Skip to content
2000
image of The Application of Artificial Intelligence in Drug ADME Research
Preview this fast track article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002398453250611101651
2025-06-18
2025-09-15
Loading full text...

Full text loading...

References

  1. Sree Kommalapati H. Pilli P. Golla V.M. Bhatt N. Samanthula G. In silico tools to thaw the complexity of the data: Revolutionizing drug research in drug metabolism, pharmacokinetics and toxicity prediction. Curr. Drug Metab. 2023 24 11 735 755 10.2174/0113892002270798231201111422 38058088
    [Google Scholar]
  2. Yin J. Li F. Zhou Y. Mou M. Lu Y. Chen K. Xue J. Luo Y. Fu J. He X. Gao J. Zeng S. Yu L. Zhu F. INTEDE: interactome of drug-metabolizing enzymes. Nucleic Acids Res. 2021 49 D1 D1233 D1243 10.1093/nar/gkaa755 33045737
    [Google Scholar]
  3. Dudas B. Miteva M.A. Computational and artificial intelligence-based approaches for drug metabolism and transport prediction. Trends Pharmacol. Sci. 2024 45 1 39 55 10.1016/j.tips.2023.11.001 38072723
    [Google Scholar]
  4. Tran T.T.V. Tayara H. Chong K.T. Artificial intelligence in drug metabolism and excretion prediction: recent advances, challenges, and future perspectives. Pharmaceutics 2023 15 4 1260 10.3390/pharmaceutics15041260 37111744
    [Google Scholar]
  5. Yeh A.H.W. Norn C. Kipnis Y. Tischer D. Pellock S.J. Evans D. Ma P. Lee G.R. Zhang J.Z. Anishchenko I. Coventry B. Cao L. Dauparas J. Halabiya S. DeWitt M. Carter L. Houk K.N. Baker D. De novo design of luciferases using deep learning. Nature 2023 614 7949 774 780 10.1038/s41586‑023‑05696‑3 36813896
    [Google Scholar]
  6. Wang Q. Liu X. Zhang H. Chu H. Shi C. Zhang L. Cytochrome P450 enzyme design by constraining the catalytic pocket in a diffusion model.Research (Wash D C) 2024 8 7 0413 10.34133/research.0413
    [Google Scholar]
  7. Danel T. Wojtuch A. Podlewska S. Generation of new inhibitors of selected cytochrome P450 subtypes– In silico study. Comput. Struct. Biotechnol. J. 2022 20 5639 5651 10.1016/j.csbj.2022.10.005 36284709
    [Google Scholar]
  8. Luo Y.B. Hou Y.Y. Wang Z. Hu X.M. Li W. Li Y. Liu Y. Li T.J. Ai C.Z. Computational prediction for the metabolism of human UDP-glucuronosyltransferase 1A1 substrates. Comput. Biol. Med. 2022 149 105959 10.1016/j.compbiomed.2022.105959 36063691
    [Google Scholar]
  9. Fu L. Shi S. Yi J. Wang N. He Y. Wu Z. Peng J. Deng Y. Wang W. Wu C. Lyu A. Zeng X. Zhao W. Hou T. Cao D. ADMETlab 3.0: An updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res. 2024 52 W1 W422 W431 10.1093/nar/gkae236 38572755
    [Google Scholar]
  10. Tian S. Cao X. Greiner R. Li C. Guo A. Wishart D.S. CyProduct: A software tool for accurately predicting the byproducts of human Cytochrome P450 metabolism. J. Chem. Inf. Model. 2021 61 6 3128 3140 10.1021/acs.jcim.1c00144 34038112
    [Google Scholar]
  11. de Bruyn Kops C. Šícho M. Mazzolari A. Kirchmair J. GLORYx: prediction of the metabolites resulting from phase 1 and phase 2 biotransformations of xenobiotics. Chem. Res. Toxicol. 2021 34 2 286 299 10.1021/acs.chemrestox.0c00224 32786543
    [Google Scholar]
  12. Yin J. You N. Li F. Lu M. Zeng S. Zhu F. State-of-the-art application of artificial intelligence to transporter-centered functional and pharmaceutical research. Curr. Drug Metab. 2023 24 3 162 174 10.2174/1389200224666230523155759 37226790
    [Google Scholar]
  13. Yin J. Chen Z. You N. Li F. Zhang H. Xue J. Ma H. Zhao Q. Yu L. Zeng S. Zhu F. VARIDT 3.0: The phenotypic and regulatory variability of drug transporter. Nucleic Acids Res. 2024 52 D1 D1490 D1502 10.1093/nar/gkad818 37819041
    [Google Scholar]
  14. Abramson J. Adler J. Dunger J. Evans R. Green T. Pritzel A. Ronneberger O. Willmore L. Ballard A.J. Bambrick J. Bodenstein S.W. Evans D.A. Hung C.C. O’Neill M. Reiman D. Tunyasuvunakool K. Wu Z. Žemgulytė A. Arvaniti E. Beattie C. Bertolli O. Bridgland A. Cherepanov A. Congreve M. Cowen-Rivers A.I. Cowie A. Figurnov M. Fuchs F.B. Gladman H. Jain R. Khan Y.A. Low C.M.R. Perlin K. Potapenko A. Savy P. Singh S. Stecula A. Thillaisundaram A. Tong C. Yakneen S. Zhong E.D. Zielinski M. Žídek A. Bapst V. Kohli P. Jaderberg M. Hassabis D. Jumper J.M. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024 630 8016 493 500 10.1038/s41586‑024‑07487‑w 38718835
    [Google Scholar]
  15. Myung Y. de Sá A.G.C. Ascher D.B. Deep-PK: deep learning for small molecule pharmacokinetic and toxicity prediction. Nucleic Acids Res. 2024 52 W1 W469 W475 10.1093/nar/gkae254 38634808
    [Google Scholar]
  16. Obrezanova O. Artificial intelligence for compound pharmacokinetics prediction. Curr. Opin. Struct. Biol. 2023 79 102546 10.1016/j.sbi.2023.102546 36804676
    [Google Scholar]
  17. Chou W.C. Lin Z. Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling. Toxicol. Sci. 2023 191 1 1 14 10.1093/toxsci/kfac101 36156156
    [Google Scholar]
  18. Wu K. Li X. Zhou Z. Zhao Y. Su M. Cheng Z. Wu X. Huang Z. Jin X. Li J. Zhang M. Liu J. Liu B. Predicting pharmacodynamic effects through early drug discovery with artificial intelligence-physiologically based pharmacokinetic (AI-PBPK) modelling. Front. Pharmacol. 2024 15 1330855 10.3389/fphar.2024.1330855 38434709
    [Google Scholar]
  19. Zhang K. Yang X. Wang Y. Yu Y. Huang N. Li G. Li X. Wu J.C. Yang S. Artificial intelligence in drug development. Nat. Med. 2025 31 1 45 59 10.1038/s41591‑024‑03434‑4 39833407
    [Google Scholar]
  20. Zhou Y. Zhang Y. Zhang Z. Zhou Z. Zhu F. AI comes to the Nobel Prize and drug discovery. J. Pharm. Anal. 2024 14 11 101160 10.1016/j.jpha.2024.101160 39850961
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002398453250611101651
Loading
/content/journals/cdm/10.2174/0113892002398453250611101651
Loading

Data & Media loading...


  • Article Type:
    Editorial
Keywords: Artificial Intelligence ; PBPK Modeling ; Transporter ; Deep Learning ; Enzyme ; Drug ADME
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test