele O. Summary of WHO guidelines for the assessment of herbal Medicine. HerbalGram 1993 28 13 16
    [Google Scholar]
  3. Farnsworth N.R. Akerele O. Bingel A.S. Soejarto D.D. Guo Z. Medicinal plants in therapy. Bull. World Health Organ. 1985 63 6 965 981 3879679
    [Google Scholar]
  4. Robinson M.M. Zhang X. The World Medicines Situation, Traditional Medicines: Global Situation, Issues, and Challenges. 3rd ed Geneva World Health Organization 2011
    [Google Scholar]
  5. Maurya R. Singh G. Yadav P.P. Anti osteoporotic agents from Natural sources. Studies in Natural Products Chemistry Elsevier 2008 35 517 545
    [Google Scholar]
  6. Chopra A. Doiphode V.V. Ayurvedic medicine. Core concept, therapeutic principles, and current relevance. Med. Clin. North Am. 2002 86 1 75 89 10.1016/S0025‑7125(03)00073‑7 11795092
    [Google Scholar]
  7. Gupta A. Naraniwal M. Kothari V. Modern extraction methods for the preparation of bioactive extracts. Int. J. Appl. Nat. Sci. 2012 1 1 8 16
    [Google Scholar]
  8. Truong D.H. Nguyen D.H. Anta T. Bui A. Do T.H. Nguyen H.C. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J. Food Qual. 2019 9 10.1155/2019/8178294
    [Google Scholar]
  9. Kothari V. Punjabi A. Gupta S. Optimization of microwave-assisted extraction of Annona squamosa seeds. The Icfai. J. Life Sci. 2009 3 55 60
    [Google Scholar]
  10. Kothari V. Pathan S. Seshadri S. Antioxidant activity of M. zapota and C. lemon seeds. J. Nat. Rem. 2010 10 2 175 180
    [Google Scholar]
  11. Kothari V. Seshadri S. Antioxidant activity of seed extract of Annona squamosa and Carica papaya. Nutr. Food Sci. 2010 40 403 408 10.1108/00346651011062050
    [Google Scholar]
  12. Kothari V. Seshadri S. In vitro antibacterial activity in seed extracts of Manilkara zapota, Anona squamosa, and Tamarindus indica. Biol. Res. 2010 43 2 165 168 10.4067/S0716‑97602010000200003 21031260
    [Google Scholar]
  13. Selvamuthukumaran M. John S. Recent advances in extraction of antioxidants from plant by-products processing industries. Food Qual. Saf. 2017 1 61 81 10.1093/fqs/fyx004
    [Google Scholar]
  14. Azwanida N.N. A review on the extraction methods uses in medicinal plants, principle, strength, and limitation. Med. Aromat. Plants 2015 4 196 1 6
    [Google Scholar]
  15. Zhang Q.W. Lin L.G. Ye W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018 13 20 20 10.1186/s13020‑018‑0177‑x 29692864
    [Google Scholar]
  16. Abubakar A.R. Haque M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J. Pharm. Bioallied Sci. 2020 12 1 1 10 10.4103/jpbs.JPBS_175_19 32801594
    [Google Scholar]
  17. Li P. Xu G. Li S.P. Wang Y.T. Fan T.P. Zhao Q.S. Zhang Q.W. Optimizing ultraperformance liquid chromatographic analysis of 10 diterpenoid compounds in Salvia miltiorrhiza using central composite design. J. Agric. Food Chem. 2008 56 4 1164 1171 10.1021/jf073020u 18198831
    [Google Scholar]
  18. Li P. Yin Z.Q. Li S.L. Huang X.J. Ye W.C. Zhang Q.W. Simultaneous determination of eight flavonoids and pogostone in Pogostemon cablin by high-performance liquid chromatography. J. Liq. Chromatogr. Relat. Technol. 2014 37 12 1771 1784 10.1080/10826076.2013.809545
    [Google Scholar]
  19. Yi Y. Zhang Q.W. Li S.L. Wang Y. Ye W.C. Zhao J. Wang Y.T. Simultaneous quantification of major flavonoids in “Bawanghua”, the edible flower of Hylocereus undatus using pressurised liquid extraction and high performance liquid chromatography. Food Chem. 2012 135 2 528 533 10.1016/j.foodchem.2012.05.010 22868124
    [Google Scholar]
  20. Zhou Y.Q. Zhang Q.W. Li S.L. Yin Z.Q. Zhang X.Q. Ye W.C. Quality evaluation of semen proxy through simultaneous quantification of 13 components by high-performance liquid chromatography. Curr. Pharm. Anal. 2012 8 2 206 213 10.2174/1573412911208020206
    [Google Scholar]
  21. Du G. Zhao H. Song Y. Zhang Q. Wang Y. Rapid simultaneous determination of isoflavones in Radix puerariae using high-performance liquid chromatography-triple quadrupole mass spectrometry with novel shell-type column. J. Sep. Sci. 2011 34 19 2576 2585 10.1002/jssc.201100295 21898802
    [Google Scholar]
  22. Majekodunmi S.O. Review of extraction of medicinal plants for pharmaceutical research. Merit Res J Med Med Sci 2015 3 11 521 527
    [Google Scholar]
  23. Hossain M.A. Al-Hdhrami S.S. Weli A.M. Al-Riyami Q. Al-Sabahi J.N. Isolation, fractionation and identification of chemical constituents from the leaves crude extracts of Mentha piperita L grown in Sultanate of Oman. Asian Pac. J. Trop. Biomed. 2014 4 Suppl. 1 S368 S372 10.12980/APJTB.4.2014C1051 25183113
    [Google Scholar]
  24. Harborne J.B. Phytochemical methods: A guide to modern techniques of plant analysis. 3rd ed New York, NY; London, UK Thomson Science 1998 21 29
    [Google Scholar]
  25. Hesham H.A. Rassem Abdurahman H. Techniques for extraction of essential oils from plants: A review. Aust. J. Basic Appl. Sci. 2016 10 16 117 127
    [Google Scholar]
  26. Rai R. Suresh B. In-vitro antioxidant properties of Indian traditional paan and its ingredients. Indian J. Tradit. Knowl. 2004 3 2 187 191
    [Google Scholar]
  27. Zarith A. Akil A. Siti H.M.S. Alptug K. Muhammad M.A. David L.M.R. Magda G. Mohammad A. Ghulam M.A. Essential oils: Extraction techniques, pharmaceutical and therapeutic potential – A review. Curr. Drug Metab. 2018 19
    [Google Scholar]
  28. Take P. Jaiswal Y. An overview of microwave-assisted extraction and its application in herbal drug research. Res. J. Med. Plant 2011 5 1 21 31 10.3923/rjmp.2011.21.31
    [Google Scholar]
  29. Bichi C. Beliarab F.F. Rubiolo P. Extraction of alkaloids from species of Seneio. Lab. 1992 2001 6 36 38
    [Google Scholar]
  30. Khaled A.S. Nahla S. Abdel A. Ibrahim A.S. Mohamed-Elamir F. Hegazy M.M. Green technology: Economically and environmentally innovative methods for extraction of medicinal & aromatic plants (MAP) in Egypt. J. Chem. Pharm. Res. 2015 7 5 1050 1074
    [Google Scholar]
  31. Goldman R. Ultrasonic technology. new York Van nostrand reinhold 1962
    [Google Scholar]
  32. Gordy W.W.V.S. Trambarulo R.F. Microwave spectroscopy. Newyork Wiley 1953
    [Google Scholar]
  33. Jassie L.R. Kierstead R.T. Hasty E. Microwave- enhanced chemistry. Fundamentals, sample preparation, and applications American Chemical Society Washington, DC 1997 569
    [Google Scholar]
  34. Ingle K.P. Deshmukh A. Padole D.A. Dudhare M.S. Moharil M.P. Khelurkar V.C. Phytochemicals: Extraction methods, identification, and detection of bioactive compounds from plant extracts. J. Pharmacogn. Phytochem. 2017 6 32 36
    [Google Scholar]
  35. Doughari J.H. Phytochemicals: Extraction methods, basic structures, and mode of action as potential chemotherapeutic agents, phytochemicals––a global perspective of their role in nutrition and health. A Global Perspective of Their Role in Nutrition and Health. Venketeshwer R. InTech 2012
    [Google Scholar]
  36. Altemimi A. Lakhssassi N. Baharlouei A. Watson D.G. Lightfoot D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017 6 4 42 10.3390/plants6040042 28937585
    [Google Scholar]
  37. Bhan M. Ionic liquids as green solvents in herbal extraction. Int J Adv Res Dev 2017 2 10
    [Google Scholar]
  38. Alupului A. Calinescu I. Lavric V. Microwave extraction of active principles from medicinal plants. UPB Science Bulletin Series B 2012 74 2 129 142
    [Google Scholar]
  39. Pastot E. Vazquez R. Ciscar M. De la G. Anal. Chim. Acta 1997 344 241 249
    [Google Scholar]
  40. Luque-García J.L. Luque de Castro M.D. Focused microwave-assisted Soxhlet extraction: Devices and applications. Talanta 2004 64 3 571 577 10.1016/j.talanta.2004.03.054 18969643
    [Google Scholar]
  41. Luque-Garcia J.L. Luque de Castro M.D. Where is the microwave-based analytical treatment for solid sample pre-treatment going? Trends Analyt. Chem. 2003 22 2 90 99 10.1016/S0165‑9936(03)00202‑4
    [Google Scholar]
  42. Vivekananda M. Yogesh M. Hemalatha S. Review article microwave assisted extraction-an innovative and promising extraction tool for medicinal plant research. Pharmacogn. Rev. 2007 1 1
    [Google Scholar]
  43. Kristenson E.M. Recent advances in matrix solid-phase dispersion. Trends Analyt. Chem. 2006 25 96 111 10.1016/j.trac.2005.05.011
    [Google Scholar]
  44. Chemat F. Fabiano-Tixier A.S. Vian M.A. Allaf T. Vorobiev E. Solvent-free extraction of food and natural products. TrAC. Trends Analyt. Chem. 2015 71 157 168 10.1016/j.trac.2015.02.021
    [Google Scholar]
  45. Chemat F. Rombaut N. Meullemiestre A. Turk M. Perino S. Fabiano-Tixier A-S. Abert-Vian M. Review of green food processing techniques. Preservation transformation, and extraction. Innov. Food Sci. Emerg. Technol. 2017 41 357 377 10.1016/j.ifset.2017.04.016
    [Google Scholar]
  46. Veggi P.C. Martinez J. Meireles M.A.A. Fundamentals of microwave extraction. Microwave-Assisted Extraction for Bioactive Compounds: Theory and Practice. Chemat F. Cravotto G. Boston, MA Springer US 2013
    [Google Scholar]
  47. Luque de Castro M.D. Garcia-Ayuso L.E. Soxhlet extraction of solid materials: An outdated technique with a promising innovative future. Anal. Chim. Acta 1998 369 1 10 10.1016/S0003‑2670(98)00233‑5
    [Google Scholar]
  48. Letellier M. Budzinski H. Charrier L. Capes S. Dorthe A.M. Optimization by factorial design of focused microwave-assisted extraction of polycyclic aromatic hydrocarbons from marine sediment. J. Anal. Chem. 1999 364 228 237
    [Google Scholar]
  49. Sanghi R. Kannamkumarath S.S. Comparison of extraction methods by soxhlet, sonicator, and microwave in the screening of pesticide residues from solid matrices J. Anal. Chem. 2004 59 1032 1036 10.1023/B:JANC.0000047004.71892.0e
    [Google Scholar]
  50. Zuloaga O. Etxebarria N. Fernández L.A. Madariaga J.M. Optimisation and comparison of microwave-assisted extraction and Soxhlet extraction for the determination of polychlorinated biphenyls in soil samples using an experimental design approach. Talanta 1999 50 2 345 357 10.1016/S0039‑9140(99)00028‑4 18967725
    [Google Scholar]
  51. Sticher O. Natural product isolation. Nat. Prod. Rep. 2008 25 3 517 554 10.1039/b700306b 18497897
    [Google Scholar]
  52. Abedi A.S. Rismanchi M. Shahdoostkhany M. Mohammadi A. Mortazavian A.M. Microwave-assisted extraction of Nigella sativa L. essential oil and evaluation of its antioxidant activity. J. Food Sci. Technol. 2017 54 12 3779 3790 10.1007/s13197‑017‑2718‑1 29085120
    [Google Scholar]
  53. Ma C.H. Yang L. Zu Y.G. Liu T.T. Optimization of conditions of solvent-free microwave extraction and study on antioxidant capacity of essential oil from Schisandra chinensis (Turcz.) Baill. Food Chem. 2012 134 4 2532 2539 10.1016/j.foodchem.2012.04.080 23442721
    [Google Scholar]
  54. Lucchesi M.E. Smadja J. Bradshaw S. Louw W. Chemat F. Solvent-free microwave extraction of Elletaria cardamomum L.: A multivariate study of a new technique for the extraction of essential oil. J. Food Eng. 2007 79 3 1079 1086 10.1016/j.jfoodeng.2006.03.029
    [Google Scholar]
  55. Qi X.L. Li T.T. Wei Z.F. Guo N. Luo M. Wang W. Zu Y.G. Fu Y.J. Peng X. Solvent-free microwave extraction of essential oil from pigeon pea leaves Cajanus cajan (L.) Millsp and evaluation of its antimicrobial activity. Ind. Crops Prod. 2014 58 322 328 10.1016/j.indcrop.2014.04.038
    [Google Scholar]
  56. Mustapa A.N. Martin Á. Mato R.B. Cocero M.J. Extraction of phytocompounds from the medicinal plant Clinacanthus Nutans by microwave-assisted extraction and supercritical carbon dioxide extraction. Ind. Crops Prod. 2015 74 83 94 10.1016/j.indcrop.2015.04.035
    [Google Scholar]
  57. Huie C.W. A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal. Bioanal. Chem. 2002 373 1-2 23 30 10.1007/s00216‑002‑1265‑3 12012169
    [Google Scholar]
  58. Đukić D. Mašković P. Vesković Moračanin S. Kurćubić V. Milijašević M. Babić J. Conventional and unconventional extraction methods applied to the plant, Thymus serpyllum L. IOP Conf. Ser. Earth Environ. Sci. 2017 85
    [Google Scholar]
  59. Javad S. Mubarak M. Aftab A. Tariq A. Microwave assisted extraction of phenolics J. Bioresource Manage 2016 3 2 27 32
    [Google Scholar]
  60. Hu Q. He Y. Wang F. Wu J. Ci Z. Chen L. Xu R. Yang M. Lin J. Han L. Zhang D. Microwave technology: A novel approach to the transformation of natural metabolites. Chin. Med. 2021 16 1 87 10.1186/s13020‑021‑00500‑8 34530887
    [Google Scholar]
  61. Benmoussa H. Farhat A. Romdhane M. Bouajila J. Enhanced solvent-free microwave extraction of Foeniculum vulgare Mill. essential oil seeds using double double-walled reactor. Arab. J. Chem. 2019 12 8 3863 3870 10.1016/j.arabjc.2016.02.010
    [Google Scholar]
  62. López-Salazar H. Camacho-Díaz B.H. Ocampo M.L.A. Jiménez-Aparicio A.R. Microwave-assisted extraction of functional compounds from plants: A Review. BioResources 2023 18 3 10.15376/biores.18.3.Lopez‑Salazar
    [Google Scholar]
  63. Joanna S.R. Mirosław Z. Aleksandra S. Marta A.M. Selected flavonoids and their role in the treatment of epilepsy – A review of the latest reports from experimental studies. Acta Neurobiol. Exp. 2021 81
    [Google Scholar]
  64. Panche A.N. Diwan A.D. Chandra S.R. Flavonoids: An overview. J. Nutr. Sci. 2016 5 47 e47 10.1017/jns.2016.41 28620474
    [Google Scholar]
  65. Tâmara C.D. Juliane C.S. Sarah R.G.L.S. Fernanda P.R.A.R. Alessandra G.P. Rivelilson M.F. Lucindo J.Q. Jullyana S.S.Q. Rosemairy L.M. Jackson R.G.S.A. The Role of Flavonoids on Oxidative Stress in Epilepsy. Hindawi Publishing Corporation Oxidative Medicine and Cellular Longevity 2015 1 9
    [Google Scholar]
  66. Singh P. Singh D. Goel R.K. Phytoflavonoids: Antiepileptics for the future. Int. J. Pharm. Pharm. Sci. 2014 6 8 51 66
    [Google Scholar]
  67. Mao X. Cao Y. Li X. Yin J. Wang Z. Zhang Y. Mao C. Fan K. Zhou H. Cai J. Liu Z. Baicalein ameliorates cognitive deficits in epilepsy-like tremor rat. Neurol. Sci. 2014 35 8 1261 1268 10.1007/s10072‑014‑1695‑7 24590842
    [Google Scholar]
  68. Yang J. Jia Z. Xiao Z. Zhao J. Lu Y. Chu L. Shao H. Pei L. Zhang S. Chen Y. Baicalin rescues cognitive dysfunction, mitigates neurodegeneration, and exerts anti-epileptic effects through activating TLR4/MYD88/Caspase-3 pathway in rats. Drug Des. Devel. Ther. 2021 15 3163 3180 10.2147/DDDT.S314076 34321866
    [Google Scholar]
  69. Fu P. Yuan Q. Sun Y. Wu X. Du Z. Li Z. Yu J. Lv K. Hu J. Baicalein ameliorates epilepsy symptoms in a pilocarpine-induced rat model by regulation of IGF1R. Neurochem. Res. 2020 45 12 3021 3033 10.1007/s11064‑020‑03150‑8 33095440
    [Google Scholar]
  70. Lin T.Y. Lu C.W. Wang S.J. Huang S.K. Protective effect of hispidulin on kainic acid-induced seizures and neurotoxicity in rats. Eur. J. Pharmacol. 2015 755 6 15 10.1016/j.ejphar.2015.02.041 25746462
    [Google Scholar]
  71. Birman H. Dar K.A. Kapucu A. Acar S. Üzüm G. Effects of luteolin on liver, kidney and brain in pentylentetrazol-induced seizures: Involvement of metalloproteinases and NOS activities. Balkan. Med. J. 2012 188 196
    [Google Scholar]
  72. Luo W.D. Min J.W. Huang W.X. Wang X. Peng Y.Y. Han S. Yin J. Liu W.H. He X.H. Peng B.W. Vitexin reduces epilepsy after hypoxic ischemia in the neonatal brain via inhibition of NKCC1. J. Neuroinflammation 2018 15 1 186 10.1186/s12974‑018‑1221‑6 29925377
    [Google Scholar]
  73. Gilani A-H. Rehman N.U. Khan A. Alkharfy K.M. Studies on bronchodilator activity of Salvia officinalis (Sage): Possible involvement of K+ channel activation and phosphodiesterase inhibition. Phytother. Res. 2015 29 9 1323 1329 10.1002/ptr.5384 26032019
    [Google Scholar]
  74. Guo X. Wang J. Wang N. Mishra A. Li H. Liu H. Fan Y. Liu N. Wu Z. Wogonin preventive impact on hippocampal neurodegeneration, inflammation and cognitive defects in temporal lobe epilepsy. Saudi J. Biol. Sci. 2020 27 8 2149 2156 10.1016/j.sjbs.2020.05.030 32742183
    [Google Scholar]
  75. Qi H. Liu L. Rhoifolin attenuates damage to hippocampal neuronal culture model of acquired epilepsy in vitro by regulating NF-KB/INOS/COX-2 Axis. Qual. Assur. Saf. Crops Foods 2022 14 116 123 10.15586/qas.v14i3.1093
    [Google Scholar]
  76. Rong S. Wan D. Fan Y. Liu S. Sun K. Huo J. Zhang P. Li X. Xie X. Wang F. Sun T. Amentoflavone affects epileptogenesis and exerts neuroprotective effects by inhibiting NLRP3 inflammasome. Front. Pharmacol. 2019 10 856 10.3389/fphar.2019.00856 31417409
    [Google Scholar]
  77. Zhang Z. Sun T. Niu J.G. He Z.Q. Liu Y. Wang F. Amentoflavone protects hippocampal neurons: Anti-inflammatory, antioxidative, and antiapoptotic effects. Neural Regen. Res. 2015 10 7 1125 1133 10.4103/1673‑5374.160109 26330838
    [Google Scholar]
  78. Calderon S.N. Klein M. A regulatory perspective on the abuse potential evaluation of novel stimulant drugs in the United States. Neuropharmacology 2014 87 97 103 10.1016/j.neuropharm.2014.04.001 24727212
    [Google Scholar]
  79. Wu Y. Wei H. Li P. Zhao H. Li R. Yang F. Quercetin administration following hypoxia-induced neonatal brain damage attenuates later-life seizure susceptibility and anxiety-related behavior: Modulating inflammatory response. Front Pediatr. 2022 10 791815 10.3389/fped.2022.791815 35223693
    [Google Scholar]
  80. Chang A. Chang Y. Wang S.J. Rutin prevents seizures in kainic acid-treated rats: Evidence of glutamate levels, inflammation and neuronal loss modulation. Food Funct. 2022 13 20 10401 10414 10.1039/D2FO01490D 36148811
    [Google Scholar]
  81. Khatoon S. Agarwal N.B. Samim M. Alam O. Neuroprotective effect of fisetin through suppression of IL-1R/TLR axis and apoptosis in pentylenetetrazole-induced kindling in mice. Front. Neurol. 2021 12 689069 10.3389/fneur.2021.689069 34354662
    [Google Scholar]
  82. Abd El-Aal S.A. El-Abhar H.S. Abulfadl Y.S. Morin offsets PTZ-induced neuronal degeneration and cognitive decrements in rats: The modulation of TNF-α/TNFR-1/RIPK1,3/MLKL/PGAM5/Drp-1, IL-6/JAK2/STAT3/GFAP and Keap-1/Nrf-2/HO-1 trajectories. Eur. J. Pharmacol. 2022 931 175213 10.1016/j.ejphar.2022.175213 35981604
    [Google Scholar]
  83. Du Y. Liang H. Zhang L. Fu F. Administration of Huperzine A exerts antidepressant-like activity in a rat model of post-stroke depression. Pharmacol. Biochem. Behav. 2017 158 32 38 10.1016/j.pbb.2017.06.002 28583576
    [Google Scholar]
  84. Suleiman M.H.A. An ethnobotanical survey of medicinal plants used by communities of Northern Kordofan region, Sudan. J. Ethnopharmacol. 2015 176 232 242 10.1016/j.jep.2015.10.039 26519203
    [Google Scholar]
  85. Krakowska-Sieprawska A. Kiełbasa A. Rafińska K. Ligor M. Buszewski B. Modern methods of pre-treatment of plant material for the extraction of bioactive compounds. Molecules 2022 27 3 730 10.3390/molecules27030730 35163995
    [Google Scholar]
  86. Lagae L. Arzimanoglou A. In response: Vagus nerve stimulation for epilepsy treatment in children. Epilepsia 2015 56 2 324 325 10.1111/epi.12901 25708480
    [Google Scholar]
  87. Park J. Jeong K.H. Shin W-H. Bae Y-S. Jung U.J. Kim S.R. Naringenin ameliorates kainic acid-induced morphological alterations in the dentate gyrus in a mouse model of temporal lobe epilepsy. Neuroreport 2016 27 15 1182 1189 10.1097/WNR.0000000000000678 27584687
    [Google Scholar]
  88. Huen M.S.Y. Leung J.W.C. Ng W. Lui W.S. Chan M.N.S. Wong J.T.F. Xue H. 5,7-Dihydroxy-6-methoxyflavone, a benzodiazepine site ligand isolated from Scutellaria baicalensis Georgi, with selective antagonistic properties. Biochem. Pharmacol. 2003 66 1 125 132 10.1016/S0006‑2952(03)00233‑8 12818372
    [Google Scholar]
  89. Park H.G. Yoon S.Y. Choi J.Y. Lee G.S. Choi J.H. Shin C.Y. Son K.H. Lee Y.S. Kim W.K. Ryu J.H. Ko K.H. Cheong J.H. Anticonvulsant effect of wogonin isolated from Scutellaria baicalensis. Eur. J. Pharmacol. 2007 574 2-3 112 119 10.1016/j.ejphar.2007.07.011 17692312
    [Google Scholar]
  90. Jäger A.K. Krydsfeldt K. Rasmussen H.B. Bioassay-guided isolation of apigenin with GABA-benzodiazepine activity from Tanacetum parthenium. Phytother. Res. 2009 23 11 1642 1644 10.1002/ptr.2816 19441011
    [Google Scholar]
  91. Abbasi E. Nassiri-Asl M. Shafeei M. Sheikhi M. Neuroprotective effects of vitexin, a flavonoid, on pentylenetetrazole-induced seizure in rats. Chem. Biol. Drug Des. 2012 80 2 274 278 10.1111/j.1747‑0285.2012.01400.x 22554436
    [Google Scholar]
  92. Dimpfel W. Different anticonvulsive effects of hesperidin and its aglycone hesperetin on electrical activity in the rat hippocampus in-vitro. J. Pharm. Pharmacol. 2006 58 3 375 379 10.1211/jpp.58.3.0012 16536905
    [Google Scholar]
  93. Lin T.Y. Lu C.W. Wang C.C. Lu J.F. Wang S.J. Hispidulin inhibits the release of glutamate in rat cerebrocortical nerve terminals. Toxicol. Appl. Pharmacol. 2012 263 2 233 243 10.1016/j.taap.2012.06.015 22759588
    [Google Scholar]
  94. Nugroho A. Lim S.C. Choi J. Park H.J. Identification and quantification of the sedative and anticonvulsant flavone glycoside from Chrysanthemum boreale. Arch. Pharm. Res. 2013 36 1 51 60 10.1007/s12272‑013‑0015‑8 23325489
    [Google Scholar]
  95. Svenningsen A.B. Madsen K.D. Liljefors T. Stafford G.I. van Staden J. Jäger A.K. Biflavones from Rhus species with affinity for the GABA(A)/benzodiazepine receptor. J. Ethnopharmacol. 2006 103 2 276 280 10.1016/j.jep.2005.08.012 16168585
    [Google Scholar]
  96. Du X.M. Sun N.Y. Takizawa N. Guo Y.T. Shoyama Y. Sedative and anticonvulsant activities of goodyerin, a flavonol glycoside from Goodyera schlechtendaliana. Phytother. Res. 2002 16 3 261 263 10.1002/ptr.862 12164273
    [Google Scholar]
  97. Ren L. Wang F. Xu Z. Chan W.M. Zhao C. Xue H. GABA(A) receptor subtype selectivity underlying anxiolytic effect of 6-hydroxyflavone. Biochem. Pharmacol. 2010 79 9 1337 1344 10.1016/j.bcp.2009.12.024 20067772
    [Google Scholar]
  98. Maurya S.K. Raj K. Srivastava A.K. Antidyslipidaemic activity of Glycyrrhiza glabra in high fructose diet induced dsyslipidaemic Syrian golden hamsters. Indian J. Clin. Biochem. 2009 24 4 404 409 10.1007/s12291‑009‑0072‑4 23105868
    [Google Scholar]
  99. Manigauha A. Patel S. Anticonvulsant study of Pongamia pinnata Linn against PTZ induced convulsion in rats. Int J Pharm Bio Sci. 2010 1 4 1 4
    [Google Scholar]
  100. Ali A. Rao N.V. Shalam M.D. Gouda T.S. Shantakumar S.M. Anticonvulsive effect of seed extract of Caesalpinia bonducella (Roxb.). Iran J Pharmacol Therp 2009 8 51 55
    [Google Scholar]
  101. Okoli C.O. Ezike A.C. Agwagah O.C. Akah P.A. Anticonvulsant and anxiolytic evaluation of leaf extracts of Ocimum gratissimum, a culinary herb. Pharmacognosy Res. 2010 2 1 36 40 10.4103/0974‑8490.60580 21808537
    [Google Scholar]
  102. Jayaraman R. Anitha T. Joshi V.D. Analgesic and anticonvulsant effects of Acorus calamus roots in mice. Int. J. Pharm. Tech. Res. 2010 2 552 555
    [Google Scholar]
  103. Mahmoodi M. Zohoor A. Asadi M. Anticonvulsant effect of sour orange flowers extract in experimental pentylenetetrazol-induced seizures in the rat. J Arch Iranian Med 2003 6 212 213
    [Google Scholar]
  104. Rasilingam D. Duraisamy S. Subramanian R. Anticonvulsant activity of bioflavonoid gossiping. Bangladesh J. Pharmacol. 2009 4 1 51 54
    [Google Scholar]
  105. Nassiri-Asl M. Shariati-Rad S. Zamansoltani F. Anticonvulsive effects of intracerebroventricular administration of rutin in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008 32 4 989 993 10.1016/j.pnpbp.2008.01.011 18262708
    [Google Scholar]
  106. Harborne T.B. Mabry T.J. Mabry H. The Flavonoids: Advances in research. 5th ed London Chapman and Hall 1982 10.1007/978‑1‑4899‑2915‑0
    [Google Scholar]
  107. Ding L. Li Y. Li M. Liu Z. Zhang H. A novel microwave-assisted extraction method for extracting flavonoids from Radix et caulis acanthopanacis Pentecost. Chem. J. Chin. Univ. 2003 24 8 1403 1405
    [Google Scholar]
  108. Jurinjak Tušek A. Šamec D. Šalić A. Modern techniques for flavonoid extraction—to optimize or not to optimize? Appl. Sci. 2022 12 22 11865 10.3390/app122211865
    [Google Scholar]
  109. Tsukayama M. Sasaki T. Yamamoto K. Kawamura Y. Ichikawa R. Microwave-assisted extraction and methylation of useful flavones from waste peels of Citrus sudachi. Nippon Shokuhin Kagaku Kogaku Kaishi. J Japanese Society for Food Sci Tech 2010 57 10 427 433 10.3136/nskkk.57.427
    [Google Scholar]
  110. Abbas M. Ahmed D. Qamar M.T. Ihsan S. Noor Z.I. Optimization of ultrasound-assisted, microwave-assisted and soxhlet extraction of bioactive compounds from Lagenaria siceraria: A comparative analysis. Bioresour. Technol. Rep. 2021 15 10.1016/j.biteb.2021.100746
    [Google Scholar]
  111. Ling Y.Y. Fun P.S. Yeop A. Yusoff M.M. Gimbun J. Assessment of maceration, ultrasonic and microwave assisted extraction for total phenolic content, total flavonoid content and kaempferol yield from cassia alata via microstructures analysis. Mater. Today Proc. 2019 19 1273 1279 10.1016/j.matpr.2019.11.133
    [Google Scholar]
  112. Pinela J. Prieto M.A. Carvalho A.M. Barreiro M.F. Oliveira M.B.P.P. Barros L. Ferreira I.C.F.R. Microwave-assisted extraction of phenolic acids and flavonoids and production of antioxidant ingredients from tomato: A nutraceutical-oriented optimization study. Separ. Purif. Tech. 2016 164 114 124 10.1016/j.seppur.2016.03.030
    [Google Scholar]
  113. Terigar B.G. Balasubramanian S. Boldor D. Xu Z. Lima M. Sabliov C.M. Continuous microwave-assisted isoflavone extraction system: Design and performance evaluation. Bioresour. Technol. 2010 101 7 2466 2471 10.1016/j.biortech.2009.11.039 20018507
    [Google Scholar]
  114. Charalampos P Michael K Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT Food Sci. Technol. 2008 41 4 652 659
    [Google Scholar]
  115. Chaves J.O. de Souza M.C. da Silva L.C. Lachos-Perez D. Torres-Mayanga P.C. Machado A.P. da F. Forster-Carneiro T. Vázquez-Espinosa M. González-de-Peredo A.V. Barbero G.F. Rostagno M.A. Extraction of flavonoids from natural sources using modern techniques. Front Chem. 2015 8 33102442
    [Google Scholar]
  116. Cannavacciuolo C. Pagliari S. Celano R. Campone L. Rastrelli L. Critical analysis of green extraction techniques used for botanicals: Trends, priorities, and optimization strategies-A review. Trends Analyt. Chem. 2024 173 117627 10.1016/j.trac.2024.117627
    [Google Scholar]
  117. Martins R. Barbosa A. Advinha B. Sales H. Pontes R. Nunes J. Green extraction techniques of bioactive compounds: A state-of-the-art review. Processes 2023 11 8 2255 10.3390/pr11082255
    [Google Scholar]
  118. Wang N. Zhu H. Wang M. Zhao S. Sun G. Li Z. Recent advancements in microwave-assisted extraction of flavonoids: A review. Food Bioprocess Technol. 2024 1 18 10.1007/s11947‑024‑03574‑y
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775347899250303041223
Loading
/content/journals/cdrr/10.2174/0125899775347899250303041223
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: flavonoids ; green ; soxhlet ; extraction ; Epilepsy ; microwave
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test