Current Drug Metabolism - Volume 26, Issue 2, 2025
Volume 26, Issue 2, 2025
-
-
Temperature-sensitive Hydrogel: An Effective Treatment for Nasal Drug Delivery Targeting the Brain
More LessAuthors: Doudou Li, Liping Chen, Yidan Chen, Lin Jiang, Rong Wang and Wenbin LiThe brain is highly protected by physiological barriers, in which the blood-brain barrier restricts the entry of most drugs. Intranasal drug delivery is a non-invasive way of drug delivery, which can cross the blood-brain barrier and achieve direct and efficient targeted delivery to the brain. Therefore, it has great potential in application to the treatment of brain diseases. Temperature-sensitive hydrogels undergo a solution-gel transition with temperature change, and the gel form has good mucosal adsorption properties in the nasal cavity, which is commonly used for targeted delivery of drugs for brain diseases. In this article, by introducing the transport mechanism of brain targeting after nasal administration, combined with the prescription design and basic performance study of temperature-sensitive nasal hydrogel, we summarized the research on the role that temperature-sensitive hydrogel plays brain targeting after via nasal administration, aiming to provide a reference for the development of therapeutic drugs for cerebral diseases and their clinical application. A graphical summary.
-
-
-
A Comprehensive Review on the Pharmacokinetics and Bioanalysis of Piperaquine
More LessAuthors: Yuewu Xie, Wenting Zhang, Ziqing Rui, Yuan Dai, Jie Xing and Jun HanPiperaquine is an important partner drug in artemisinin-based combination therapy, which is highly effective for the treatment of uncomplicated malaria. Several studies have been reported on its pharmacokinetic profiles in different populations, as well as its bioanalytical methods. Piperaquine shows a very large volume of distribution (up to 877 l/kg), a low oral clearance (0.3-1.9 l/h/kg), and an extremely long terminal elimination half-life (up to 30 days) in both healthy volunteers and malarial patients. Piperaquine metabolism is primarily mediated by CYP3A4, and to a lesser extent by CYP2D6 and CYP2C8. The oral bioavailability of piperaquine can be influenced by the consumption of high-fat food. The pharmacokinetics of piperaquine is affected by body weight, age, and pregnancy. Piperaquine has limited clinically relevant interactions with most commonly prescribed drugs. Plasma has been the most commonly studied matrix, and the most used pretreatment techniques involve protein precipitation. HPLC-UV and HPLC-MS/MS are usually used for the quantification of piperaquine in biological samples with researchers seeking a balance between affordability and sensitivity. This review summarizes the analytical assays used for the quantification of piperaquine in biological samples and its pharmacokinetic properties, with particular attention to information on food–drug interactions, drug-drug interactions, and pharmacokinetic characteristics in special populations, including pregnant women and children.
-
-
-
Antioxidant Potential of Gallic Acid Prevents Di-2-ethyhexyl Phthalate-induced Inhibition of Osteogenic Differentiation
More LessAuthors: Abnosi Mohammad Hussein and Parvaz MahrokhObjectiveDi-2-ethylhexylphthalate (DEHP) is utilized as a plasticizer in polyvinylchloride products (PVC). When medical devices like blood bags, tubes, and syringes are employed, DEHP leaches out of the PVC polymers and enters biological fluids through non-covalent binding. The presence of DEHP in peripheral blood leads to contamination of bone marrow. Previous research has demonstrated that this chemical induces oxidative stress, which adversely affects the viability and osteo-differentiation of bone marrow mesenchymal stem cells (BMSCs). Hence, our current study aims to utilize gallic acid (GA), a natural antioxidant, to alleviate the inhibitory effects of DEHP on BMSCs' osteogenic differentiation.
Materials and MethodsIn osteogenic media, BMSCs extracted from Wistar rats were treated with 0.25 μM of GA and 100 μM of DEHP individually and in combination for 20 days. Then viability, total protein, malondialdehyde (MDA), total antioxidant capacity (TAC), catalase (CAT) and superoxide dismutase (SOD), alkaline phosphatase activity, production of collagen1A1 protein as well as expression of Bmp2 and 7, Smad1, Runx2, Oc, Alp, Col-1a1 genes were investigated.
ResultsThe viability and differentiation ability of BMSCs was significantly (p<0.0001) decreased by DEHP, while GA significantly (P<0.0001) ameliorated the effect of DEHP. DEHP caused a significant decrease (P<0.0001) in the total protein and collagen-1A1 concentration, TAC and activity of antioxidant enzymes, but significantly (P<0.001) increased MDA level. In addition, DEHP caused a significant decrease in the expression of osteo-related genes. In the co-treatment group, GA mitigated the toxic effects of DEHP compared to the control group by inhibiting DEHP-induced oxidative stress and enhancing cell viability and osteo-differentiation properties.
ConclusionThese results confirm that GA reduces the negative effects of DEHP on the osteo-differentiation of BMSCs at the cellular level. However, further studies are necessary to validate these findings.
-
-
-
A Gut Microbial Transformation-Integrated Network Pharmacology Approach to Elucidate the Therapeutic Mechanisms of Timosaponin AIII in Diabetes
More LessAuthors: Huiyi Zhang, Jinhuan Wei, Xi Tian, Wenyu Li, Mengxin Yang, Qian Zhang, Nan Wang, Yiran Jin and Yingfeng DuObjectiveTimosaponin AIII, with poorly soluble characteristics, has a potential antidiabetic effect evaluated in vitro and in vivo. The major problem associated with poorly soluble drugs is very low bioavailability. This study aimed to investigate the metabolic profiles and antidiabetic mechanism of Timosaponin AIII.
Materials and MethodsThe metabolic profiles of Timosaponin AIII in intestinal flora were analyzed using LC-MS/MS. Based on mass spectrometry analysis, network pharmacology combined with the GEO database was used to identify potential targets and elucidate the antidiabetic mechanism. Finally, the stability of compound-target complexes was further functionally confirmed by molecular docking.
ResultsAs a result, 13 metabolites were identified. After the compound-target network, the genes of its metabolites increased by 60 compared to those of Timosaponin AIII. Subsequently, 13 core targets related to antidiabetic efficacy were identified through PPI network analysis. Key genes EGFR, MAPK1, and ICAM1 with strong binding efficiencies with metabolites were identified as crucial targets for the therapeutic effects of Timosaponin AIII. The KEGG analysis indicated that timosaponin AIII combated diabetes through various signaling pathways, including PI3K-Akt, FoxO, and HIF-1 signaling pathways, etc.
ConclusionTaken together, this study clarified the mechanism of Timosaponin AIII against diabetes by identifying additional targets and pathways, and the importance of glycosidic structures. Otherwise, we might provide a solid foundation for the development of clinical applications of Timosaponin AIII.
-
-
-
HFD-induced Alterations in Renal Tubular Oatp4c1-P-gp Transport Systems in Mice: Impact on Digoxin Renal Excretion and Gadolinium-Enhanced Radiological Manifestations
More LessAuthors: Jingwen Men, Jing Li, Tianyan Zhang, Yang Chen, Bin Xu, Huinan Hou, Lu Sun, Haoran Yue, Zhaoyue Duan, Ting Gui and Zhibo GaiObjectiveThe clearance of digoxin in obese patients with renal impairment is reduced, leading to elevated serum concentrations and increased risks of digoxin toxicity. However, the exact mechanism of such alterations in obese patients remains unclear. Previous studies have suggested that the organic anion transporting polypeptide 4c1 (Oatp4c1, Slco4c1) mediates the elimination of digoxin at the basal membrane of the proximal tubule (PT), indicating its potential role in the pharmacokinetic changes in obese patients. This study aims to investigate the effects of a high-fat diet HFD on digoxin pharmacokinetics and transporter expression in mouse models and further analyze its significance by detecting the expression of transporters in human renal tissue samples.
MethodsFirst, HFD-induced obese mouse model was established. Mice were intraperitoneally injected with digoxin, and 24-hour urine samples and blood samples at five time points were collected. Pharmacokinetic evaluation was performed using liquid chromatography-tandem mass spectrometry. Renal pathological changes and the expression of digoxin transporters (Oatp4c1 and P-glycoprotein (P-gp)) were assessed using histological staining, Western blots (WB), as well as quantitative polymerase chain reaction (qPCR). Human renal pathologic alterations and expression of transporter proteins showed consistency with the results of animal experiments. To explore the potential use of gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA) as a marker for Oatp4c1 function, drug interactions between digoxin and Gd-EOB-DTPA were assessed in mice.
ResultsHFD-induced obese mice showed significant increases in body weight, blood glucose, and triglyceride, along with elevated blood concentration of digoxin, increased areas under the curve, reduced renal clearance rate (CLr), and prolonged half-life (t1/2). Histological staining revealed proximal tubular epithelial cell detachment and slight fibrosis in the kidney of the HFD group, with decreased expression of villin, the protein marker for PT. Immunofluorescent staining and Western blots for digoxin transporters showed a significant reduction of Oatp4c1 and P-gp proteins, suggesting that the renal elimination of digoxin was affected by the reduced level of Oatp4c1 and P-gp proteins. Co-administration of digoxin and Gd-EOB-DTPA resulted in a reduced clearance of Gd-EOB-DTPA, suggesting that both share the same transporter. The blood concentration of Gd-EOB-DTPA was higher (77.5%) in the HFD group. Renal magnetic resonance imaging (MRI) intensity was lower in the HFD group after Gd-EOB-DTPA administration compared to the Chow group.
ConclusionObesity-induced kidney damage results in decreased Oatp4c1 and P-gp expression and function in PT, resulting in a reduction of digoxin renal clearance. The inhibition of Gd-EOB-DTPA clearance by digoxin co-administration and the increased Gd-EOB-DTPA blood concentration in the HFD group both suggest its potential use in characterizing the Oatp4c1 function in vivo.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month