Skip to content
2000
Volume 17, Issue 2
  • ISSN: 2589-9775
  • E-ISSN: 2589-9783

Abstract

The global health of individuals is severely threatened by drug-resistant microorganisms. Existing antibiotics available in the market, such as penicillin, cephalosporins, new β-lactams, aminoglycosides, macrolides, lincomycin, and quinolones, are losing their effectiveness due to overuse and inappropriate prescribing, among other factors. This situation underscores the urgent need to develop new antimicrobial agents. In response to this challenge, attention has been directed towards natural products derived from plants, which have been utilized for their medicinal benefits over an extended period. Various studies have demonstrated that plant-based natural products exhibit antibacterial action against multidrug-resistant (MDR) bacteria, making them potential candidates for the development of novel antimicrobial medicines. Plants belonging to classes, such as alkaloids, organosulfur compounds, terpenoids, coumarin, and polyphenols have been found to possess antimicrobial properties. This paper reviews the antimicrobial activity of plant-based natural products, whether used alone or in combination with conventional antibiotics. Additionally, the paper explores their mechanisms against drug-resistant bacteria, the potential development of resistance against them, their current role in medicine, and their future perspectives.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775267934240308065823
2024-03-18
2025-09-29
Loading full text...

Full text loading...

References

  1. PrestinaciF. PezzottiP. PantostiA. Antimicrobial resistance: A global multifaceted phenomenon.Pathog. Glob. Health2015109730931810.1179/2047773215Y.000000003026343252
    [Google Scholar]
  2. GouldI.M. BalA.M. New antibiotic agents in the pipeline and how they can help overcome microbial resistance.Virulence20134218519110.4161/viru.2250723302792
    [Google Scholar]
  3. MichaelC.A. HowesD.D. LabbateM. The antimicrobial resistance crisis: Causes, consequences, and management.Front. Public Health2014214510.3389/fpubh.2014.0014525279369
    [Google Scholar]
  4. BacteriaA. Antimicrobial resistant bacteria.Available from: https://www.betterhealth.vic.gov.au/health/conditionsandtreatments/antibiotic-resistant-bacteria 2020
    [Google Scholar]
  5. BasakS. SinghP. RajurkarM. Multidrug resistant and extensively drug resistant bacteria: A study.J. Pathogens201620161510.1155/2016/406560326942013
    [Google Scholar]
  6. KolářM. Vancomycin-resistant enterococci.Clin Microbiol Rev2018134686707
    [Google Scholar]
  7. SrivastavaJ ChandraH NautiyalAR KalraSJS Antimicrobial resistance (AMR) and plant-derived antimicrobials (PDAms) as an alternative drug line to control infections.3 Biotech.20144451460
    [Google Scholar]
  8. QadriH. ShahH.A. AhmadM.S. AlshehriB. AlmilaibaryA. MirA.M. Natural products and their semi-synthetic derivatives against antimicrobial-resistant human pathogenic bacteria and fungi.Saudi J Biol Sci202229910337610.1016/j.sjbs.2022.103376
    [Google Scholar]
  9. BłajetZ.M. KubisF.J. Monoterpenes and their derivatives—recent development in biological and medical applications.Int J Mol Sci202021197078
    [Google Scholar]
  10. HarrisonF RobertsAEL GabrilskaR RumbaughKP LeeC DiggleSP. A A 1,000-year-old antimicrobial remedy with antistaphylococcal activity.mBio.2015606
    [Google Scholar]
  11. NeillJ Antimicrobial resistance: Tackling a crisis for the health and wealth of nations the review on antimicrobial resistance chaired.Available from: https://wellcomecollection.org/works/rdpck35v 2014
  12. HafizS. JamilS. Antimicrobial resistance - A global threat.J. Coll. Physicians Surg. Pak.201626424324427097689
    [Google Scholar]
  13. Bozkurtİ. UnverT. SunbulM. LeblebiciogluH. Bacterial and fungal infections in the early post-transplant period after kidney transplantation: Etiological agents and their susceptibility.Transplant. Proc.2015478255410.1016/j.transproceed.2015.08.01626518971
    [Google Scholar]
  14. AchesonE.D. Cancer statistics.BMJ19761600639410.1136/bmj.1.6006.394‑a
    [Google Scholar]
  15. FounouR.C. FounouL.L. EssackS.Y. Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis.PLoS One20171212e018962110.1371/journal.pone.018962129267306
    [Google Scholar]
  16. LahsouneM. BoutayebH. ZeroualiK. BelabbesH. El MdaghriN. Prevalence and sensibilities aux antibiotiques d’Acinetobacter baumannii dans unCHU marocain.Med. Mal. Infect.2007371282883110.1016/j.medmal.2007.05.00617669611
    [Google Scholar]
  17. DadgostarP. Antimicrobial resistance: Implications and costs.Infect. Drug Resist.2019123903391010.2147/IDR.S23461031908502
    [Google Scholar]
  18. World Heatlh OrganizationAntimicrobial resistance.Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance 2018
  19. KoziołA. StryjewskaA. LibrowskiT. SałatK. GawełM. MoniczewskiA. LochyńskiS. An overview of the pharmacological properties and potential applications of natural monoterpenes.Mini Rev. Med. Chem.201514141156116810.2174/138955751466614112714582025429661
    [Google Scholar]
  20. DaviesS.C. OxladeC. Innovate to secure the future: The future of modern medicine.Future Healthc. J.202182e251e25610.7861/fhj.2021‑008734286193
    [Google Scholar]
  21. Antibiotic resistance threats in the United States.Available from: https://www.cdc.gov/drugresistance/biggest-threats.html 2013
  22. DaviesJ. Origins and evolution of antibiotic resistance.Microbiologia19961219169019139
    [Google Scholar]
  23. PancuD.F. ScurtuA. MacasoiI.G. MartiD. MiocM. SoicaC. CoricovacD. HorhatD. PoenaruM. DeheleanC. Antibiotics: Conventional therapy and natural compounds with antibacterial activity-a pharmaco-toxicological screening.Antibiotics202110440110.3390/antibiotics1004040133917092
    [Google Scholar]
  24. CowanM.M. Plant products as antimicrobial agents.Clin. Microbiol. Rev.199912456458210.1128/CMR.12.4.56410515903
    [Google Scholar]
  25. ReygaertW. Methicillin-resistant Staphylococcus aureus (MRSA): Molecular aspects of antimicrobial resistance and virulence.Clin. Lab. Sci.200922211511919534446
    [Google Scholar]
  26. HawkeyP.M. Mechanisms of quinolone action and microbial response.J. Antimicrob. Chemother.20035190001293510.1093/jac/dkg20712702701
    [Google Scholar]
  27. KumarS. MukherjeeM.M. VarelaM.F. Modulation of bacterial multidrug resistance efflux pumps of the major facilitator superfamily.Int. J. Bacteriol.2013201311510.1155/2013/20414125750934
    [Google Scholar]
  28. BlancoP. AmadoH.S. CalderonR.J. CoronaF. LiraF. RicoA.M. BernardiniA. SanchezM. MartinezJ. Bacterial multidrug efflux pumps: Much more than antibiotic resistance determinants.Microorganisms2016411410.3390/microorganisms401001427681908
    [Google Scholar]
  29. BlairJ.M.A. RichmondG.E. PiddockL.J.V. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance.Future Microbiol.20149101165117710.2217/fmb.14.6625405886
    [Google Scholar]
  30. PooleK. Efflux pumps as antimicrobial resistance mechanisms.Ann. Med.200739316217610.1080/0785389070119526217457715
    [Google Scholar]
  31. KumarA. SchweizerH. Bacterial resistance to antibiotics: Active efflux and reduced uptake.Adv. Drug Deliv. Rev.200557101486151310.1016/j.addr.2005.04.00415939505
    [Google Scholar]
  32. VaouN StavropoulouE VoidarouC TsigalouC. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives.Microorganisms2021910204110.3390/microorganisms9102041
    [Google Scholar]
  33. JubairN RajagopalM ChinnappanS AbdullahNB FatimaA Review on the antibacterial mechanism of plant-derived compounds against multidrug-resistant bacteria (MDR).Evid Based Complement Alternat Med202120213663315
    [Google Scholar]
  34. World Health OrganizationWHO publishes list of bacteria for which new antibiotics are urgently needed.Available from: https://www.ecdc.europa.eu/en/news-events/who-publishes-list-bacteria-which-new-antibiotics-are-urgently-needed 2017
    [Google Scholar]
  35. AsokanG. RamadhanT. AhmedE. SanadH. WHO global priority pathogens list: A bibliometric analysis of medline-pubmed for knowledge mobilization to infection prevention and control practices in Bahrain.Oman Med. J.201934318419310.5001/omj.2019.3731110624
    [Google Scholar]
  36. C ReygaertW. An overview of the antimicrobial resistance mechanisms of bacteria.AIMS Microbiol.20184348250110.3934/microbiol.2018.3.48231294229
    [Google Scholar]
  37. MiL. LiY.C. SunM.R. ZhangP.L. LiY. YangH. A systematic review of pharmacological activities, toxicological mechanisms and pharmacokinetic studies on Aconitum alkaloids.Chin. J. Nat. Med.202119750552010.1016/S1875‑5364(21)60050‑X34247774
    [Google Scholar]
  38. SergeevG.B. KlabundeK.J. Nanochemistry.2nd edNanochemistry2013
    [Google Scholar]
  39. SinghN. KulkarniG.T. KumarY. Montelukast sodium formulation containing green tea extract to reduce the oxidative stress in guinea pig model of chronic allergic asthma.Recent Pat. Drug Deliv. Formul.201912426727610.2174/187221131366618121112390330539707
    [Google Scholar]
  40. AlamM. BanoN. AhmadT. SharangiA.B. UpadhyayT.K. AlraeyY. AlabdallahN.M. RaufM.A. SaeedM. Synergistic role of plant extracts and essential oils against multidrug resistance and gram-negative bacterial strains producing extended-spectrum β-lactamases.Antibiotics202211785510.3390/antibiotics1107085535884109
    [Google Scholar]
  41. ChoH.S. ChangS.H. ChungY.S. ShinJ.Y. ParkS.J. LeeE.S. HwangS.K. KwonJ.T. TehraniA.M. WooM. NohM.S. HanifahH. JinH. XuC.X. ChoM.H. Synergistic effect of ERK inhibition on tetrandrine-induced apoptosis in A549 human lung carcinoma cells.J. Vet. Sci.2009101232810.4142/jvs.2009.10.1.2319255520
    [Google Scholar]
  42. CasciaroB. MangiardiL. CappielloF. RomeoI. LoffredoM.R. IazzettiA. CalcaterraA. GoggiamaniA. GhirgaF. MangoniM.L. BottaB. QuaglioD. Naturally-occurring alkaloids of plant origin as potential antimicrobials against antibiotic-resistant infections.Molecules20202516361910.3390/molecules2516361932784887
    [Google Scholar]
  43. YanY. LiX. ZhangC. LvL. GaoB. LiM. Research progress on antibacterial activities and mechanisms of natural alkaloids: A review.Antibiotics202110331810.3390/antibiotics1003031833808601
    [Google Scholar]
  44. NordC. LevenforsJ.J. BjerketorpJ. SahlbergC. GussB. ÖbergB. BrobergA. Antibacterial isoquinoline alkaloids from the fungus Penicillium spathulatum EM19.Molecules20192424461610.3390/molecules2424461631861067
    [Google Scholar]
  45. KuoC.L. ChiC.W. LiuT.Y. The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett.2004203212713710.1016/j.canlet.2003.09.00214732220
    [Google Scholar]
  46. YiZ.B. Yan Yu LiangY.Z. Evaluation of the antimicrobial mode of berberine by LC/ESI-MS combined with principal component analysis.J. Pharm. Biomed. Anal.200744130130410.1016/j.jpba.2007.02.01817383137
    [Google Scholar]
  47. HayashiK. MinodaK. NagaokaY. HayashiT. UesatoS. Antiviral activity of berberine and related compounds against human cytomegalovirus.Bioorg. Med. Chem. Lett.20071761562156410.1016/j.bmcl.2006.12.08517239594
    [Google Scholar]
  48. IwasaK. MoriyasuM. YamoriT. TuruoT. LeeD.U. WiegrebeW. In vitro cytotoxicity of the protoberberine-type alkaloids.J. Nat. Prod.200164789689810.1021/np000554f11473418
    [Google Scholar]
  49. SunT. LiX.D. HongJ. LiuC. ZhangX.L. ZhengJ.P. XuY.J. OuZ.Y. ZhengJ.L. YuD.J. Inhibitory effect of two traditional chinese medicine monomers, berberine and matrine, on the quorum sensing system of antimicrobial-resistant Escherichia coli. Front. Microbiol.201910258410.3389/fmicb.2019.0258431798551
    [Google Scholar]
  50. PengL. KangS. YinZ. JiaR. SongX. LiL. LiZ. ZouY. LiangX. LiL. HeC. YeG. YinL. ShiF. LvC. JingB. Antibacterial activity and mechanism of berberine against Streptococcus agalactiae. Int. J. Clin. Exp. Pathol.2015855217522326191220
    [Google Scholar]
  51. OlleikH. YacoubT. HofferL. GnansounouS.M. HenryB.K. NicolettiC. MekhalfiM. PiqueV. PerrierJ. HijaziA. BaydounE. RaymondJ. PiccerelleP. MarescaM. RobinM. Synthesis and evaluation of the antibacterial activities of 13‐substituted berberine derivatives.Antibiotics20209738110.3390/antibiotics907038132640578
    [Google Scholar]
  52. WojtyczkaR. DziedzicA. KępaM. KubinaR. Kabała-DzikA. MularzT. IdzikD. Berberine enhances the antibacterial activity of selected antibiotics against coagulase-negative Staphylococcus strains in vitro.Molecules20141956583659610.3390/molecules1905658324858093
    [Google Scholar]
  53. GorganiL MohammadiM NajafpourGD NikzadM Piperine-the bioactive compound of black pepper: From isolation to medicinal formulations.Compr Rev Food Sci Food Saf2016161124140
    [Google Scholar]
  54. LejaK. MajcherM. JuzwaW. CzaczykK. Comparative Evaluation of Piper nigrum, Rosmarinus communis L. Essential Oils of Di ff erent Origin as.Foods2020921610.3390/foods9020141
    [Google Scholar]
  55. BarataL.M. AndradeE.H. RamosA.R. de LemosO.F. SetzerW.N. BylerK.G. MaiaJ.G.S. da SilvaJ.K.R. Secondary metabolic profile as a tool for distinction and characterization of cultivars of black pepper (Piper nigrum L.) cultivated in Pará State, Brazil.Int. J. Mol. Sci.202122289010.3390/ijms2202089033477389
    [Google Scholar]
  56. ZouL HuY ChenW Antibacterial mechanism and activities of black pepper chloroform extract.J Food Sci Technol201552128196820310.1007/s13197‑015‑1914‑0
    [Google Scholar]
  57. KhanIA MirzaZM KumarA VermaV QaziGN Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus.Antimicrob Agents Chemother200650281081210.1128/AAC.50.2.810‑812.2006
    [Google Scholar]
  58. RaniS.K.S. SaxenaN. Antimicrobial activity of black pepper (Piper nigrum L. ).Glob. J. Pharmacol.201378790
    [Google Scholar]
  59. QuideauS. DeffieuxD. CasassusD.C. PouységuL. Plant polyphenols: Chemical properties, biological activities, and synthesis.Angew. Chem. Int. Ed.201150358662110.1002/anie.20100004421226137
    [Google Scholar]
  60. CoppoE. MarcheseA. Antibacterial activity of polyphenols.Curr. Pharm. Biotechnol.201415438039010.2174/13892010150414082512114225312620
    [Google Scholar]
  61. MbavengA.T. SandjoL.P. TankeoS.B. NdiforA.R. PantaleonA. NagdjuiB.T. KueteV. Antibacterial activity of nineteen selected natural products against multi-drug resistant Gram-negative phenotypes.Springerplus20154182310.1186/s40064‑015‑1645‑826753111
    [Google Scholar]
  62. HirasawaM. TakadaK. Multiple effects of green tea catechin on the antifungal activity of antimycotics against Candida albicans. J. Antimicrob. Chemother.200453222522910.1093/jac/dkh04614688042
    [Google Scholar]
  63. GiriK. ShresthaB.K. ShakyaJ. SahS.N. KhanalH. Antibacterial effect of green tea extract against multi drug resistant Escherichia coli isolated from urine sample of patients visiting tertiary care hospital of Eastern Nepal.Int. J. Appl. Sci. Biotechnol.202081455110.3126/ijasbt.v8i1.27313
    [Google Scholar]
  64. HollerJ.G. ChristensenS.B. SlotvedH.C. RasmussenH.B. GúzmanA. OlsenC.E. PetersenB. MølgaardP. Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue Nees.J. Antimicrob. Chemother.20126751138114410.1093/jac/dks00522311936
    [Google Scholar]
  65. ChaJD LeeJH ChoiKM ChoiSM ParkJH Synergistic effect between cryptotanshinone and antibiotics against clinic methicillin and vancomycin-resistant Staphylococcus aureus.Evid Based Complement Alternat Med20142014450572
    [Google Scholar]
  66. FujitaM. ShiotaS. KurodaT. HatanoT. YoshidaT. MizushimaT. TsuchiyaT. Remarkable synergies between baicalein and tetracycline, and baicalein and β-lactams against methicillin-resistant Staphylococcus aureus.Microbiol. Immunol.200549439139610.1111/j.1348‑0421.2005.tb03732.x15840965
    [Google Scholar]
  67. SkrozaD. ŠimatV. Smole MožinaS. KatalinićV. BobanN. Generalić MekinićI. Interactions of resveratrol with other phenolics and activity against food‐borne pathogens.Food Sci. Nutr.2019772312231810.1002/fsn3.107331367359
    [Google Scholar]
  68. MunS.H. JoungD.K. KimY.S. KangO.H. KimS.B. SeoY.S. KimY.C. LeeD.S. ShinD.W. KweonK.T. KwonD.Y. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus.Phytomedicine2013208-971471810.1016/j.phymed.2013.02.00623537748
    [Google Scholar]
  69. HungS HongY LinK HuaY KuoC HuA. Efficient photodynamic killing of gram-positive bacteria by synthetic curcuminoids.Int J Mol Sci202021239024
    [Google Scholar]
  70. MazlanN.A. AzmanS. GhazaliN.F. YusriP.Z.S. IdiH.M. IsmailM. Synergistic antibacterial activity of mangiferin with antibiotics against Staphylococcus aureus.Drug Invention Today.2019121417
    [Google Scholar]
  71. SharmaH.K. GuptaP. NagpalD. MukherjeeM. ParmarV.S. LatherV. Virtual screening and antimicrobial evaluation for identification of natural compounds as the prospective inhibitors of antibacterial drug resistance targets in Staphylococcus aureus.Fitoterapia202316810555410.1016/j.fitote.2023.10555437270161
    [Google Scholar]
  72. HamedA.O. MehdawiN. TahaA.A. HamedM.E. Al-NuriA.M. HusseinS.A. Synthesis and antibacterial activity of novel curcumin derivatives containing heterocyclic moiety.Iran. J. Pharm. Res.2013121475624250571
    [Google Scholar]
  73. SinghN. KulkarniG.T. KumarY. Therapeutic potential of antileukotriene drug-Camellia sinensis extract co-formulation on histamine induced asthma in guinea pigs.Curr. Drug Res. Rev.2021131597210.2174/258997751266620081215162032787770
    [Google Scholar]
  74. AdnanS.N.A. IbrahimN. YaacobW.A. Disruption of methicillin-resistant Staphylococcus aureus protein synthesis by tannins.Germs20177418619210.18683/germs.2017.112529264356
    [Google Scholar]
  75. Sarni-ManchadoP. CheynierV. MoutounetM. Interactions of grape seed tannins with salivary proteins.J. Agric. Food Chem.1999471424710.1021/jf980514610563846
    [Google Scholar]
  76. TheisenL.L. ErdelmeierC.A.J. SpodenG.A. BoukhalloukF. SausyA. FlorinL. MullerC.P. Tannins from Hamamelis virginiana bark extract: Characterization and improvement of the antiviral efficacy against influenza A virus and human papillomavirus.PLoS One201491e8806210.1371/journal.pone.008806224498245
    [Google Scholar]
  77. KhanT. SankheK. SuvarnaV. SherjeA. PatelK. DravyakarB. DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents.Biomed. Pharmacother.201810392393810.1016/j.biopha.2018.04.02129710509
    [Google Scholar]
  78. CristinaA MeirelesLM LemosMF CesarM GuimarC EndringerDC Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules201924132471
    [Google Scholar]
  79. CarsonC.F. HammerK.A. RileyT.V. Melaleuca alternifolia (Tea Tree) oil: A review of antimicrobial and other medicinal properties.Clin. Microbiol. Rev.2006191506210.1128/CMR.19.1.50‑62.200616418522
    [Google Scholar]
  80. AnganeM SwiftS HuangK ButtsCA Essential oils and their major components: An updated review on antimicrobial activities, mechanism of action and their potential application in the food industry.Foods2022113464
    [Google Scholar]
  81. BurtS. Essential oils: Their antibacterial properties and potential applications in foods--A review.Int J Food Microbiol2004943223253
    [Google Scholar]
  82. NazzaroF FratianniF MartinoL Effect of essential oils on pathogenic bacteria.Pharmaceuticals20136121451147410.3390/ph6121451
    [Google Scholar]
  83. ShamsudinN.F. AhmedQ.U. MahmoodS. ShahS.A.A. KhatibA. MukhtarS. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation.Molecules.20222741149
    [Google Scholar]
  84. dos Santos BarbosaC.R. ScherfJ.R. de FreitasT.S. de MenezesI.R.A. PereiraR.L.S. dos SantosJ.F.S. de JesusS.S.P. LopesT.P. de SilveiraS.Z. de TintinoM.OC.D. JúniorJ.P.S. CoutinhoH.D.M. TintinoS.R. da CunhaF.A.B. Effect of carvacrol and thymol on NorA efflux pump inhibition in multidrug-resistant (MDR) Staphylococcus aureus strains.J. Bioenerg. Biomembr.202153448949810.1007/s10863‑021‑09906‑334159523
    [Google Scholar]
  85. KaurR. DarokarM.P. ChattopadhyayS.K. KrishnaV. AhmadA. Synthesis of halogenated derivatives of thymol and their antimicrobial activities.Med. Chem. Res.20142352212221710.1007/s00044‑013‑0809‑8
    [Google Scholar]
  86. ChenC.H. LuT.K. Development and challenges of antimicrobial peptides for therapeutic applications.Antibiotics2020912410.3390/antibiotics901002431941022
    [Google Scholar]
  87. HoffmanS.B. Mechanisms of antibiotic resistance.Compend. Contin. Educ. Pract. Vet.200123464472
    [Google Scholar]
  88. BajpaiV.K. SharmaA. BaekK.H. Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens.Food Control201332258259010.1016/j.foodcont.2013.01.032
    [Google Scholar]
  89. CanalesG BanikL. Antimicrobial activity of eugenol derivatives.Heterocycl. Lett.201112154157
    [Google Scholar]
  90. WangC.Y. ChenY.W. HouC.Y. Antioxidant and antibacterial activity of seven predominant terpenoids.Int. J. Food Prop.201922123023810.1080/10942912.2019.1582541
    [Google Scholar]
  91. SaddiqA.A. KhayyatS.A. Chemical and antimicrobial studies of monoterpene: Citral.Pestic. Biochem. Physiol.2010981899310.1016/j.pestbp.2010.05.004
    [Google Scholar]
  92. DiasK.J.S.D.O. MirandaG.M. BessaJ.R. AraújoA.C.J.D. FreitasP.R. AlmeidaR.S.D. PauloC.L.R. NetoJ.B.D.A. CoutinhoH.D.M. Ribeiro-FilhoJ. Terpenes as bacterial efflux pump inhibitors: A systematic review.Front. Pharmacol.20221395398210.3389/fphar.2022.95398236313340
    [Google Scholar]
  93. JesusJ.A. LagoJ.H.G. LaurentiM.D. YamamotoE.S. PasseroL.F.D. Antimicrobial activity of oleanolic and ursolic acids: An update.Evid. Based Complement. Alternat. Med.20152015114
    [Google Scholar]
  94. SieniawskaE. Swatko-OssorM. SawickiR. Skalicka-WoźniakK. GinalskaG. Natural terpenes influence the activity of antibiotics against isolated Mycobacterium tuberculosis. Med. Princ. Pract.201726210811210.1159/00045468027883995
    [Google Scholar]
  95. SouzaS.M. MonacheF.D. SmâniaA.Jr Antibacterial activity of coumarins.Z. Naturforsch. C J. Biosci.2005609-1069370010.1515/znc‑2005‑9‑100616320610
    [Google Scholar]
  96. Al-MajedyY.K. KadhumA.A.H. Al-AmieryA.A. MohamadA.B. Coumarins: The antimicrobial agents.Sys Rev Pharm.201781627010.5530/srp.2017.1.11
    [Google Scholar]
  97. Shakeel-U-Rehman KhanR. BhatK.A. RajaA.F. ShawlA.S. AlamM.S. Isolation, characterisation and antibacterial activity studies of coumarins from Rhododendron lepidotum Wall. ex G. Don, Ericaceae.Rev. Bras. Farmacogn.201020688689010.1590/S0102‑695X2010005000037
    [Google Scholar]
  98. LinP.Y. YehK.S. SuC.L. SheuS.Y. ChenT. OuK.L. LinM.H. LeeL.W. Synthesis and antibacterial activities of novel 4-hydroxy-7-hydroxy- and 3-carboxycoumarin derivatives.Molecules2012179108461086310.3390/molecules17091084622964501
    [Google Scholar]
  99. BasileA. SorboS. SpadaroV. BrunoM. MaggioA. FaraoneN. RosselliS. Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae).Molecules200914393995210.3390/molecules1403093919255552
    [Google Scholar]
  100. De AraújoRSA FilhoBJM ScottiMT ScottiL CruzRMD Da Falcão-SilvaVDS Modulation of drug resistance in Staphylococcus aureus with coumarin derivatives.Scientifica201620166894758
    [Google Scholar]
  101. BazzazB.S.F. MemarianiZ. KhashiarmaneshZ. IranshahiM. NaderinasabM. Effect of galbanic acid, a sesquiterpene coumarin from Ferula szowitsiana, as an inhibitor of efflux mechanism in resistant clinical isolates of Staphylococcus aureus.Braz. J. Microbiol.201041357458010.1590/S1517‑8382201000030000624031531
    [Google Scholar]
  102. KimS. KubecR. MusahR.A. Antibacterial and antifungal activity of sulfur-containing compounds from Petiveria alliacea L.J. Ethnopharmacol.20061041-218819210.1016/j.jep.2005.08.07216229980
    [Google Scholar]
  103. ZhangY. LiuX. RuanJ. ZhuangX. ZhangX. LiZ. Phytochemicals of garlic: Promising candidates for cancer therapy.Biomed. Pharmacother.202012310973010.1016/j.biopha.2019.10973031877551
    [Google Scholar]
  104. KimG. GanR.Y. ZhangD. FarhaA.K. HabimanaO. MavumengwanaV. LiH.B. WangX.H. CorkeH. Large-scale screening of 239 traditional chinese medicinal plant extracts for their antibacterial activities against multidrug-resistant Staphylococcus aureus and cytotoxic activities.Pathogens20209318510.3390/pathogens903018532143422
    [Google Scholar]
  105. SaleemZ.M. Al-DelaimyK.S. Inhibition of Bacillus cereus by garlic extracts.J. Food Prot.198245111007100910.4315/0362‑028X‑45.11.100730913616
    [Google Scholar]
  106. BhatwalkarS.B. MondalR. KrishnaS.B.N. AdamJ.K. GovenderP. AnupamR. Antibacterial properties of organosulfur compounds of garlic (Allium sativum).Front. Microbiol.20211261307710.3389/fmicb.2021.61307734394014
    [Google Scholar]
  107. RatnakarP. MurthyP.S. Purification and mechanism of action of antitubercular principle from garlic (Allium sativum) active against isoniazid susceptible and resistant Mycobacterium tuberculosis H37Rv.Indian J. Clin. Biochem.1995101343810.1007/BF02873666
    [Google Scholar]
  108. ReiterJ. HübbersA.M. AlbrechtF. LeichertL.I.O. SlusarenkoA.J. Allicin, a natural antimicrobial defence substance from garlic, inhibits DNA gyrase activity in bacteria.Int. J. Med. Microbiol.2020310115135910.1016/j.ijmm.2019.15135931585716
    [Google Scholar]
  109. ParkH.O.W.O.N. ChoiK.D. ShinI.S. Antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish (Armoracia rusticana) root against oral microorganisms.Biocontrol Sci.201318316316810.4265/bio.18.16324077540
    [Google Scholar]
  110. RashighiM. HarrisJ.E. Myocardial extraction from neonatal rats HHS public access.Physiol. Behav.2017176139148
    [Google Scholar]
  111. LiW.R. MaY.K. XieX.B. ShiQ.S. WenX. SunT.L. PengH. Diallyl disulfide from garlic oil inhibits Pseudomonas aeruginosa quorum sensing systems and corresponding virulence factors.Front. Microbiol.20199322210.3389/fmicb.2018.0322230666240
    [Google Scholar]
  112. MaldonadoP.D. CárdenasC.M.E. ChaverríP.J. Aged garlic extract, garlic powder extract, S-allylcysteine, diallyl sulfide and diallyl disulfide do not interfere with the antibiotic activity of gentamicin.Phytother. Res.200519325225410.1002/ptr.167415934032
    [Google Scholar]
  113. BabiiC. BahrinL.G. NeaguA.N. GostinI. MihasanM. BirsaL.M. StefanM. Antibacterial activity and proposed action mechanism of a new class of synthetic tricyclic flavonoids.J. Appl. Microbiol.2016120363063710.1111/jam.1304826744255
    [Google Scholar]
  114. ChanB.C.L. IpM. LauC.B.S. LuiS.L. JolivaltC. Ganem-ElbazC. LitaudonM. ReinerN.E. GongH. SeeR.H. FungK.P. LeungP.C. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase.J. Ethnopharmacol.2011137176777310.1016/j.jep.2011.06.03921782012
    [Google Scholar]
  115. LinC.M. PrestonJ.F.III WeiC.I. Antibacterial mechanism of allyl isothiocyanate.J. Food Prot.200063672773410.4315/0362‑028X‑63.6.72710852565
    [Google Scholar]
  116. BeckenbachL. BaronJ.M. MerkH.F. LöfflerH. AmannP.M. Retinoid treatment of skin diseases.Eur. J. Dermatol.201525538439110.1684/ejd.2015.254426069148
    [Google Scholar]
  117. ZhouT. LiZ. KangO.H. MunS.H. SeoY.S. KongR. ShinD.W. LiuX.Q. KwonD.Y. Antimicrobial activity and synergism of ursolic acid 3-O-α-L-arabinopyranoside with oxacillin against methicillin-resistant Staphylococcus aureus.Int. J. Mol. Med.20174041285129310.3892/ijmm.2017.309928848992
    [Google Scholar]
  118. SathasivamR. KiJ.S. A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries.Mar. Drugs20181612610.3390/md1601002629329235
    [Google Scholar]
  119. DwivediG.R. TyagiR. Sanchita TripathiS. PatiS. SrivastavaS.K. DarokarM.P. SharmaA. Antibiotics potentiating potential of catharanthine against superbug Pseudomonas aeruginosa.J. Biomol. Struct. Dyn.201836164270428410.1080/07391102.2017.141342429210342
    [Google Scholar]
  120. GuptaA. JeyakumarE. LawrenceR. Strategic approach of multifaceted antibacterial mechanism of limonene traced in Escherichia coli. Sci. Rep.20211111381610.1038/s41598‑021‑92843‑334226573
    [Google Scholar]
  121. MartinsA. VasasA. ViveirosM. MolnárJ. HohmannJ. AmaralL. Antibacterial properties of compounds isolated from Carpobrotus edulis.Int. J. Antimicrob. Agents201137543844410.1016/j.ijantimicag.2011.01.01621411294
    [Google Scholar]
  122. ZhouY. WangJ. GuoY. LiuX. LiuS. NiuX. WangY. DengX. Discovery of a potential MCR-1 inhibitor that reverses polymyxin activity against clinical mcr-1-positive enterobacteriaceae.J. Infect.201978536437210.1016/j.jinf.2019.03.00430851289
    [Google Scholar]
  123. AlvesF.S. CruzJ.N. de RamosF.I.N. do BrandãoN.D.L. QueirozR.N. da SilvaG.V. Evaluation of antimicrobial activity and cytotoxicity effects of extracts of Piper nigrum L. and piperine.Separations202310118
    [Google Scholar]
  124. ReiterJ. LevinaN. van der LindenM. GruhlkeM. MartinC. SlusarenkoA. Diallylthiosulfinate (Allicin), a volatile antimicrobial from garlic (Allium sativum), kills human lung pathogenic bacteria, including MDR strains, as a vapor.Molecules20172210171110.3390/molecules2210171129023413
    [Google Scholar]
  125. MunS.H. JoungD.K. KimS.B. ParkS.J. SeoY.S. GongR. ChoiJ.G. ShinD.W. RhoJ.R. KangO.H. KwonD.Y. The mechanism of antimicrobial activity of sophoraflavanone B against methicillin-resistant Staphylococcus aureus.Foodborne Pathog. Dis.201411323423910.1089/fpd.2013.162724601672
    [Google Scholar]
  126. TiwariV. RoyR. TiwariM. Antimicrobial active herbal compounds against acinetobacter baumannii and other pathogens.Front. Microbiol.2015661810.3389/fmicb.2015.0061826150810
    [Google Scholar]
  127. DomadiaP. SwarupS. BhuniaA. SivaramanJ. DasguptaD. Inhibition of bacterial cell division protein FtsZ by cinnamaldehyde.Biochem. Pharmacol.200774683184010.1016/j.bcp.2007.06.02917662960
    [Google Scholar]
  128. MarinelliL. Di StefanoA. CacciatoreI. Carvacrol and its derivatives as antibacterial agents.Phytochem. Rev.201817490392110.1007/s11101‑018‑9569‑x
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775267934240308065823
Loading
/content/journals/cdrr/10.2174/0125899775267934240308065823
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test