Skip to content
2000
Volume 17, Issue 2
  • ISSN: 2589-9775
  • E-ISSN: 2589-9783

Abstract

Pulmonary fibrosis is a disease affecting the lungs and the respiratory system that carries along a high fatality rate with no specific therapeutic approaches, making it a disorder sometimes termed as incurable. There have been various researches elaborating on the potential treatment and formulation approaches. Therapeutically effective drugs, new molecules, potential drug targets and novel delivery approaches have been identified. Recent findings suggest galectin-3 as a potential target to alleviate the condition by inhibition of the lectin. Certain molecules of galectin-3 have been discovered as promising therapeutic agents. These drug molecules have been administered either orally or through inhalation, and as of now, there is no candidate in the market to pose as a treatment for pulmonary fibrosis. There is a wide window to research and find novel dosage forms for the drug molecules to be presented as an efficacious and tolerable drug therapy against pulmonary fibrosis.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775269970231218100959
2023-12-29
2025-09-29
Loading full text...

Full text loading...

References

  1. GreenF.H.Y. Overview of pulmonary fibrosis.In: Chest.American College of Chest Physicians2002334S339S10.1378/chest.122.6_suppl.334S
    [Google Scholar]
  2. WynnT.A. Integrating mechanisms of pulmonary fibrosis.J. Exp. Med.201120871339135010.1084/jem.2011055121727191
    [Google Scholar]
  3. WilsonM.S. WynnT.A. Pulmonary fibrosis: Pathogenesis, etiology and regulation.Mucosal Immunol.20092210312110.1038/mi.2008.8519129758
    [Google Scholar]
  4. RicheldiL. CollardH. R. JonesM. G. Idiopathic pulmonary fibrosis.In: The LancetLancet Publishing20171941195210.1016/S0140‑6736(17)30866‑8
    [Google Scholar]
  5. RaghuG. CollardH.R. EganJ.J. MartinezF.J. BehrJ. BrownK.K. ColbyT.V. CordierJ.F. FlahertyK.R. LaskyJ.A. LynchD.A. RyuJ.H. SwigrisJ.J. WellsA.U. AncocheaJ. BourosD. CarvalhoC. CostabelU. EbinaM. HansellD.M. JohkohT. KimD.S. KingT.E.Jr KondohY. MyersJ. MüllerN.L. NicholsonA.G. RicheldiL. SelmanM. DuddenR.F. GrissB.S. ProtzkoS.L. SchünemannH.J. ATS/ERS/JRS/ALAT Committee on Idiopathic Pulmonary Fibrosis An official ATS/ERS/JRS/ALAT statement: Idiopathic pulmonary fibrosis: Evidence-based guidelines for diagnosis and management.Am. J. Respir. Crit. Care Med.2011183678882410.1164/rccm.2009‑040GL21471066
    [Google Scholar]
  6. MuraM. PorrettaM.A. BargagliE. SergiacomiG. ZompatoriM. SverzellatiN. TaglieriA. MezzasalmaF. RottoliP. SaltiniC. RoglianiP. Predicting survival in newly diagnosed idiopathic pulmonary fibrosis: A 3-year prospective study.Eur. Respir. J.201240110110910.1183/09031936.0010601122241745
    [Google Scholar]
  7. BaumgartnerK.B. SametJ.M. StidleyC.A. ColbyT.V. WaldronJ.A. Cigarette smoking: A risk factor for idiopathic pulmonary fibrosis.Am. J. Respir. Crit. Care Med.1997155124224810.1164/ajrccm.155.1.90013199001319
    [Google Scholar]
  8. KingT.E. PardoA. SelmanM. Idiopathic pulmonary fi brosis.2011Vol. 37819491961www.thelancet.com
    [Google Scholar]
  9. CoultasD. B. ZumwaltR. E. BlackW. C. SobonyaR. E. The epidemiology of interstitial lung diseases.Am J Respir Crit Care Med.1994150496797210.1164/ajrccm.150.4.7921471
    [Google Scholar]
  10. RaghuG. WeyckerD. EdelsbergJ. BradfordW.Z. OsterG. Incidence and prevalence of idiopathic pulmonary fibrosis.Am. J. Respir. Crit. Care Med.2006174781081610.1164/rccm.200602‑163OC16809633
    [Google Scholar]
  11. CoultasD.B. HughesM.P. HughesM.P. CoultasD.B. Accuracy of mortality data for interstitial lung diseases in New Mexico, USA1996Available from: http://thorax.bmj.com/ 10.1136/thx.51.7.717
    [Google Scholar]
  12. WalterN. CollardH.R. KingT.E.Jr Current perspectives on the treatment of idiopathic pulmonary fibrosis.Proc. Am. Thorac. Soc.20063433033810.1513/pats.200602‑016TK16738197
    [Google Scholar]
  13. KropskiJ.A. BlackwellT.S. Progress in understanding and treating idiopathic pulmonary fibrosis.Annu. Rev. Med.201970121122410.1146/annurev‑med‑041317‑10271530691371
    [Google Scholar]
  14. SofiaC. ComesA. SgallaG. RicheldiL. An update on emerging drugs for the treatment of idiopathic pulmonary fibrosis: A look towards 2023 and beyond.Expert Opin. Emerg. Drugs2023Nov11410.1080/14728214.2023.228141637953604
    [Google Scholar]
  15. CrystalR.G. Future research directions in idiopathic pulmonary fibrosis: Summary of a National Heart, Lung, and Blood Institute Working Groupin American Journal of Respiratory and Critical Care Medicine,200223624610.1164/rccm.2201069
    [Google Scholar]
  16. DemedtsM. High-dose acetylcysteine in idiopathic pulmonary fibrosis.2005Available from: www.nejm.org 10.1056/NEJMoa042976
  17. RaghuG. AnstromK.J. KingT.E.Jr LaskyJ.A. MartinezF.J. Idiopathic Pulmonary Fibrosis Clinical Research Network Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis.N. Engl. J. Med.2012366211968197710.1056/NEJMoa111335422607134
    [Google Scholar]
  18. TaniguchiH. EbinaM. KondohY. OguraT. AzumaA. SugaM. TaguchiY. TakahashiH. NakataK. SatoA. TakeuchiM. RaghuG. KudohS. NukiwaT. Pirfenidone Clinical Study Group in Japan Pirfenidone in idiopathic pulmonary fibrosis.Eur. Respir. J.201035482182910.1183/09031936.0000520919996196
    [Google Scholar]
  19. IyerS.N. GurujeyalakshmiG. GiriS.N. Effects of pirfenidone on transforming growth factor-gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis 11999Available from: http://www.jpet.org
  20. NathanS.D. AlberaC. BradfordW.Z. CostabelU. GlaspoleI. GlassbergM.K. KardatzkeD.R. DaiglM. KirchgaesslerK.U. LancasterL.H. LedererD.J. PereiraC.A. SwigrisJ.J. ValeyreD. NobleP.W. Effect of pirfenidone on mortality: pooled analyses and meta-analyses of clinical trials in idiopathic pulmonary fibrosis.Lancet Respir. Med.201751334110.1016/S2213‑2600(16)30326‑527876247
    [Google Scholar]
  21. ShahP.V. BalaniP. LopezA.R. NoblezaC.M.N. SiddiquiM. KhanS. A review of pirfenidone as an anti-fibrotic in idiopathic pulmonary fibrosis and its probable role in other diseases.Cureus2021131e1248210.7759/cureus.1248233564498
    [Google Scholar]
  22. GhazipuraM. Pirfenidone in progressive pulmonary fibrosis a systematic review and meta-analysis.Annals of the American Thoracic Society2022191030103910.1513/AnnalsATS.202103‑342OC
    [Google Scholar]
  23. NobleP.W. AlberaC. BradfordW.Z. CostabelU. GlassbergM.K. KardatzkeD. KingT.E.Jr LancasterL. SahnS.A. SzwarcbergJ. ValeyreD. du BoisR.M. CAPACITY Study Group Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials.Lancet201137797791760176910.1016/S0140‑6736(11)60405‑421571362
    [Google Scholar]
  24. Rivera-OrtegaP. HaytonC. BlaikleyJ. LeonardC. ChaudhuriN. Nintedanib in the management of idiopathic pulmonary fibrosis: Clinical trial evidence and real-world experienceIn: Therapeutic Advances in Respiratory DiseaseSAGE Publications Ltd,20181210.1177/1753466618800618
    [Google Scholar]
  25. RicheldiL. du BoisR.M. RaghuG. AzumaA. BrownK.K. CostabelU. CottinV. FlahertyK.R. HansellD.M. InoueY. KimD.S. KolbM. NicholsonA.G. NobleP.W. SelmanM. TaniguchiH. BrunM. Le MaulfF. GirardM. StowasserS. Schlenker-HercegR. DisseB. CollardH.R. INPULSIS Trial Investigators Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis.N. Engl. J. Med.2014370222071208210.1056/NEJMoa140258424836310
    [Google Scholar]
  26. CanestaroW.J. ForresterS.H. RaghuG. HoL. DevineB.E. Drug treatment of idiopathic pulmonary fibrosis systematic review and network meta-analysis.Chest2016149375676610.1016/j.chest.2015.11.01326836914
    [Google Scholar]
  27. SatoS. ShinoharaS. HayashiS. MorizumiS. AbeS. OkazakiH. ChenY. GotoH. AonoY. OgawaH. KoyamaK. NishimuraH. KawanoH. ToyodaY. UeharaH. NishiokaY. Anti-fibrotic efficacy of nintedanib in pulmonary fibrosis via the inhibition of fibrocyte activity.Respir. Res.201718117210.1186/s12931‑017‑0654‑228915889
    [Google Scholar]
  28. RicheldiL. CottinV. du BoisR.M. SelmanM. KimuraT. BailesZ. Schlenker-HercegR. StowasserS. BrownK.K. Nintedanib in patients with idiopathic pulmonary fibrosis: Combined evidence from the TOMORROW and INPULSIS® trials.Respir. Med.2016113747910.1016/j.rmed.2016.02.00126915984
    [Google Scholar]
  29. AhangariF. BeckerC. FosterD.G. ChioccioliM. NelsonM. BekeK. WangX. JustetA. AdamsT. ReadheadB. MeadorC. CorrellK. LiliL.N. RoybalH.M. RoseK.A. DingS. BarnthalerT. BrionesN. DeIuliisG. SchuppJ.C. LiQ. OmoteN. AschnerY. SharmaL. KopfK.W. MagnussonB. HicksR. BackmarkA. Dela CruzC.S. RosasI. CousensL.P. DudleyJ.T. KaminskiN. DowneyG.P. Saracatinib, a selective src kinase inhibitor, blocks fibrotic responses in preclinical models of pulmonary fibrosis.Am. J. Respir. Crit. Care Med.2022206121463147910.1164/rccm.202010‑3832OC35998281
    [Google Scholar]
  30. ThabutG. Survival After Bilateral Versus Single-Lung Transplantation for Idiopathic Pulmonary Fibrosis2009Available from: www.annals.org 10.7326/0003‑4819‑151‑11‑200912010‑00004
  31. GeorgeP. M. PattersonC. M. ReedA. K. ThillaiM. Lung transplantation for idiopathic pulmonary fibrosis.In: The Lancet Respiratory MedicineLancet Publishing Group,201927128210.1016/S2213‑2600(18)30502‑2
    [Google Scholar]
  32. Laporta HernandezR. Aguilar PerezM. Lázaro CarrascoM. T. Ussetti GilP. Lung transplantation in idiopathic pulmonary fibrosis.Medical sciences2018610.3390/medsci6030068
    [Google Scholar]
  33. KistlerK.D. NalysnykL. RotellaP. EsserD. Lung transplantation in idiopathic pulmonary fibrosis: A systematic review of the literature.BMC Pulm. Med.201414113910.1186/1471‑2466‑14‑13925127540
    [Google Scholar]
  34. RaghuG. BrownK.K. CostabelU. CottinV. du BoisR.M. LaskyJ.A. ThomeerM. UtzJ.P. KhandkerR.K. McDermottL. FatenejadS. Treatment of idiopathic pulmonary fibrosis with etanercept: An exploratory, placebo-controlled trial.Am. J. Respir. Crit. Care Med.2008178994895510.1164/rccm.200709‑1446OC18669816
    [Google Scholar]
  35. SiwikD.A. ChangD.L-F. ColucciW.S. Interleukin-1 and tumor necrosis factor-decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro molecular medicine at cons california dig lib on.2015Available from: circres.ahajournals.org/Downloadedfrom
  36. BrusiniR. VarnaM. CouvreurP. Advanced nanomedicines for the treatment of inflammatory diseases.Advanced Drug Delivery ReviewsElsevier B.V.,202016117810.1016/j.addr.2020.07.010
    [Google Scholar]
  37. ChennakesavuluS. MishraA. SudheerA. SowmyaC. Suryaprakash ReddyC. BhargavE. Pulmonary delivery of liposomal dry powder inhaler formulation for effective treatment of idiopathic pulmonary fibrosis.Asian J. Pharma. Sci.20181319110010.1016/j.ajps.2017.08.00532104382
    [Google Scholar]
  38. SunL. FanM. HuangD. LiB. XuR. GaoF. ChenY. Clodronate-loaded liposomal and fibroblast-derived exosomal hybrid system for enhanced drug delivery to pulmonary fibrosis.Biomaterials202127112076110.1016/j.biomaterials.2021.12076133774524
    [Google Scholar]
  39. LiuM. RenD. WuD. ZhengJ. TuW. Stem cell and idiopathic pulmonary fibrosis: Mechanisms and treatment.Curr. Stem Cell Res. Ther.201510646647610.2174/1574888X1066615051909263925986617
    [Google Scholar]
  40. ToonkelR.L. HareJ.M. MatthayM.A. GlassbergM.K. Potential for Clinical Testing Mesenchymal stem cells and idiopathic pulmonary fibrosis. Potential for clinical testing.Am. J. Respir. Crit. Care Med.2013188213314010.1164/rccm.201207‑1204PP23306542
    [Google Scholar]
  41. YangS. LiuP. JiangY. WangZ. DaiH. WangC. Therapeutic applications of mesenchymal stem cells in idiopathic pulmonary fibrosis.Front. Cell Dev. Biol.2021963965710.3389/fcell.2021.63965733768094
    [Google Scholar]
  42. GazdharA. SusuriN. HostettlerK. GuggerM. KnudsenL. RothM. OchsM. GeiserT. HGF expressing stem cells in usual interstitial pneumonia originate from the bone marrow and are antifibrotic.PLoS One201386e6545310.1371/journal.pone.006545323840329
    [Google Scholar]
  43. KumamotoM. NishiwakiT. MatsuoN. KimuraH. MatsushimaK. Minimally cultured bone marrow mesenchymal stem cells ameliorate fibrotic lung injury.Eur. Respir. J.200934374074810.1183/09031936.0012850819324956
    [Google Scholar]
  44. MoodleyY. AtienzaD. ManuelpillaiU. SamuelC.S. TchongueJ. IlancheranS. BoydR. TrounsonA. Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury.Am. J. Pathol.2009175130331310.2353/ajpath.2009.08062919497992
    [Google Scholar]
  45. NtoliosP. ManoloudiE. TzouvelekisA. BourosE. SteiropoulosP. AnevlavisS. BourosD. FroudarakisM.E. Longitudinal outcomes of patients enrolled in a phase Ib clinical trial of the adipose‐derived stromal cells‐stromal vascular fraction in idiopathic pulmonary fibrosis.Clin. Respir. J.20181262084208910.1111/crj.1277729412521
    [Google Scholar]
  46. ChambersD.C. EneverD. IlicN. SparksL. WhitelawK. AyresJ. YerkovichS.T. KhalilD. AtkinsonK.M. HopkinsP.M.A. A phase 1b study of placenta‐derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis.Respirology20141971013101810.1111/resp.1234325039426
    [Google Scholar]
  47. GlassbergM.K. Allogeneic human mesenchymal stem cells in patients with idiopathic pulmonary fibrosis via intravenous delivery (aether): A phase i safety clinical trial.In: Chest.Elsevier Inc201797198110.1016/j.chest.2016.10.061
    [Google Scholar]
  48. DaleyG. Q. Setting global standards for stem cell research and clinical translation: The 2016 ISSCR guidelines.In: Stem Cell ReportsCell Press2016678779710.1016/j.stemcr.2016.05.001
    [Google Scholar]
  49. DingL. ZhuC. YuF. WuP. ChenG. UllahA. WangK. SunM. LiJ. OupickýD. Pulmonary delivery of polyplexes for combined PAI-1 gene silencing and CXCR4 inhibition to treat lung fibrosis.Nanomedicine20181461765177610.1016/j.nano.2018.05.00529777878
    [Google Scholar]
  50. FujitaY. KadotaT. ArayaJ. OchiyaT. KuwanoK. Clinical application of mesenchymal stem cell-derived extracellular vesicle-based therapeutics for inflammatory lung diseases.J. Clin. Med.2018710.3390/jcm7100355
    [Google Scholar]
  51. KadotaT. FujitaY. ArayaJ. WatanabeN. FujimotoS. KawamotoH. MinagawaS. HaraH. OhtsukaT. YamamotoY. KuwanoK. OchiyaT. Human bronchial epithelial cell‐derived extracellular vesicle therapy for pulmonary fibrosis via inhibition of TGF‐β‐WNT crosstalk.J. Extracell. Vesicles20211010e1212410.1002/jev2.1212434377373
    [Google Scholar]
  52. HerrmannI. K. WoodM. J. A. FuhrmannG. Extracellular vesicles as a next-generation drug delivery platform.Nat. Nanotech. Res.202174875910.1038/s41565‑021‑00931‑2
    [Google Scholar]
  53. JacobJ. BartholmaiB.J. RajagopalanS. van MoorselC.H.M. van EsH.W. van BeekF.T. StruikM.H.L. KokosiM. EgashiraR. BrunA.L. NairA. WalshS.L.F. CrossG. BarnettJ. de LauretisA. JudgeE.P. DesaiS. KarwoskiR. OurselinS. RenzoniE. MaherT.M. AltmannA. WellsA.U. Predicting outcomes in idiopathic pulmonary fibrosis using automated computed tomographic analysis.Am. J. Respir. Crit. Care Med.2018198676777610.1164/rccm.201711‑2174OC29684284
    [Google Scholar]
  54. WalshS.L.F. CalandrielloL. SilvaM. SverzellatiN. Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: A case-cohort study.Lancet Respir. Med.201861183784510.1016/S2213‑2600(18)30286‑830232049
    [Google Scholar]
  55. MaherT.M. Idiopathic pulmonary fibrosis: Pathobiology of novel approaches to treatment.Clin. Chest Med.2012331698310.1016/j.ccm.2011.11.00222365247
    [Google Scholar]
  56. LeaskA. AbrahamD.J. TGF‐β signaling and the fibrotic response.FASEB J.200418781682710.1096/fj.03‑1273rev15117886
    [Google Scholar]
  57. AhluwaliaN. SheaB.S. TagerA.M. New therapeutic targets in idiopathic pulmonary fibrosis. Aiming to rein in runaway wound-healing responses.Am. J. Respir. Crit. Care Med.2014190886787810.1164/rccm.201403‑0509PP25090037
    [Google Scholar]
  58. HoranG.S. WoodS. OnaV. LiD.J. LukashevM.E. WeinrebP.H. SimonK.J. HahmK. AllaireN.E. RinaldiN.J. GoyalJ. Feghali-BostwickC.A. MattesonE.L. O’HaraC. LafyatisR. DavisG.S. HuangX. SheppardD. VioletteS.M. Partial inhibition of integrin α(v)β6 prevents pulmonary fibrosis without exacerbating inflammation.Am. J. Respir. Crit. Care Med.20081771566510.1164/rccm.200706‑805OC17916809
    [Google Scholar]
  59. PanL-H. YamauchiK. UzukiM. NakanishiT. TakigawaM. InoueH. SawaiT. Type II alveolar epithelial cells and interstitial fibroblasts express connective tissue growth factor in IPF.Eur. Respir. J.20011761220122710.1183/09031936.01.0007410111491168
    [Google Scholar]
  60. HancockA. ArmstrongL. GamaR. MillarA. Production of interleukin 13 by alveolar macrophages from normal and fibrotic lung.Am. J. Respir. Cell Mol. Biol.1998181606510.1165/ajrcmb.18.1.26279448046
    [Google Scholar]
  61. MurrayL.A. HackettT.L. WarnerS.M. ShaheenF. ArgentieriR.L. DudasP. FarrellF.X. KnightD.A. BMP-7 does not protect against bleomycin-induced lung or skin fibrosis.PLoS One2008312e403910.1371/journal.pone.000403919112509
    [Google Scholar]
  62. FarkasL. GauldieJ. VoelkelN.F. KolbM. Pulmonary hypertension and idiopathic pulmonary fibrosis: A tale of angiogenesis, apoptosis, and growth factors.Am. J. Respir. Cell Mol. Biol.201145111510.1165/rcmb.2010‑0365TR21057104
    [Google Scholar]
  63. CooperD.N.W. Galectinomics: Finding themes in complexity.Available from: www.bba-direct.com 10.1016/S0304‑4165(02)00310‑0
  64. SatoS. HughesR.C. Regulation of secretion and surface expression of Mac-2, a galactoside-binding protein of macrophages.J. Biol. Chem.199426964424443010.1016/S0021‑9258(17)41797‑28308013
    [Google Scholar]
  65. VerkerkeH. Dias-BaruffiM. CummingsR.D. ArthurC.M. StowellS.R. Galectins: An ancient family of carbohydrate binding proteins with modern functions.Methods Mol Biol.2022244214010.1007/978‑1‑0716‑2055‑7_1
    [Google Scholar]
  66. SabnisR.W. Novel Galectin-3 inhibitors for treating fibrosis.ACS Med. Chem. Lett.202112217417510.1021/acsmedchemlett.0c0067133603959
    [Google Scholar]
  67. BouffetteS. BotezI. De CeuninckF. Targeting galectin-3 in inflammatory and fibrotic diseases.Trends Pharmacol. Sci.202344851953110.1016/j.tips.2023.06.00137391294
    [Google Scholar]
  68. DumicJ. DabelicS. FlögelM. Galectin-3: An open-ended story.Biochim. Biophys. Acta, Gen. Subj.20061760461663510.1016/j.bbagen.2005.12.02016478649
    [Google Scholar]
  69. EliazI. Galectin-3 and fibrosis: Research in the last 5 years.J. Trans. Crit. Care Med.20191411712610.4103/jtccm.jtccm_15_19
    [Google Scholar]
  70. NishiY. SanoH. KawashimaT. OkadaT. KurodaT. KikkawaK. KawashimaS. TanabeM. GotoT. MatsuzawaY. MatsumuraR. TomiokaH. LiuF.T. ShiraiK. Role of galectin-3 in human pulmonary fibrosis.Allergol. Int.2007561576510.2332/allergolint.O‑06‑44917259811
    [Google Scholar]
  71. KasperM. HughesR. C. Immunocytochemical evidence for a modulation of galectin 3 (mac-2), a carbohydrate binding protein, in pulmonary fibrosis.J Pathol1996179330931610.1002/(SICI)1096‑9896(199607)179:3<309::AID‑PATH572>3.0.CO;2‑D
    [Google Scholar]
  72. SanoH. HsuD.K. YuL. ApgarJ.R. KuwabaraI. YamanakaT. HirashimaM. LiuF.T. Human galectin-3 is a novel chemoattractant for monocytes and macrophages.J. Immunol.200016542156216410.4049/jimmunol.165.4.215610925302
    [Google Scholar]
  73. SundqvistM. WelinA. ElmwallJ. OslaV. NilssonU.J. LefflerH. BylundJ. KarlssonA. Galectin-3 type-C self-association on neutrophil surfaces; The carbohydrate recognition domain regulates cell function.J. Leukoc. Biol.2018103234135310.1002/JLB.3A0317‑110R29345346
    [Google Scholar]
  74. HendersonN.C. Galectin-3 regulates myofibroblast activation and hepatic fibrosis.Proc Natl Acad Sci2006103135060506510.1073/pnas.0511167103
    [Google Scholar]
  75. SlackR.J. MillsR. MackinnonA.C. The therapeutic potential of galectin-3 inhibition in fibrotic disease.Int. J. Biochem. Cell Biol.202113010588110.1016/j.biocel.2020.10588133181315
    [Google Scholar]
  76. JiaW. WangZ. GaoC. WuJ. WuQ. Trajectory modeling of endothelial-to-mesenchymal transition reveals galectin-3 as a mediator in pulmonary fibrosis.Cell Death Dis.202112432710.1038/s41419‑021‑03603‑033771973
    [Google Scholar]
  77. Garcia-RevillaJ. DeierborgT. VeneroJ.L. Boza-SerranoA. Hyperinflammation and fibrosis in severe COVID-19 Patients: Galectin-3, a target molecule to consider.Front. Immunol.202011206910.3389/fimmu.2020.0206932973815
    [Google Scholar]
  78. MeradM. MartinJ. C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages.Nature Reviews Immunology20202035536210.1038/s41577‑020‑0331‑4
    [Google Scholar]
  79. GeorgeP. M. WellsA. U. JenkinsR. G. Pulmonary fibrosis and COVID-19: The potential role for antifibrotic therapy.The Lancet Respiratory MedicineLancet Publishing202080781510.1016/S2213‑2600(20)30225‑3
    [Google Scholar]
  80. MacKinnonA.C. GibbonsM.A. FarnworthS.L. LefflerH. NilssonU.J. DelaineT. SimpsonA.J. ForbesS.J. HiraniN. GauldieJ. SethiT. Regulation of transforming growth factor-β1-driven lung fibrosis by galectin-3.Am. J. Respir. Crit. Care Med.2012185553754610.1164/rccm.201106‑0965OC22095546
    [Google Scholar]
  81. DelaineT. CollinsP. MacKinnonA. SharmaG. StegmayrJ. RajputV.K. MandalS. CumpsteyI. LarumbeA. SalamehB.A. Kahl-KnutssonB. van HattumH. van ScherpenzeelM. PietersR.J. SethiT. SchambyeH. OredssonS. LefflerH. BlanchardH. NilssonU.J. Galectin‐3‐binding glycomimetics that strongly reduce bleomycin‐induced lung fibrosis and modulate intracellular glycan recognition.ChemBioChem201617181759177010.1002/cbic.20160028527356186
    [Google Scholar]
  82. HiraniN. MacKinnonA.C. NicolL. FordP. SchambyeH. PedersenA. NilssonU.J. LefflerH. SethiT. TantawiS. GravelleL. SlackR.J. MillsR. KarmakarU. HumphriesD. ZetterbergF. KeelingL. PaulL. MolyneauxP.L. LiF. FunstonW. ForrestI.A. SimpsonA.J. GibbonsM.A. MaherT.M. Target inhibition of galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis.Eur. Respir. J.2021575200255910.1183/13993003.02559‑202033214209
    [Google Scholar]
  83. HumphriesD.C. MillsR. BozC. McHughB.J. HiraniN. RossiA.G. PedersenA. SchambyeH.T. SlackR.J. LefflerH. NilssonU.J. WangW. SethiT. MackinnonA.C. Galectin-3 inhibitor GB0139 protects against acute lung injury by inhibiting neutrophil recruitment and activation.Front. Pharmacol.20221394926410.3389/fphar.2022.94926436003515
    [Google Scholar]
  84. GaughanE. GB0139, an inhaled small molecule inhibitor of galectin-3, in COVID-19 pneumonitis: a randomised, controlled, open-label, phase 2a experimental medicine trial of safety, pharmacokinetics, and potential therapeutic valueAvailable from: https://www.medrxiv.org/content/10.1101/2021.12.21.21267983v2 10.1101/2021.12.21.21267983
  85. ZetterbergF.R. MacKinnonA. BrimertT. GravelleL. JohnssonR.E. Kahl-KnutsonB. LefflerH. NilssonU.J. PedersenA. PetersonK. RoperJ.A. SchambyeH. SlackR.J. TantawiS. Discovery and optimization of the first highly effective and orally available galectin-3 inhibitors for treatment of fibrotic disease.J. Med. Chem.20226519126261263810.1021/acs.jmedchem.2c0066036154172
    [Google Scholar]
  86. RajputV.K. MacKinnonA. MandalS. CollinsP. BlanchardH. LefflerH. SethiT. SchambyeH. MukhopadhyayB. NilssonU.J. A selective galactose–coumarin-derived galectin-3 inhibitor demonstrates involvement of galectin-3-glycan interactions in a pulmonary fibrosis model.J. Med. Chem.201659178141814710.1021/acs.jmedchem.6b0095727500311
    [Google Scholar]
  87. GiguèreD. St-GelaisJ. Protecting-group-free synthesis of GB1107: An orally active galectin-3 antagonist.Synthesis202153203735374310.1055/a‑1517‑7177
    [Google Scholar]
  88. AhmedR. AnamK. AhmedH. Development of galectin-3 targeting drugs for therapeutic applications in various diseases.In: International Journal of Molecular Sciences,Multidisciplinary Digital Publishing Institute20232410.3390/ijms24098116
    [Google Scholar]
  89. SigamaniA. MayoK.H. Chen-WaldenH. ReddyS. PlattD. Galectin approach to lower covid transmission - Drug Development for clinical useAvailable from: https://www.medrxiv.org/content/10.1101/2022.11.09.22282151v1 10.1101/2022.11.09.22282151
  90. XingL. Progress in drug delivery system for fibrosis therapy.In: Asian J. Pharma. Sci.Shenyang Pharmaceutical University202116476110.1016/j.ajps.2020.06.005
    [Google Scholar]
  91. AkhmetshinaA. PalumboK. DeesC. BergmannC. VenalisP. ZerrP. HornA. KirevaT. BeyerC. ZwerinaJ. SchneiderH. SadowskiA. RienerM.O. MacDougaldO.A. DistlerO. SchettG. DistlerJ.H.W. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis.Nat. Commun.20123173510.1038/ncomms173422415826
    [Google Scholar]
  92. SpagnoloP. Idiopathic pulmonary fibrosis: Disease mechanisms and drug development.In: Pharmacology and Therapeutics,Elsevier Inc202122210.1016/j.pharmthera.2020.107798
    [Google Scholar]
  93. MaherT.M. SimpsonJ.K. PorterJ.C. WilsonF.J. ChanR. EamesR. CuiY. SiedererS. ParryS. KennyJ. SlackR.J. SahotaJ. PaulL. SaundersP. MolyneauxP.L. LukeyP.T. RizzoG. SearleG.E. MarshallR.P. SaleemA. Kang’ombeA.R. FairmanD. FahyW.A. Vahdati-BolouriM. A positron emission tomography imaging study to confirm target engagement in the lungs of patients with idiopathic pulmonary fibrosis following a single dose of a novel inhaled αvβ6 integrin inhibitor.Respir. Res.20202117510.1186/s12931‑020‑01339‑732216814
    [Google Scholar]
  94. HommaS. AzumaA. TaniguchiH. OguraT. MochidukiY. SugiyamaY. NakataK. YoshimuraK. TakeuchiM. KudohS. Japan NAC Clinical Study Group Efficacy of inhaled N‐acetylcysteine monotherapy in patients with early stage idiopathic pulmonary fibrosis.Respirology201217346747710.1111/j.1440‑1843.2012.02132.x22257422
    [Google Scholar]
  95. KhooJ.K. MontgomeryA.B. OttoK.L. SurberM. FaggianJ. LickliterJ.D. GlaspoleI. A randomized, double-blinded, placebo-controlled, dose-escalation phase 1 study of aerosolized pirfenidone delivered via the pari investigational eflow nebulizer in volunteers and patients with idiopathic pulmonary fibrosis.J. Aerosol Med. Pulm. Drug Deliv.2020331152010.1089/jamp.2018.150730698487
    [Google Scholar]
  96. SakamotoS. KataokaK. KondohY. KatoM. OkamotoM. MukaeH. BandoM. SudaT. YateraK. TaninoY. KishabaT. HattoriN. TaguchiY. SaitoT. NishiokaY. KuwanoK. KishiK. InaseN. SasakiS. TakizawaH. JohkohT. SakaiF. HommaS. Diffuse Lung Diseases Research Group of the Ministry of Health, Labour and Welfare, Japan Pirfenidone plus inhaled N-acetylcysteine for idiopathic pulmonary fibrosis: A randomised trial.Eur. Respir. J.2021571200034810.1183/13993003.00348‑202032703779
    [Google Scholar]
  97. IvanovaV. GarbuzenkoO.B. ReuhlK.R. ReimerD.C. PozharovV.P. MinkoT. Inhalation treatment of pulmonary fibrosis by liposomal prostaglandin E2.Eur. J. Pharm. Biopharm.201384233534410.1016/j.ejpb.2012.11.02323228437
    [Google Scholar]
  98. SarasijaS. PatilJ.S. Pulmonary drug delivery strategies: A concise, systematic review.Lung India2012291444910.4103/0970‑2113.9236122345913
    [Google Scholar]
  99. WeiY. ZhaoL. Passive lung-targeted drug delivery systems via intravenous administration.Pharmaceutical Development and Technology20141912413610.3109/10837450.2012.757782
    [Google Scholar]
  100. HeS. GuiJ. XiongK. ChenM. GaoH. FuY. A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases.In: Pharmaceutical Development and TechnologyBioMed Central Ltd20222010.1186/s12951‑022‑01307‑x
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775269970231218100959
Loading
/content/journals/cdrr/10.2174/0125899775269970231218100959
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test