Skip to content
2000
Volume 17, Issue 2
  • ISSN: 2589-9775
  • E-ISSN: 2589-9783

Abstract

Pharmaceutical excipients play a crucial role in determining the outcome of delivered therapeutic cargo density. By far, polymers have captured the biggest share in the excipients market. This surge in demand motivated researchers to look for newer and novel polymeric platforms. Interpenetrating polymeric networks (IPN) are a class of polymer in the same polymer blend league, where two different polymer chains penetrate; and align with each other without any sustainable covalent bond. The novel agreement between the polymer chains equips the IPN with the characteristic features of each participating polymer unit, thus making IPN superior to its predecessors. IPN has crossed a long path, especially in the pharmaceutical medicine field, from the mere coinage of the term to widespread usage, especially in drug delivery, where they increased the bioavailability and efficacy of the co-delivered drugs. The current review will highlight the major studies that have led to the current face of the IPN in various pharmaceutical domains. The present review was conducted by comprehensively reviewing published reports within the recent period using multiple keywords related to IPN and its role in drug delivery. Moving forward, continued exploration and innovation in IPN technologies promise to further enhance their applications, offering novel solutions for the challenges in drug delivery and therapeutic cargo density.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775288648240417050949
2024-05-03
2025-09-30
Loading full text...

Full text loading...

References

  1. RainaN. RaniR. KhanA. NagpalK. GuptaM. Interpenetrating polymer network as a pioneer drug delivery system: A review.Polym. Bull.20207795027505010.1007/s00289‑019‑02996‑5
    [Google Scholar]
  2. KumarR.M.N.V. KumarN. Polymeric controlled drug-delivery systems: Perspective issues and opportunities.Drug Dev. Ind. Pharm.200127113010.1081/DDC‑10000012411247530
    [Google Scholar]
  3. BlumeG. CevcG. Liposomes for the sustained drug release in vivo.Biochim. Biophys. Acta Biomembr.199010291919710.1016/0005‑2736(90)90440‑Y
    [Google Scholar]
  4. LiechtyW.B. KryscioD.R. SlaughterB.V. PeppasN.A. Polymers for drug delivery systems.Annu. Rev. Chem. Biomol. Eng.20101114917310.1146/annurev‑chembioeng‑073009‑10084722432577
    [Google Scholar]
  5. LohaniA SinghG BhattacharyaSS VermaA Interpenetrating polymer networks as innovative drug delivery systems.J Drug Deliv2014201458361210.1155/2014/583612
    [Google Scholar]
  6. CasconeM.G. Dynamic–mechanical properties of bioartificial polymeric materials.Polym. Int.1997431556910.1002/(SICI)1097‑0126(199705)43:1<55::AID‑PI762>3.0.CO;2‑#
    [Google Scholar]
  7. ArunY. GhoshR. DombA.J. Biodegradable hydrophobic injectable polymers for drug delivery and regenerative medicine.Adv. Funct. Mater.20213144201028410.1002/adfm.202010284
    [Google Scholar]
  8. KausarA. Interpenetrating polymer network and nanocomposite IPN of polyurethane/epoxy: A review on fundamentals and advancements.Polym.-Plast. Technol. Mater.201958769170610.1080/25740881.2018.1563114
    [Google Scholar]
  9. DingF. ZouY. WuS. ZouX. Self-healing and tough hydrogels with conductive properties prepared through an interpenetrating polymer network strategy.Polymer202020612290710.1016/j.polymer.2020.122907
    [Google Scholar]
  10. IgnatL. StanciuA. Academicdvanced polymers: Interpenetrating polymer networks.Handbook of Polymer Blends and CompositesRapra Technology2003Vol 3275280
    [Google Scholar]
  11. KudelaV. Encylopedia of Polymer Science and Engineering2nd EditionNew York, NYJohn Wiley & Sons19877703807
    [Google Scholar]
  12. UtrackiLA WilkieCA Polymer blends handbookKluwer Academic PublishersDordrecht2002
    [Google Scholar]
  13. WorkW.J. HorieK. HessM. SteptoR.F.T. Definition of terms related to polymer blends, composites, and multiphase polymeric materials (IUPAC Recommendations 2004).Pure Appl. Chem.200476111985200710.1351/pac200476111985
    [Google Scholar]
  14. HasanMM ChistyAH RahmanMM KhanMN Bioprotein based IPN nanoparticles as potential vehicles for anticancer drug delivery: Fabrication technology.Interpenetrating Polymer Network: Biomedical ApplicationsSpringer2020183203
    [Google Scholar]
  15. MillarJ. Interpenetrating polymer networks. Styrene–divinylbenzene copolymers with two and three interpenetrating networks, and their sulphonates.J. Chem. Soc.1960196013111317
    [Google Scholar]
  16. PalD. NayakA.K. SahaS. Interpenetrating polymer network hydrogels of chitosan: Applications in controlling drug release.Cellulose-based superabsorbent hydrogels MondalM. Springer201917271767
    [Google Scholar]
  17. ZorattoN MatricardiP. Semi-IPN- and IPN-based hydrogels.Adv Exp Med Biol20181059155188
    [Google Scholar]
  18. FanJ.P. ChengY.T. ZhangX.H. XiaoZ.P. LiaoD.D. ChenH.P. HuangK. PengH-L. Preparation of a novel mixed non-covalent and semi-covalent molecularly imprinted membrane with hierarchical pores for separation of genistein in Radix Puerariae Lobatae.React. Funct. Polym.202014610443910.1016/j.reactfunctpolym.2019.104439
    [Google Scholar]
  19. WanasingheS.V. SchreiberE.M. ThompsonA.M. SparksJ.L. KonkolewiczD. Dynamic covalent chemistry for architecture changing interpenetrated and single networks.Polym. Chem.202112131975198210.1039/D1PY00198A
    [Google Scholar]
  20. El-SherbinyI.M. ArafaK. Updates on alginate-based interpenetrating polymer networks for sustained drug release.Alginates1st ed.Apple Academic Press201936338810.1201/9780429023439‑12
    [Google Scholar]
  21. MannaS MannaM JanaS. Interpenetrating polymer network in microparticulate systems: Drug delivery and biomedical application.Interpenetrating Polymer Network: Biomedical Applications JanaS SpringerSingapore2020
    [Google Scholar]
  22. ShivashankarM. MandalB.K. A review on interpenetrating polymer network.Int J Phram Phram Sci.20124517
    [Google Scholar]
  23. RatnaD. DalviV.G. BillaS. SharmaS.K. RathS.K. SudarshanK. PujariP.K. Interpenetrating polymer network of rubbery epoxy and glassy PMMA: network inhomogeneities and dynamic heterogeneities.ACS Appl. Polym. Mater.20213105073508610.1021/acsapm.1c00825
    [Google Scholar]
  24. GsibO. EggermontL.J. EglesC. BencherifS.A. Engineering a macroporous fibrin-based sequential interpenetrating polymer network for dermal tissue engineering.Biomater. Sci.20208247106711610.1039/D0BM01161D33089849
    [Google Scholar]
  25. ChenF. LeP. LaiK. CunhaF.G.M. MyungD. Simultaneous interpenetrating polymer network of collagen and hyaluronic acid as an in situ-forming corneal defect filler.Chem. Mater.202032125208521610.1021/acs.chemmater.0c0130733603277
    [Google Scholar]
  26. KimS.M. LeeJ. LeeS. ImD. LeeB. ParkS.S. LeeW-K. Structural interaction of semi-interpenetrating polymer network polyurethane/styrene acrylonitrile latex particles.Mol. Cryst. Liq. Cryst.20207071889310.1080/15421406.2020.1743459
    [Google Scholar]
  27. LipatovY.S. AlekseevaT.T. Phase-separated interpenetrating polymer networksSpringer200710.1007/12_2007_116
    [Google Scholar]
  28. LiuJ. FanW. LuG. ZhouD. WangZ. YanJ. Semi-interpenetrating polymer networks based on cyanate ester and highly soluble thermoplastic polyimide.Polymers201911586210.3390/polym1105086231085996
    [Google Scholar]
  29. LinJ. YanX. HeG. ChenW. ZhenD. LiT. MaL. WuX. Thermoplastic interpenetrating polymer networks based on polybenzimidazole and poly (1, 2-dimethy-3-allylimidazolium) for anion exchange membranes.Electrochim. Acta201725791910.1016/j.electacta.2017.09.126
    [Google Scholar]
  30. SunW. ChenG. WangF. QinY. WangZ. NieJ. MaG. Polyelectrolyte-complex multilayer membrane with gradient porous structure based on natural polymers for wound care.Carbohydr. Polym.201818118319010.1016/j.carbpol.2017.10.06829253961
    [Google Scholar]
  31. KhanA.A. Perea-LoweryL. Al-KhureifA.A. AlMufarehN.A. EldwakhlyE. SäilynojaE. VallittuP.K. Interfacial adhesion of a semi-interpenetrating polymer network-based fiber-reinforced composite with a high and low-gradient poly (methyl methacrylate) resin surface.Polymers202113335210.3390/polym1303035233499112
    [Google Scholar]
  32. KarabanovaL.V. MikhalovskyS.V. LloydA.W. BoiteuxG. SergeevaL.M. NovikovaT.I. LutsykE.D. MeikleS. Gradient semi-interpenetrating polymer networks based on polyurethane and poly(vinyl pyrrolidone).J. Mater. Chem.200515449950710.1039/b410178b
    [Google Scholar]
  33. KarabanovaL.V. MikhalovskyS.V. LloydA.W. Gradient semi-interpenetrating polymer networks based on polyurethane and poly(2-hydroxyethyl methacrylate) for biomedical applications.J. Mater. Chem.201222167919792810.1039/c2jm16176a
    [Google Scholar]
  34. DraganE.S. DinuM.V. GhiorghitaC.A. LazarM.M. DorofteiF. Preparation and characterization of semi-IPN cryogels based on polyacrylamide and poly (N, N-dimethylaminoethyl methacrylate); Functionalization of carrier with monochlorotriazinyl-β-cyclodextrin and release kinetics of curcumin.Molecules20212622697510.3390/molecules2622697534834067
    [Google Scholar]
  35. CuiL. JiaJ. GuoY. LiuY. ZhuP. Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin.Carbohydr. Polym.201499313810.1016/j.carbpol.2013.08.04824274476
    [Google Scholar]
  36. WenX. CaoX. YinZ. WangT. ZhaoC. Preparation and characterization of konjac glucomannan–poly(acrylic acid) IPN hydrogels for controlled release.Carbohydr. Polym.200978219319810.1016/j.carbpol.2009.04.001
    [Google Scholar]
  37. ZhangY. WeiH. HuaB. HuC. ZhangW. Preparation and application of the thermo-/pH−/ ion-sensitive semi-IPN hydrogel based on chitosan.Int. J. Biol. Macromol.2024258Pt 212896810.1016/j.ijbiomac.2023.12896838154725
    [Google Scholar]
  38. SomyaG. NayyarP. AkankshaB. KumarS. Interpenetrating polymer network-based drug delivery systems: Emerging applications and recent patents.Egypt. Pharm. J.2015142758610.4103/1687‑4315.161266
    [Google Scholar]
  39. SinghI. RahmanM.H. ChopraH. KumarS. BhattacharyaT. AkterR. KabirM.T. A comprehensive review on hydrogels.Curr. Drug Deliv.202219665867510.2174/156720181866621060115555834077344
    [Google Scholar]
  40. ChopraH. KumarS. SinghI. Smart hydrogels as intelligent biomaterials.Int. J. Pharm. Life Sci.2020117
    [Google Scholar]
  41. TrinadhaR.M. PhanindraCHVS YaminiM. PrasadC.H. Hydrogels the three dimensional networks: A review.Int. J. Curr. Pharm. Res.20211311217
    [Google Scholar]
  42. HoffmanA.S. Hydrogels for biomedical applications.Adv. Drug Deliv. Rev.201264182310.1016/j.addr.2012.09.01011755703
    [Google Scholar]
  43. PeppasN. BuresP. LeobandungW. IchikawaH. Hydrogels in pharmaceutical formulations.Eur. J. Pharm. Biopharm.2000501274610.1016/S0939‑6411(00)00090‑410840191
    [Google Scholar]
  44. RezaeiA. EhtesabiH. EbrahimiS. Incorporation of Saqez essential oil into polyvinyl alcohol/chitosan bilayer hydrogel as a potent wound dressing material.Int. J. Biol. Macromol.202322638339610.1016/j.ijbiomac.2022.12.03636493925
    [Google Scholar]
  45. BajpaiA.K. ShuklaS.K. BhanuS. KankaneS. Responsive polymers in controlled drug delivery.Prog. Polym. Sci.200833111088111810.1016/j.progpolymsci.2008.07.005
    [Google Scholar]
  46. PeakC.W. WilkerJ.J. SchmidtG. A review on tough and sticky hydrogels.Colloid Polym. Sci.201329192031204710.1007/s00396‑013‑3021‑y
    [Google Scholar]
  47. PengH.T. MartineauL. ShekP.N. Hydrogel-elastomer composite biomaterials: 3. Effects of gelatin molecular weight and type on the preparation and physical properties of interpenetrating polymer networks.J. Mater. Sci. Mater. Med.2008193997100710.1007/s10856‑007‑0167‑517665128
    [Google Scholar]
  48. ZafarN. AkhlaqM. MahmoodA. IjazH. SarfrazR.M. HussainZ. Facile synthesis and in vitro evaluation of semi-interpenetrating polymeric network.Polym. Bull.20228020692097
    [Google Scholar]
  49. MayV.E.G. RiveraE. PeraltaN.O. BurilloG. Comparative analysis of two hydrogel architectures synthesized by gamma radiation based on dimethylacrylamide and acrylic acid grafted on polyethylene.Radiat. Phys. Chem.202219410997510.1016/j.radphyschem.2022.109975
    [Google Scholar]
  50. Abbasi AvalN. EmadiR. ValianiA. KharazihaM. WistrandF.A. An aligned fibrous and thermosensitive hyaluronic acid-puramatrix interpenetrating polymer network hydrogel with mechanical properties adjusted for neural tissue.J. Mater. Sci.20225742883289610.1007/s10853‑021‑06733‑0
    [Google Scholar]
  51. TanH. RamirezC.M. MiljkovicN. LiH. RubinJ.P. MarraK.G. Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering.Biomaterials200930366844685310.1016/j.biomaterials.2009.08.05819783043
    [Google Scholar]
  52. NakanU. MunG.A. RakhmetullayevaR.K. TolkynB. BieerkehazhiS. YeligbayevaG.Z. NegimE-S. Thermosensitive N‐isopropylacrylamide ‐CO‐2‐hydroxyethyl acrylate hydrogels interactions with poly(acrylic acid) and surfactants.Polym. Adv. Technol.20213272676268110.1002/pat.5070
    [Google Scholar]
  53. LiuY. CuiY. Thermosensitive soy protein/poly( n ‐isopropylacrylamide) interpenetrating polymer network hydrogels for drug controlled release.J. Appl. Polym. Sci.201112063613362010.1002/app.33535
    [Google Scholar]
  54. UgrinovicV. PanicV. SpasojevicP. SeslijaS. BozicB. PetrovicR. JanackovicD. VeljovicD. Strong and tough, pH sensible, interpenetrating network hydrogels based on gelatin and poly(methacrylic acid).Polym. Eng. Sci.202262362263610.1002/pen.25870
    [Google Scholar]
  55. MilaniG.M. CoutinhoI.T. AmbrosioF.N. do NascimentoM.M.H. LombelloC.B. VenancioE.C. ChampeauM. Poly(acrylic acid)/polypyrrole interpenetrated network as electro‐responsive hydrogel for biomedical applications.J. Appl. Polym. Sci.2022139185209110.1002/app.52091
    [Google Scholar]
  56. LópezC.P. GodoyM. OyarceE. PizarroG.D.C. XuC. WillförS. YañezO. SánchezJ. Removal of nafcillin sodium monohydrate from aqueous solution by hydrogels containing nanocellulose: An experimental and theoretical study.J. Mol. Liq.202234711794610.1016/j.molliq.2021.117946
    [Google Scholar]
  57. RichterA. PaschewG. KlattS. LienigJ. ArndtK.F. AdlerH.J. Review on hydrogel-based pH sensors and microsensors.Sensors20088156158110.3390/s801056127879722
    [Google Scholar]
  58. WangJ.J. LiuF. Enhanced adsorption of heavy metal ions onto simultaneous interpenetrating polymer network hydrogels synthesized by UV irradiation.Polym. Bull.20137041415143010.1007/s00289‑013‑0934‑z
    [Google Scholar]
  59. ChivukulaP. DušekK. WangD. SmrčkováD.M. KopečkováP. KopečekJ. Synthesis and characterization of novel aromatic azo bond-containing pH-sensitive and hydrolytically cleavable IPN hydrogels.Biomaterials20062771140115110.1016/j.biomaterials.2005.07.02016098577
    [Google Scholar]
  60. HoareTR KohaneDS Hydrogels in drug delivery: Progress and challenges.Polymer.200849819932007
    [Google Scholar]
  61. SuhailM. HsiehY.H. KhanA. MinhasM.U. WuP.C. Preparation and in vitro evaluation of aspartic/alginic acid based semi-interpenetrating network hydrogels for controlled release of ibuprofen.Gels2021726810.3390/gels702006834207688
    [Google Scholar]
  62. DhuaM. SenK.K. MaitiS. Carboxylated gums as additives in the production of interpenetrating hydrogel beads and slow release of glimepiride.J. Vinyl Additive Technol.202228351852910.1002/vnl.21899
    [Google Scholar]
  63. PervaizF. TanveerW. ShoukatH. RehmanS. Formulation and evaluation of polyethylene glycol/Xanthan gum-co-poly (Acrylic acid) interpenetrating network for controlled release of venlafaxine.Polym. Bull.202380146949310.1007/s00289‑022‑04098‑1
    [Google Scholar]
  64. WangH.J. ChuY.Z. ChenC.K. LiaoY.S. YehM.Y. Preparation of conductive self-healing hydrogels via an interpenetrating polymer network method.RSC Advances202111126620662710.1039/D0RA09476E35423172
    [Google Scholar]
  65. IlginP. OzayH. OzayO. Synthesis and characterization of pH responsive alginate based-hydrogels as oral drug delivery carrier.J. Polym. Res.202027925110.1007/s10965‑020‑02231‑0
    [Google Scholar]
  66. (a BanerjeeS. SiddiquiL. BhattacharyaS.S. KaityS. GhoshA. ChattopadhyayP. PandeyA. SinghL. Interpenetrating polymer network (IPN) hydrogel microspheres for oral controlled release application.Int. J. Biol. Macromol.201250119820610.1016/j.ijbiomac.2011.10.02022062120
    [Google Scholar]
  67. (bGraham S, Marina PF, Blencowe A.Thermoresponsive polysaccharides and their thermoreversible physical hydrogel networks. Carbohydr Polym. 2019 Mar1;207:143-159.10.1016/j.carbpol.2018.11.05
  68. ZhangX.Z. WuD.Q. ChuC.C. Synthesis, characterization and controlled drug release of thermosensitive IPN–PNIPAAm hydrogels.Biomaterials200425173793380510.1016/j.biomaterials.2003.10.06515020155
    [Google Scholar]
  69. LiuY.Y. FanX.D. WeiB.R. SiQ.F. ChenW.X. SunL. pH-responsive amphiphilic hydrogel networks with IPN structure: A strategy for controlled drug release.Int. J. Pharm.20063081-220520910.1016/j.ijpharm.2005.10.01316321489
    [Google Scholar]
  70. SoniS.R. GhoshA. Exploring pullulan-poly(vinyl alcohol) interpenetrating network microspheres as controlled release drug delivery device.Carbohydr. Polym.201717481282210.1016/j.carbpol.2017.07.01628821135
    [Google Scholar]
  71. AngadiS.C. ManjeshwarL.S. AminabhaviT.M. Interpenetrating polymer network blend microspheres of chitosan and hydroxyethyl cellulose for controlled release of isoniazid.Int. J. Biol. Macromol.201047217117910.1016/j.ijbiomac.2010.05.00320471411
    [Google Scholar]
  72. QadriM.F. MalviyaR. SharmaP.K. Biomedical applications of interpenetrating polymer network system.Open Pharm. Sci. J.201521213010.2174/1874844901502010021
    [Google Scholar]
  73. MundargiR.C. ShelkeN.B. BabuV.R. PatelP. RangaswamyV. AminabhaviT.M. Novel thermo‐responsive semi‐interpenetrating network microspheres of gellan gum‐poly( N ‐isopropylacrylamide) for controlled release of atenolol.J. Appl. Polym. Sci.201011631832184110.1002/app.31551
    [Google Scholar]
  74. BanerjeeS ChaurasiaG PalD GhoshAK GhoshA KaityS Investigation on crosslinking density for development of novel interpenetrating polymer network (IPN) based formulation.J. Sci. Ind. Res.20106910777784
    [Google Scholar]
  75. KulkarniR.V. BaraskarV.V. AlangeV.V. NaikawadiA.A. SaB. Controlled release of an antihypertensive drug through interpenetrating polymer network hydrogel tablets of tamarind seed polysaccharide and sodium alginate.J. Macromol. Sci. Part B Phys.201352111636165010.1080/00222348.2013.789327
    [Google Scholar]
  76. KulkarniR.V. BaraskarV.V. SettyM.C. SaB. Interpenetrating polymer network matrices of sodium alginate and carrageenan for controlled drug delivery application.Fibers Polym.201112335235810.1007/s12221‑011‑0352‑5
    [Google Scholar]
  77. RamarajB. RadhakrishnanG. Hydrogel capsules for sustained drug release.J. Appl. Polym. Sci.199451697998810.1002/app.1994.070510602
    [Google Scholar]
  78. OchiM. IdaJ. MatsuyamaT. YamamotoH. Preparation of hydrogel capsules with thermoresponsive interpenetrating polymer network using concentric two-fluid nozzles.Adv. Powder Technol.201425260460810.1016/j.apt.2013.09.014
    [Google Scholar]
  79. YasinH. Al-TaaniB. SalemM. Preparation and characterization of ethylcellulose microspheres for sustained-release of pregabalin.Res. Pharm. Sci.202116111510.4103/1735‑5362.30518433953770
    [Google Scholar]
  80. LohaniA. ChaudharyG. Mucoadhesive microspheres: A novel approach to increase gastroretention.Chron. Young Sci.20123212110.4103/2229‑5186.98684
    [Google Scholar]
  81. SwapnaS. BalajiA. ShankarM. VijendarA. Microspheres as a promising mucoadhesive drug delivery system-review.Int. J. Pharm. Sci. Rev. Res.2013232814
    [Google Scholar]
  82. BhattacharyaS.S. MazahirF. BanerjeeS. VermaA. GhoshA. Preparation and in vitro evaluation of xanthan gum facilitated superabsorbent polymeric microspheres.Carbohydr. Polym.2013981647210.1016/j.carbpol.2013.05.01123987317
    [Google Scholar]
  83. SoppimathK.S. KulkarniA.R. AminabhaviT.M. Controlled release of antihypertensive drug from the interpenetrating network poly(vinyl alcohol)–guar gum hydrogel microspheres.J. Biomater. Sci. Polym. Ed.2000111274310.1163/15685620074347210680606
    [Google Scholar]
  84. BanerjeeS. RayS. MaitiS. SenK.K. BhattacharyyaU. KaityS. Interpenetrating polymer network (IPN): A novel biomaterial.Int J Appl Pharm.2010212834
    [Google Scholar]
  85. AlexanderA TripathiD VermaT MauryaJ PatelS Mechanism responsible for mucoadhesion of mucoadhesive drug delivery system: A review.Pesquisa20112011
    [Google Scholar]
  86. JainN. Kumar SharmaP. BanikA. GuptaA. BhardwajV. Pharmaceutical and biomedical applications of interpenetrating polymer network.Curr. Drug Ther.20116426327010.2174/157488511798109547
    [Google Scholar]
  87. Al-KahtaniA.A. SherigaraB.S. Controlled release of theophylline through semi-interpenetrating network microspheres of chitosan-(dextran-g-acrylamide).J. Mater. Sci. Mater. Med.20092071437144510.1007/s10856‑009‑3704‑619252971
    [Google Scholar]
  88. ReddyM.K. BabuR.V. RaoK.K.S.V. SubhaM.C.S. RaoC.K. SairamM. AminabhaviT.M. Temperature sensitive semi‐IPN microspheres from sodium alginate and N ‐isopropylacrylamide for controlled release of 5‐fluorouracil.J. Appl. Polym. Sci.200810752820282910.1002/app.27305
    [Google Scholar]
  89. JanaS. GandhiA. SheetS. SenK.K. Metal ion-induced alginate–locust bean gum IPN microspheres for sustained oral delivery of aceclofenac.Int. J. Biol. Macromol.201572475310.1016/j.ijbiomac.2014.07.05425111495
    [Google Scholar]
  90. UpadhyayM. AdenaS.K.R. VardhanH. YadavS.K. MishraB. Locust bean gum and sodium alginate based interpenetrating polymeric network microbeads encapsulating Capecitabine: Improved pharmacokinetics, cytotoxicity &in vivo antitumor activity.Mater. Sci. Eng. C201910410995810.1016/j.msec.2019.10995831500043
    [Google Scholar]
  91. GangulyS. MaityT. MondalS. DasP. DasN.C. Starch functionalized biodegradable semi-IPN as a pH-tunable controlled release platform for memantine.Int. J. Biol. Macromol.20179518519810.1016/j.ijbiomac.2016.11.05527865957
    [Google Scholar]
  92. (a MandalS. BasuS.K. SaB. Ca2+ ion cross-linked interpenetrating network matrix tablets of polyacrylamide-grafted-sodium alginate and sodium alginate for sustained release of diltiazem hydrochloride.Carbohydr. Polym.201082386787310.1016/j.carbpol.2010.06.0098150717
    [Google Scholar]
  93. (bTapia, C., Corbalan, V., Costa, E., Gai, M.N. and Yazdani- Pedram, M., 2005. Study of the release mechanism of diltiazem hydrochloride from matrices based on chitosan-alginate and chitosan-carrageenan mixtures. Biomacromolecules, 6(5), pp. 2389-2395.
  94. RaoK.K.S.V. NaiduV.K.B. SubhaM.C.S. SairamM. AminabhaviT.M. Novel chitosan-based pH-sensitive interpenetrating network microgels for the controlled release of cefadroxil.Carbohydr. Polym.200666333334410.1016/j.carbpol.2006.03.025
    [Google Scholar]
  95. BeraH. BoddupalliS. NayakA.K. Mucoadhesive-floating zinc-pectinate–sterculia gum interpenetrating polymer network beads encapsulating ziprasidone HCl.Carbohydr. Polym.201513110811810.1016/j.carbpol.2015.05.04226256166
    [Google Scholar]
  96. (a JanaS. SenK.K. BasuS.K. In vitro aceclofenac release from IPN matrix tablets composed of chitosan-tamarind seed polysaccharide.Int. J. Biol. Macromol.20146524124510.1016/j.ijbiomac.2014.01.03724463265
    [Google Scholar]
  97. (bKozlovskaya, V., Kharlampieva, E., Mansfield, M.L. and Sukhishvili, S.A., 2006. Poly (methacrylic acid) hydrogel films and capsules: response to pH and ionic strength, and encapsulation of macromolecules. Chemistry of materials, 18(2), pp.328-336.
  98. ThakurA. MongaS. WanchooR. Sorption and drug release studies from semi-interpenetrating polymer networks of chitosan and xanthan gum.Chem. Biochem. Eng. Q.2014281105115
    [Google Scholar]
  99. YueY.M. XuK. LiuX.G. ChenQ. ShengX. WangP.X. Preparation and characterization of interpenetration polymer network films based on poly(vinyl alcohol) and poly(acrylic acid) for drug delivery.J. Appl. Polym. Sci.200810863836384210.1002/app.28023
    [Google Scholar]
  100. HonmuteS. GanachariS.V. BhatR. KumarH. HuhD.S. VankataramanA. Studies on polyaniline-polyvinyl alcohol (PANI-PVA) interpenetrating polymer network (IPN) thin films.Int. J. Sci. Res.201212102106
    [Google Scholar]
  101. RodkateN. WichaiU. BoonthaB. RutnakornpitukM. Semi-interpenetrating polymer network hydrogels between polydimethylsiloxane/polyethylene glycol and chitosan.Carbohydr. Polym.201081361762510.1016/j.carbpol.2010.03.023
    [Google Scholar]
  102. VaghaniS.S. PatelM.M. pH-sensitive hydrogels based on semi-interpenetrating network (semi-IPN) of chitosan and polyvinyl pyrrolidone for clarithromycin release.Drug Dev. Ind. Pharm.201137101160116910.3109/03639045.2011.56342221417603
    [Google Scholar]
  103. ShivakumarH.G. GuptaN.V. SatishC.S. Preparation and characterization of gelatin-poly(methacrylic acid) interpenetrating polymeric network hydrogels as a ph-sensitive delivery system for glipizide.Indian J. Pharm. Sci.20076916410.4103/0250‑474X.32110
    [Google Scholar]
  104. GuptaA.K. S DM. DhakarR.C. SinghR.D. pH-sensitive interpenetrating hydrogel for eradication of Helicobacter pylori.Int. J. Pharm. Sci. Nanotechnol.20103292493210.37285/ijpsn.2010.3.2.5
    [Google Scholar]
  105. KozlovskayaV. ChenJ. ZavgorodnyaO. HasanM.B. KharlampievaE. Multilayer hydrogel capsules of interpenetrated network for encapsulation of small molecules.Langmuir20183439118321184210.1021/acs.langmuir.8b0246530188139
    [Google Scholar]
  106. (aRamaraj B, Radhakrishnan G. Hydrogel capsules for sustained drug release. Journal of applied polymer science 1994; 51(6): 979-88.10.1016/j.cap.2010.12.035
  107. (b TangQ. YuJ.R. ChenL. ZhuJ. HuZ.M. Poly (dimethyl siloxane)/poly (2-hydroxyethyl methacrylate) interpenetrating polymer network beads as potential capsules for biomedical use.Curr. Appl. Phys.2011113945950
    [Google Scholar]
  108. HoosainF.G. ChoonaraY.E. KumarP. TomarL.K. TyagiC. du ToitL.C. PillayV. In vivo evaluation of a PEO-gellan gum semi-interpenetrating polymer network for the oral delivery of sulpiride.AAPS PharmSciTech201718365467010.1208/s12249‑016‑0538‑727184677
    [Google Scholar]
  109. ElaAERM FreagMS ElkhodairyKA ElzoghbyAO Interpenetrating Polymer Network (IPN) nanoparticles for drug delivery applications. JanaS Interpenetrating Polymer Network: Biomedical ApplicationsSpringerSingapore2020
    [Google Scholar]
  110. RosenthalF.M. KöhlerG. Collagen as matrix for neo-organ formation by gene-transfected fibroblasts.Anticancer Res.1997172A117911869137468
    [Google Scholar]
  111. ZakharchenkoS. PuretskiyN. StoychevG. StammM. IonovL. Temperature controlled encapsulation and release using partially biodegradable thermo-magneto-sensitive self-rolling tubes.Soft Matter20106122633263610.1039/c0sm00088d
    [Google Scholar]
  112. ParkJ.C. HwangY.S. LeeJ.E. ParkK.D. MatsumuraK. HyonS.H. SuhH. Type I atelocollagen grafting onto ozone-treated polyurethane films: Cell attachment, proliferation, and collagen synthesis.J. Biomed. Mater. Res.200052466967710.1002/1097‑4636(20001215)52:4<669::AID‑JBM11>3.0.CO;2‑U11033549
    [Google Scholar]
  113. WardM.A. GeorgiouT.K. Thermoresponsive polymers for biomedical applications.Polymers2011331215124210.3390/polym3031215
    [Google Scholar]
  114. UmemuraK. KawaiS. Preparation and characterization of Maillard reacted chitosan films with hemicellulose model compounds.J. Appl. Polym. Sci.200810842481248710.1002/app.27842
    [Google Scholar]
  115. YadavM.P. StrahanG.D. MukhopadhyayS. HotchkissA.T. HicksK.B. Formation of corn fiber gum–milk protein conjugates and their molecular characterization.Food Hydrocoll.201226232633310.1016/j.foodhyd.2011.02.032
    [Google Scholar]
  116. NgadaonyeJ.I. GeeverL.M. KillionJ. HigginbothamC.L. Development of novel chitosan-poly(N,N-diethylacrylamide) IPN films for potential wound dressing and biomedical applications.J. Polym. Res.201320716110.1007/s10965‑013‑0161‑1
    [Google Scholar]
  117. ShahzadA. KhanA. AfzalZ. UmerM.F. KhanJ. KhanG.M. Formulation development and characterization of cefazolin nanoparticles-loaded cross-linked films of sodium alginate and pectin as wound dressings.Int. J. Biol. Macromol.201912425526910.1016/j.ijbiomac.2018.11.09030448495
    [Google Scholar]
  118. KimA.R. LeeS.L. ParkS.N. Properties and in vitro drug release of pH- and temperature-sensitive double cross-linked interpenetrating polymer network hydrogels based on hyaluronic acid/poly (N-isopropylacrylamide) for transdermal delivery of luteolin.Int. J. Biol. Macromol.2018118Pt A73174010.1016/j.ijbiomac.2018.06.06129940230
    [Google Scholar]
  119. YerriSwamyB. PrasadV.C. ReedyC.L.N. MallikarjunaB. RaoK.C. SubhaM.C.S. Interpenetrating polymer network microspheres of hydroxy propyl methyl cellulose/poly (vinyl alcohol) for control release of ciprofloxacin hydrochloride.Cellulose201118234935710.1007/s10570‑010‑9475‑x
    [Google Scholar]
  120. KulkarniR.V. SreedharV. MutalikS. SettyC.M. SaB. Interpenetrating network hydrogel membranes of sodium alginate and poly(vinyl alcohol) for controlled release of prazosin hydrochloride through skin.Int. J. Biol. Macromol.201047452052710.1016/j.ijbiomac.2010.07.00920678518
    [Google Scholar]
  121. SinhaM. BanikR.M. HaldarC. MaitiP. Development of ciprofloxacin hydrochloride loaded poly(ethylene glycol)/chitosan scaffold as wound dressing.J. Porous Mater.201320479980710.1007/s10934‑012‑9655‑1
    [Google Scholar]
  122. ZhangL. WangL. GuoB. MaP.X. Cytocompatible injectable carboxymethyl chitosan/N-isopropylacrylamide hydrogels for localized drug delivery.Carbohydr. Polym.201410311011810.1016/j.carbpol.2013.12.01724528707
    [Google Scholar]
  123. VaralakshmiB. KarpagamT. AnandA.V. BalamuralikrishnanB. Nanoscale smart drug delivery systems and techniques of drug loading to nanoarchitectures.Emerging Nanomaterials for Advanced TechnologiesSpringer20222982
    [Google Scholar]
  124. CraparoE.F. BondìM.L. PitarresiG. CavallaroG. Nanoparticulate systems for drug delivery and targeting to the central nervous system.CNS Neurosci. Ther.201117667067710.1111/j.1755‑5949.2010.00199.x20950327
    [Google Scholar]
  125. BrandW. NoorlanderC.W. GiannakouC. De JongW. KooiM. ParkM. VandebrielR. BosselaersI. SchollJ. GeertsmaR. Nanomedicinal products: A survey on specific toxicity and side effects.Int. J. Nanomedicine2017126107612910.2147/IJN.S13968728883724
    [Google Scholar]
  126. WangJ. HuH. YangZ. WeiJ. LiJ. IPN hydrogel nanocomposites based on agarose and ZnO with antifouling and bactericidal properties.Mater. Sci. Eng. C20166137638610.1016/j.msec.2015.12.02326838864
    [Google Scholar]
  127. WangM.Q. YanJ. DuS.G. LiH.G. Electroless plating of PVC plastic through new surface modification method applying a semi-IPN hydrogel film.Appl. Surf. Sci.201327724925610.1016/j.apsusc.2013.04.035
    [Google Scholar]
  128. ShafiqM. YasinT. RafiqA.M. Shaista Structural, thermal, and antibacterial properties of chitosan/ZnO composites.Polym. Compos.2014351798510.1002/pc.22636
    [Google Scholar]
  129. MaraniS.R. EhtesabiH. A flexible and hemostatic chitosan, polyvinyl alcohol, carbon dot nanocomposite sponge for wound dressing application.Int. J. Biol. Macromol.202322483183910.1016/j.ijbiomac.2022.10.16936283554
    [Google Scholar]
  130. GilsP.S. RayD. SahooP.K. Designing of silver nanoparticles in gum arabic based semi-IPN hydrogel.Int. J. Biol. Macromol.201046223724410.1016/j.ijbiomac.2009.12.01420060413
    [Google Scholar]
  131. FentG.M. CasteelS.W. KimD.Y. KannanR. KattiK. ChandaN. KattiK. Biodistribution of maltose and gum arabic hybrid gold nanoparticles after intravenous injection in juvenile swine.Nanomedicine20095212813510.1016/j.nano.2009.01.00719480048
    [Google Scholar]
  132. VirkK. SharmaK. KapilS. KumarV. SharmaV. PandeyS. KumarV. Synthesis of gum acacia-silver nanoparticles based hydrogel composites and their comparative anti-bacterial activity.J. Polym. Res.202229411810.1007/s10965‑022‑02978‑8
    [Google Scholar]
  133. XuY. ZhaiX. SuP. LiuT. ZhouL. ZhangJ. BaoB. WangL. Highly stable semiconducting polymer nanoparticles for multi-responsive chemo/photothermal combined cancer therapy.Theranostics202010135966597810.7150/thno.4309032483431
    [Google Scholar]
  134. LiuZ. ZhangS. GaoC. MengX. WangS. KongF. Temperature/pH-responsive carboxymethyl cellulose/poly (N-isopropyl acrylamide) interpenetrating polymer network aerogels for drug delivery systems.Polymers2022148157810.3390/polym1408157835458328
    [Google Scholar]
  135. ZhaoW. HuangJ. FangB. NieS. YiN. SuB. LiH. ZhaoC. Modification of polyethersulfone membrane by blending semi-interpenetrating network polymeric nanoparticles.J. Membr. Sci.20113691-225826610.1016/j.memsci.2010.11.065
    [Google Scholar]
  136. XiaX. HuZ. MarquezM. Physically bonded nanoparticle networks: A novel drug delivery system.J. Control. Release20051031213010.1016/j.jconrel.2004.11.01615710497
    [Google Scholar]
  137. ZhouT.H. RuanW.H. YangJ.L. RongM.Z. ZhangM.Q. ZhangZ. A novel route for improving creep resistance of polymers using nanoparticles.Compos. Sci. Technol.20076711-122297230210.1016/j.compscitech.2007.01.015
    [Google Scholar]
  138. MyungD. FarooquiN. WatersD. SchaberS. KohW. CarrascoM. NoolandiJ. FrankC.W. TaC.N. Glucose-permeable interpenetrating polymer network hydrogels for corneal implant applications: A pilot study.Curr. Eye Res.2008331294310.1080/0271368070179393018214741
    [Google Scholar]
  139. KumarP. SinghI. SindhuR.K. AroraS. Development and characterization of chitosan and polymethylmethacrylate interpenetrating polymer network ophthalmic inserts.Int. J. Pharm. Tech. Res.20091412411246
    [Google Scholar]
  140. (a ChirilaT.V. GeorgeK.A. GhaforA.W.A. PasS.J. HillA.J. Sequential homo‐interpenetrating polymer networks of poly(2‐hydroxyethyl methacrylate): Synthesis, characterization, and calcium uptake.J. Appl. Polym. Sci.2012126S2E455E6610.1002/app.36824
    [Google Scholar]
  141. (bInterpenetrating polymer network hydrogel contact lenses, David MyungJaan NoolandlChristopher TaCurtis W. Frank) Country: United States 2006 Patent Number: US7857447B2
  142. Parke-HoubenR. FoxC.H. ZhengL.L. WatersD.J. CochranJ.R. TaC.N. FrankC.W. Interpenetrating polymer network hydrogel scaffolds for artificial cornea periphery.J. Mater. Sci. Mater. Med.201526210710.1007/s10856‑015‑5442‑225665845
    [Google Scholar]
  143. (a MitraAK MitraAK Ophthalmic Drug Delivery Systems2nd ed.Boca RatonCRC Press200310.1201/9780203912072
    [Google Scholar]
  144. (bLiu, L. and Sheardown, H., 2005. Glucose permeable poly (dimethyl siloxane) poly (N-isopropyl acrylamide) interpenetrating networks as ophthalmic biomaterials. Biomaterials, 26(3), pp.233-244.
  145. KatzI.M. BlackmanW.M. A soluble sustained-release ophthalmic delivery unit.Am. J. Ophthalmol.197783572873410.1016/0002‑9394(77)90141‑6868971
    [Google Scholar]
  146. ChetoniP. Di ColoG. GrandiM. MorelliM. SaettoneM.F. DarougarS. Silicone rubber/hydrogel composite ophthalmic inserts: preparation and preliminary in vitro/in vivo evaluation.Eur. J. Pharm. Biopharm.199846112513210.1016/S0939‑6411(97)00168‑99700030
    [Google Scholar]
  147. RehmaniS. AhmadM. MinhasM.U. AnwarH. ZangiM.I. SohailM. Development of natural and synthetic polymer-based semi-interpenetrating polymer network for controlled drug delivery: Optimization and in vitro evaluation studies.Polym. Bull.201774373776110.1007/s00289‑016‑1743‑y
    [Google Scholar]
  148. LiuL. SheardownH. Glucose permeable poly (dimethyl siloxane) poly (-isopropyl acrylamide) interpenetrating networks as ophthalmic biomaterials.Biomaterials200526323324410.1016/j.biomaterials.2004.02.02515262466
    [Google Scholar]
  149. LiuX. GuoH. ZhaL. Study of pH/temperature dual stimuli‐responsive nanogels with interpenetrating polymer network structure.Polym. Int.20126171144115010.1002/pi.4192
    [Google Scholar]
  150. YañezF. ConcheiroA. AlvarezlorenzoC. Macromolecule release and smoothness of semi-interpenetrating PVP–pHEMA networks for comfortable soft contact lenses.Eur. J. Pharm. Biopharm.20086931094110310.1016/j.ejpb.2008.01.02318359212
    [Google Scholar]
  151. YuY FengR LiJ WangY SongY TanG Glucose permeable poly (dimethyl siloxane) poly (N-isopropyl acrylamide) interpenetrating networks as ophthalmic biomaterials.Biomaterials.2019263233244
    [Google Scholar]
  152. Moya-OrtegaM.D. Alvarez-LorenzoC. SigurdssonH.H. ConcheiroA. LoftssonT. γ-Cyclodextrin hydrogels and semi-interpenetrating networks for sustained delivery of dexamethasone.Carbohydr. Polym.201080390090710.1016/j.carbpol.2010.01.004
    [Google Scholar]
  153. FanH. GongJ.P. Fabrication of bioinspired hydrogels: Challenges and opportunities.Macromolecules20205382769278210.1021/acs.macromol.0c00238
    [Google Scholar]
  154. SpicerC.D. Hydrogel scaffolds for tissue engineering: The importance of polymer choice.Polym. Chem.202011218421910.1039/C9PY01021A
    [Google Scholar]
  155. HighleyC.B. PrestwichG.D. BurdickJ.A. Recent advances in hyaluronic acid hydrogels for biomedical applications.Curr. Opin. Biotechnol.201640354010.1016/j.copbio.2016.02.00826930175
    [Google Scholar]
  156. YanC. PochanD.J. Rheological properties of peptide-based hydrogels for biomedical and other applications.Chem. Soc. Rev.20103993528354010.1039/b919449p20422104
    [Google Scholar]
  157. GsibO. DuvalJ.L. GoczkowskiM. DeneufchatelM. FichetO. GardeL.V. BencherifS. EglesC. Evaluation of fibrin-based interpenetrating polymer networks as potential biomaterials for tissue engineering.Nanomaterials201771243610.3390/nano712043629232876
    [Google Scholar]
  158. MahouR. VlahosA.E. ShulmanA. SeftonM.V. Interpenetrating alginate-collagen polymer network microspheres for modular tissue engineering.ACS Biomater. Sci. Eng.20184113704371210.1021/acsbiomaterials.7b0035633429609
    [Google Scholar]
  159. ShojarazaviN. MashayekhanS. PazookiH. MohsenifardS. BaniasadiH. Alginate/cartilage extracellular matrix-based injectable interpenetrating polymer network hydrogel for cartilage tissue engineering.J. Biomater. Appl.202136580381710.1177/0885328221102402034121491
    [Google Scholar]
  160. SchipaniR. ScheurerS. FlorentinR. CritchleyS.E. KellyD.J. Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites.Biofabrication202012303501110.1088/1758‑5090/ab870832252045
    [Google Scholar]
  161. (a GuoW. DoumaL. HuM.H. EglinD. AliniM. ŠećerovićA. GradS. PengX. ZouX. D’EsteM. PeroglioM. Hyaluronic acid-based interpenetrating network hydrogel as a cell carrier for nucleus pulposus repair.Carbohydr. Polym.202227711882810.1016/j.carbpol.2021.11882834893245
    [Google Scholar]
  162. (bHemmatgir F, Koupaei N, Poorazizi E. Characterization of a novel semi-interpenetrating hydrogel network fabricated by polyethylene glycol diacrylate/polyvinyl alcohol/tragacanth gum as a wound dressing. Burns. 2022;48(1):146-55.
  163. CassimjeeH. KumarP. UbanakoP. ChoonaraY.E. Genipin-crosslinked, proteosaccharide scaffolds for potential neural tissue engineering applications.Pharmaceutics202214244110.3390/pharmaceutics1402044135214173
    [Google Scholar]
  164. MohanP. A critical review: The modification, properties, and applications of epoxy resins.Polym. Plast. Technol. Eng.201352210712510.1080/03602559.2012.727057
    [Google Scholar]
  165. FarooqU. TeuwenJ. DransfeldC. Toughening of epoxy systems with interpenetrating polymer network (IPN): A review.Polymers2020129190810.3390/polym1209190832847125
    [Google Scholar]
  166. BhardwajV. HaritG. KumarS. Interpenetrating polymer network (IPN): Novel approach in drug delivery.Int J Drug Dev Res.2012434154
    [Google Scholar]
  167. YangX. ZhangH. ZhaoJ. LiuY. ZhangZ. LiuY. YanX. Multiscale supramolecular polymer network with microphase-separated structure enabled by host−guest self-sorting recognitions.Chem. Eng. J.202245013813510.1016/j.cej.2022.138135
    [Google Scholar]
  168. DhandA.P. GalarragaJ.H. BurdickJ.A. Enhancing biopolymer hydrogel functionality through interpenetrating networks.Trends Biotechnol.202139551953810.1016/j.tibtech.2020.08.00732950262
    [Google Scholar]
  169. HemmatgirF. KoupaeiN. PooraziziE. Characterization of a novel semi-interpenetrating hydrogel network fabricated by polyethylene glycol diacrylate/polyvinyl alcohol/tragacanth gum as a wound dressing.Burns202248114615510.1016/j.burns.2021.04.02534686391
    [Google Scholar]
  170. AgnihotriS. AminabhaviT. Novel interpenetrating network chitosan-poly(ethylene oxide-g-acrylamide) hydrogel microspheres for the controlled release of capecitabine.Int. J. Pharm.2006324210311510.1016/j.ijpharm.2006.05.06116824710
    [Google Scholar]
  171. RokhadeA.P. ShelkeN.B. PatilS.A. AminabhaviT.M. Novel hydrogel microspheres of chitosan and pluronic F-127 for controlled release of 5-fluorouracil.J. Microencapsul.200724327428810.1080/0265204070128136517454438
    [Google Scholar]
  172. SangX. ZhangM. WenQ. ShiG. ZhangL. NiC. Preparation of drug-eluting microspheres based on semi-interpenetrating polymer network of modified chitosan and poly (2-acrylamide-2-methylpropanesulfonic acid).Polym. Sci. Ser. A2019611616910.1134/S0965545X19010061
    [Google Scholar]
  173. SirajS. SudhakarP. RaoU. SekharnathK. RaoK. SubhaM. Interpenetrating polymer network microspheres of poly (vinyl alcohol)/methyl cellulose for controlled release studies of 6-thioguanine.Int. J. Pharm. Pharm. Sci.201469101106
    [Google Scholar]
  174. EswarammaS. RaoK.S.V.K. Synthesis of dual responsive carbohydrate polymer based IPN microbeads for controlled release of anti-HIV drug.Carbohydr. Polym.201715612513410.1016/j.carbpol.2016.09.02327842806
    [Google Scholar]
  175. SulladA.G. ManjeshwarL.S. AminabhaviT.M. Novel semi-interpenetrating microspheres of dextran-grafted-acrylamide and poly (vinyl alcohol) for controlled release of abacavir sulfate.Ind. Eng. Chem. Res.20115021117781178410.1021/ie2006438
    [Google Scholar]
  176. JanaS. SharmaR. MaitiS. SenK.K. Interpenetrating hydrogels of O -carboxymethyl Tamarind gum and alginate for monitoring delivery of acyclovir.Int. J. Biol. Macromol.2016921034103910.1016/j.ijbiomac.2016.08.01727514441
    [Google Scholar]
  177. ThorneJ.B. VineG.J. SnowdenM.J. Microgel applications and commercial considerations.Colloid Polym. Sci.20112895-662564610.1007/s00396‑010‑2369‑5
    [Google Scholar]
  178. KucklingD. HoffmannJ. PlötnerM. FerseD. KretschmerK. AdlerH.J.P. ArndtK-F. ReicheltR. Photo cross-linkable poly(N-isopropylacrylamide) copolymers III: micro-fabricated temperature responsive hydrogels.Polymer200344164455446210.1016/S0032‑3861(03)00413‑0
    [Google Scholar]
  179. AgnihotriS.A. AminabhaviT.M. Development of novel interpenetrating network gellan gum-poly(vinyl alcohol) hydrogel microspheres for the controlled release of carvedilol.Drug Dev. Ind. Pharm.200531649150310.1080/0363904050021587516109622
    [Google Scholar]
  180. BabuV.R. HosamaniK.M. AminabhaviT.M. Preparation and in-vitro release of chlorothiazide novel pH-sensitive chitosan-N,N′-dimethylacrylamide semi-interpenetrating network microspheres.Carbohydr. Polym.200871220821710.1016/j.carbpol.2007.05.039
    [Google Scholar]
  181. BoppanaR. MohanK.G. NayakU. MutalikS. SaB. KulkarniR.V. Novel pH-sensitive IPNs of polyacrylamide-g-gum ghatti and sodium alginate for gastro-protective drug delivery.Int. J. Biol. Macromol.20157513314310.1016/j.ijbiomac.2015.01.02925623023
    [Google Scholar]
  182. NayakA.K. PalD. Development of pH-sensitive tamarind seed polysaccharide–alginate composite beads for controlled diclofenac sodium delivery using response surface methodology.Int. J. Biol. Macromol.201149478479310.1016/j.ijbiomac.2011.07.01321816168
    [Google Scholar]
  183. JanaS. SahaA. NayakA.K. SenK.K. BasuS.K. Aceclofenac-loaded chitosan-tamarind seed polysaccharide interpenetrating polymeric network microparticles.Colloids Surf. B Biointerfaces201310530330910.1016/j.colsurfb.2013.01.01323399430
    [Google Scholar]
  184. RamakrishnaP. RaoK.M. SekharnathK. KumarbabuP. VeeraprathapS. RaoK.C. Synthesis and characterization of Interpenetrating polymer network microspheres of acryl amide grafted Carboxymethylcellulose and Sodium alginate for controlled release of Triprolidine hydrochloride monohydrate.J. Appl. Pharm. Sci.20133310110810.7324/JAPS.2013.30320
    [Google Scholar]
  185. SajeeshS. SharmaC.P. Poly methacrylic acid-alginate semi-IPN microparticles for oral delivery of insulin: A preliminary investigation.J. Biomater. Appl.2004191354510.1177/088532820404299215245642
    [Google Scholar]
  186. MohamadniaZ. MehrZ.M.J. KabiriK. JamshidiA. MobediH. pH-sensitive IPN hydrogel beads of carrageenan-alginate for controlled drug delivery.J. Bioact. Compat. Polym.200722334235610.1177/0883911507078519
    [Google Scholar]
  187. SekharE.C. RaoK. RaoK.M.S. EswarammaS. RajuR.R. Development of gelatin-lignosulfonic acid blend microspheres for controlled release of an anti-malarial drug (pyronaridine).Ind J Adv Chem Sci.20142228237
    [Google Scholar]
  188. SulladA.G. ManjeshwarL.S. AminabhaviT.M. NaikP.N. Microspheres of poly (vinyl alcohol) and methyl cellulose for the controlled release of losartan potassium and clopidogrel bisulphate.Am. J. Adv. Drug Deliv.20143407423
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775288648240417050949
Loading
/content/journals/cdrr/10.2174/0125899775288648240417050949
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test