Skip to content
2000
Volume 26, Issue 2
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Objective

The clearance of digoxin in obese patients with renal impairment is reduced, leading to elevated serum concentrations and increased risks of digoxin toxicity. However, the exact mechanism of such alterations in obese patients remains unclear. Previous studies have suggested that the organic anion transporting polypeptide 4c1 (Oatp4c1, Slco4c1) mediates the elimination of digoxin at the basal membrane of the proximal tubule (PT), indicating its potential role in the pharmacokinetic changes in obese patients. This study aims to investigate the effects of a high-fat diet HFD on digoxin pharmacokinetics and transporter expression in mouse models and further analyze its significance by detecting the expression of transporters in human renal tissue samples.

Methods

First, HFD-induced obese mouse model was established. Mice were intraperitoneally injected with digoxin, and 24-hour urine samples and blood samples at five time points were collected. Pharmacokinetic evaluation was performed using liquid chromatography-tandem mass spectrometry. Renal pathological changes and the expression of digoxin transporters (Oatp4c1 and P-glycoprotein (P-gp)) were assessed using histological staining, Western blots (WB), as well as quantitative polymerase chain reaction (qPCR). Human renal pathologic alterations and expression of transporter proteins showed consistency with the results of animal experiments. To explore the potential use of gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA) as a marker for Oatp4c1 function, drug interactions between digoxin and Gd-EOB-DTPA were assessed in mice.

Results

HFD-induced obese mice showed significant increases in body weight, blood glucose, and triglyceride, along with elevated blood concentration of digoxin, increased areas under the curve, reduced renal clearance rate (CLr), and prolonged half-life (t1/2). Histological staining revealed proximal tubular epithelial cell detachment and slight fibrosis in the kidney of the HFD group, with decreased expression of villin, the protein marker for PT. Immunofluorescent staining and Western blots for digoxin transporters showed a significant reduction of Oatp4c1 and P-gp proteins, suggesting that the renal elimination of digoxin was affected by the reduced level of Oatp4c1 and P-gp proteins. Co-administration of digoxin and Gd-EOB-DTPA resulted in a reduced clearance of Gd-EOB-DTPA, suggesting that both share the same transporter. The blood concentration of Gd-EOB-DTPA was higher (77.5%) in the HFD group. Renal magnetic resonance imaging (MRI) intensity was lower in the HFD group after Gd-EOB-DTPA administration compared to the Chow group.

Conclusion

Obesity-induced kidney damage results in decreased Oatp4c1 and P-gp expression and function in PT, resulting in a reduction of digoxin renal clearance. The inhibition of Gd-EOB-DTPA clearance by digoxin co-administration and the increased Gd-EOB-DTPA blood concentration in the HFD group both suggest its potential use in characterizing the Oatp4c1 function .

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002371501250610074757
2025-06-23
2026-01-20
Loading full text...

Full text loading...

/deliver/fulltext/cdm/26/2/CDM-26-2-06.html?itemId=/content/journals/cdm/10.2174/0113892002371501250610074757&mimeType=html&fmt=ahah

References

  1. KhaliliS. Safavi-NainiS.A.A. ZarandP. MasoumiS. FarsiY. HosseinpanahF. AziziF. Metabolic health’s central role in chronic kidney disease progression: A 20-year study of obesity-metabolic phenotype transitions.Sci. Rep.2024141524410.1038/s41598‑024‑56061‑x38438600
    [Google Scholar]
  2. IqbalJ. WuH.X. NawazM.A. JiangH.L. XuS.N. HuangB.L. LiL. CaiJ.M. ZhouH.D. Risk of incident chronic kidney disease in metabolically healthy obesity and metabolically unhealthy normal weight: A systematic review and meta‐analysis.Obes. Rev.2024252e1365610.1111/obr.1365637904643
    [Google Scholar]
  3. ChoY.K. LeeJ. KimH.S. ParkJ.Y. LeeW.J. KimY.J. JungC.H. Impact of transition in metabolic health and obesity on the incident chronic kidney disease: A nationwide cohort study.J. Clin. Endocrinol. Metab.20201053e148e15710.1210/clinem/dgaa03331967306
    [Google Scholar]
  4. KyomyaJ. AtwiineF. ShegenaE.A. MuhindoR. YadesaT.M. Drug-related problems and associated factors among patients with kidney dysfunction at a tertiary hospital in southwestern Uganda: A prospective observational study.BMC Nephrol.202324137510.1186/s12882‑023‑03437‑238114948
    [Google Scholar]
  5. XiaoK.B. GrennellE. NgoyA. GeorgeT.P. FollL.B. HendershotC.S. SloanM.E. Cannabis self-administration in the human laboratory: A scoping review of ad libitum studies.Psychopharmacology (Berl.)202324071393141510.1007/s00213‑023‑06360‑437157001
    [Google Scholar]
  6. KorenG. Clinical pharmacokinetic significance of the renal tubular secretion of digoxin.Clin. Pharmacokinet.198713533434310.2165/00003088‑198713050‑000043319348
    [Google Scholar]
  7. IvanyukA. LivioF. BiollazJ. BuclinT. Renal drug transporters and drug interactions.Clin. Pharmacokinet.201756882589210.1007/s40262‑017‑0506‑828210973
    [Google Scholar]
  8. SteinessE. Renal tubular secretion of digoxin.Circulation197450110310710.1161/01.CIR.50.1.1034835256
    [Google Scholar]
  9. SilvermanM. TrainorC. In vivo determination of cellular uptake in the kidney.Fed. Proc.19824114305430606754459
    [Google Scholar]
  10. GibsonT.P. QuintanillaA. Effect of quinidine on the renal handling of digoxin.J. Lab. Clin. Med.1980966106210707430762
    [Google Scholar]
  11. PedersenE.K. Dorph-PedersenA. HvidtS. KlitgaardA.N. Nielsen-KudskF. Digoxin-verapamil interaction.Clin. Pharmacol. Ther.198130331131610.1038/clpt.1981.1657273594
    [Google Scholar]
  12. FensterP.E. WhiteN.W.Jr HansonC.D. Pharmacokinetic evaluation of the digoxin-amiodarone interaction.J. Am. Coll. Cardiol.19855110811210.1016/S0735‑1097(85)80091‑73964797
    [Google Scholar]
  13. LannoyD.I.A. KorenG. KleinJ. CharukJ. SilvermanM. Cyclosporin and quinidine inhibition of renal digoxin excretion: Evidence for luminal secretion of digoxin.Am. J. Physiol.19922634 Pt 2F613F6221357987
    [Google Scholar]
  14. HeJ. YuY. PrasadB. ChenX. UnadkatJ.D. Mechanism of an unusual, but clinically significant, digoxin–bupropion drug interaction.Biopharm. Drug Dispos.201435525326310.1002/bdd.189024436229
    [Google Scholar]
  15. KleinH.O. LangR. SegniD.E. KaplinskyE. Verapamil-digoxin interaction.N. Engl. J. Med.1980303316010.1056/NEJM1980071730303167383080
    [Google Scholar]
  16. RomanR.J. KaukerM.L. Renal tubular transport of 3H-digoxin in saline diuresis in rats.Circ. Res.197638318519110.1161/01.RES.38.3.1851248066
    [Google Scholar]
  17. BraterD.C. The pharmacological role of the kidney.Drugs1980191314810.2165/00003495‑198019010‑000036988197
    [Google Scholar]
  18. MikkaichiT. SuzukiT. OnogawaT. TanemotoM. MizutamariH. OkadaM. Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney.Proc. Natl. Acad. Sci.20043569357410.1073/pnas.0304987101
    [Google Scholar]
  19. TanigawaraY. OkamuraN. HiraiM. YasuharaM. UedaK. KiokaN. KomanoT. HoriR. Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1).J. Pharmacol. Exp. Ther.1992263284084510.1016/S0022‑3565(25)10423‑01359120
    [Google Scholar]
  20. WuW. BushK.T. NigamS.K. Key role for the organic anion transporters, OAT1 and OAT3, in the in vivo handling of uremic toxins and solutes.Sci. Rep.201771493910.1038/s41598‑017‑04949‑228694431
    [Google Scholar]
  21. GaletinA. BrouwerK.L.R. TweedieD. YoshidaK. SjöstedtN. AleksunesL. ChuX. EversR. HafeyM.J. LaiY. MatssonP. RiselliA. ShenH. SparreboomA. VarmaM.V.S. YangJ. YangX. YeeS.W. Zamek-GliszczynskiM.J. ZhangL. GiacominiK.M. Membrane transporters in drug development and as determinants of precision medicine.Nat. Rev. Drug Discov.202423425528010.1038/s41573‑023‑00877‑138267543
    [Google Scholar]
  22. LiuS. ZhaoY. LuS. ZhangT. LindenmeyerM.T. NairV. GiesS.E. WuG. NelsonR.G. CzogallaJ. AypekH. ZielinskiS. LiaoZ. SchaperM. FerminD. CohenC.D. DelicD. KrebsC.F. GrahammerF. WiechT. KretzlerM. Meyer-SchwesingerC. BonnS. HuberT.B. Single-cell transcriptomics reveals a mechanosensitive injury signaling pathway in early diabetic nephropathy.Genome Med.2023151210.1186/s13073‑022‑01145‑436627643
    [Google Scholar]
  23. WuJ. SunZ. YangS. FuJ. FanY. WangN. HuJ. MaL. PengC. WangZ. LeeK. HeJ.C. LiQ. Kidney single-cell transcriptome profile reveals distinct response of proximal tubule cells to SGLT2i and ARB treatment in diabetic mice.Mol. Ther.20223041741175310.1016/j.ymthe.2021.10.01334678510
    [Google Scholar]
  24. WuH. VillalobosG.R. YaoX. ReillyD. ChenT. RankinM. MyshkinE. BreyerM.D. HumphreysB.D. Mapping the single-cell transcriptomic response of murine diabetic kidney disease to therapies.Cell Metab.202234710641078.e610.1016/j.cmet.2022.05.01035709763
    [Google Scholar]
  25. ZhangW.Y. SunH.Y. ZhangW.L. FengR. Effect of type 2 diabetes on liver images of GD-EOB-DTPA-enhanced MRI during the hepatobiliary phase.Sci. Rep.202313154310.1038/s41598‑023‑27730‑036631556
    [Google Scholar]
  26. HammB. StaksT. MühlerA. BollowM. TaupitzM. FrenzelT. WolfK.J. WeinmannH.J. LangeL. Phase I clinical evaluation of Gd-EOB-DTPA as a hepatobiliary MR contrast agent: Safety, pharmacokinetics, and MR imaging.Radiology1995195378579210.1148/radiology.195.3.77540117754011
    [Google Scholar]
  27. WeinmannH.J. Schuhmann-GiampieriG. Schmitt-WillichH. VoglerH. FrenzelT. GriesH. A new lipophilic gadolinium chelate as a tissue‐specific contrast medium for MRI.Magn. Reson. Med.199122223323710.1002/mrm.19102202141812351
    [Google Scholar]
  28. GschwendS. EbertW. Schultze-MosgauM. BreuerJ. Pharmacokinetics and imaging properties of Gd-EOB-DTPA in patients with hepatic and renal impairment.Invest. Radiol.201146955656610.1097/RLI.0b013e31821a218a21623212
    [Google Scholar]
  29. KawaharaM. SakataA. MiyashitaT. TamaiI. TsujiA. Physiologically based pharmacokinetics of digoxin in mdr1a knockout mice.J. Pharm. Sci.199988121281128710.1021/js990176310585223
    [Google Scholar]
  30. GaiZ. ZhouG. GuiT. ItohS. OikawaK. UetaniK. MuragakiY. Trps1 haploinsufficiency promotes renal fibrosis by increasing Arkadia expression.J. Am. Soc. Nephrol.20102191468147610.1681/ASN.200912120120507941
    [Google Scholar]
  31. IkarashiN. KagamiM. KobayashiY. IshiiM. TodaT. OchiaiW. SugiyamaK. Changes in the pharmacokinetics of digoxin in polyuria in streptozotocin-induced diabetic mice and lithium carbonate-treated mice.Xenobiotica201141648649310.3109/00498254.2011.55184821319957
    [Google Scholar]
  32. LungkaphinA. ArjinajarnP. PongchaidechaA. SrimaroengC. ChatsudthipongL. ChatsudthipongV. Impaired insulin signaling affects renal organic anion transporter 3 (Oat3) function in streptozotocin-induced diabetic rats.PLoS One201495e9623610.1371/journal.pone.009623624801871
    [Google Scholar]
  33. MottaS.E. SilvaI.P.H. DaryadelA. HaykirB. Pastor-ArroyoE.M. BettoniC. HernandoN. WagnerC.A. Expression of NaPi-IIb in rodent and human kidney and upregulation in a model of chronic kidney disease.Pflugers Arch.2020472444946010.1007/s00424‑020‑02370‑932219532
    [Google Scholar]
  34. ZeniL. NordenA.G.W. CancariniG. UnwinR.J. A more tubulocentric view of diabetic kidney disease.J. Nephrol.201730670171710.1007/s40620‑017‑0423‑928840540
    [Google Scholar]
  35. Kogot-LevinA. HindenL. RiahiY. IsraeliT. TiroshB. CerasiE. MizrachiE.B. TamJ. MosenzonO. LeibowitzG. Proximal tubule mTORC1 Is a central player in the pathophysiology of diabetic nephropathy and its correction by SGLT2 inhibitors.Cell Rep.202032410795410.1016/j.celrep.2020.10795432726619
    [Google Scholar]
  36. EvansR.L. OwensS.M. RuchS. KennedyR.H. SeifenE. The effect of age on digoxin pharmacokinetics in Fischer-344 rats.Toxicol. Appl. Pharmacol.19901021616710.1016/0041‑008X(90)90083‑72296772
    [Google Scholar]
  37. MahmoodI. A GFR-based method to predict the effect of renal impairment on the exposure or clearance of renally excreted drugs: A comparative study between a simple GFR method and a physiologically based pharmacokinetic model.Drugs R D.202020437738710.1007/s40268‑020‑00327‑y33150526
    [Google Scholar]
  38. ScotcherD. JonesC. PosadaM. GaletinA. Rostami-HodjeganA. Key to opening kidney for in vitro-in vivo extrapolation entrance in health and disease: Part II: Mechanistic models and in vitro-in vivo extrapolation.AAPS J.20161851082109410.1208/s12248‑016‑9959‑127506526
    [Google Scholar]
  39. EwyG.A. GrovesB.M. BallM.F. NimmoL. JacksonB. MarcusF. Digoxin metabolism in obesity.Circulation197144581081410.1161/01.CIR.44.5.8105115072
    [Google Scholar]
  40. SaadanyE.T. RosmalenV.B. GaiZ. HillerC. VerheijJ. StiegerB. GulikV.T. VisentinM. Kullak-UblickG.A. microRNA‐206 modulates the hepatic expression of the organic anion‐transporting polypeptide 1B1.Liver Int.201939122350235910.1111/liv.1421231408569
    [Google Scholar]
  41. ClarkeJ.D. NovakP. LakeA.D. HardwickR.N. CherringtonN.J. Impaired N‐linked glycosylation of uptake and efflux transporters in human non‐alcoholic fatty liver disease.Liver Int.20173771074108110.1111/liv.1336228097795
    [Google Scholar]
  42. LuX. DongY. JianZ. LiQ. GongL. TangL. ZhouX. LiuM. Systematic investigation of the effects of long-term administration of a high-fat diet on drug transporters in the mouse liver, kidney and intestine.Curr. Drug Metab.201920974275510.2174/138920022066619090212543531475894
    [Google Scholar]
  43. CavetM.E. WestM. SimmonsN.L. Transport and epithelial secretion of the cardiac glycoside, digoxin, by human intestinal epithelial (Caco‐2) cells.Br. J. Pharmacol.199611861389139610.1111/j.1476‑5381.1996.tb15550.x8832062
    [Google Scholar]
  44. ErnestS. RajaramanS. MegyesiJ. Bello-ReussE.N. Expression of MDR1 (multidrug resistance) gene and its protein in normal human kidney.Nephron199777328428910.1159/0001902899375821
    [Google Scholar]
  45. CheymolG. Drug pharmacokinetics in the obese.Fundam. Clin. Pharmacol.19882323925610.1111/j.1472‑8206.1988.tb00635.x3042569
    [Google Scholar]
  46. ThakkarN. SlizgiJ.R. BrouwerK.L.R. Effect of liver disease on hepatic transporter expression and function.J. Pharm. Sci.201710692282229410.1016/j.xphs.2017.04.05328465155
    [Google Scholar]
  47. CanetM.J. HardwickR.N. LakeA.D. DzierlengaA.L. ClarkeJ.D. CherringtonN.J. Modeling human nonalcoholic steatohepatitis-associated changes in drug transporter expression using experimental rodent models.Drug Metab. Dispos.201442458659510.1124/dmd.113.05599624384915
    [Google Scholar]
  48. HardwickR.N. FisherC.D. CanetM.J. SchefferG.L. CherringtonN.J. Variations in ATP-binding cassette transporter regulation during the progression of human nonalcoholic fatty liver disease.Drug Metab. Dispos.201139122395240210.1124/dmd.111.04101221878559
    [Google Scholar]
  49. JeongH.J. LeeS.H. KangH.E. Changes in digoxin pharmacokinetics associated with hepatic P‐glycoprotein upregulation in rats with non‐alcoholic fatty liver disease.Fundam. Clin. Pharmacol.20213561100110810.1111/fcp.1268733914974
    [Google Scholar]
  50. LiZ. ZhangJ. ZhangY. ZhouL. ZhaoJ. LyuY. PoonL.H. LinZ. ToK.K.W. YanX. ZuoZ. Intestinal absorption and hepatic elimination of drugs in high‐fat high‐cholesterol diet‐induced non‐alcoholic steatohepatitis rats: Exemplified by simvastatin.Br. J. Pharmacol.2021178358259910.1111/bph.1529833119943
    [Google Scholar]
  51. GibsonT.P. QuintanillaA.P. Effect of volume expansion and furosemide diuresis on the renal clearance of digoxin.J. Pharmacol. Exp. Ther.19812191545910.1016/S0022‑3565(25)32760‑66793714
    [Google Scholar]
  52. GibsonT.P. RibnerH.S. QuintanillaA.P. Effect of acute changes in serum digoxin concentration on renal digoxin clearance.Clin. Pharmacol. Ther.198436447848410.1038/clpt.1984.2076478733
    [Google Scholar]
  53. ScotcherD. JonesC.R. GaletinA. Rostami-HodjeganA. Delineating the role of various factors in renal disposition of digoxin through application of physiologically based kidney model to renal impairment populations.J. Pharmacol. Exp. Ther.2017360348449510.1124/jpet.116.23743828057840
    [Google Scholar]
  54. MooradianA.D. Digitalis.Clin. Pharmacokinet.198815316517910.2165/00003088‑198815030‑000023052985
    [Google Scholar]
  55. SumnerD.J. RussellA.J. Digoxin pharmacokinetics: Multicompartmental analysis and its clinical implications.Br. J. Clin. Pharmacol.19763222122910.1111/j.1365‑2125.1976.tb00596.x973956
    [Google Scholar]
  56. HagerW.D. FensterP. MayersohnM. PerrierD. GravesP. MarcusF.I. GoldmanS. Digoxin-quinidine interaction.N. Engl. J. Med.1979300221238124110.1056/NEJM197905313002202431681
    [Google Scholar]
  57. ChenZ.S. TiwariA.K. Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases.FEBS J.2011278183226324510.1111/j.1742‑4658.2011.08235.x21740521
    [Google Scholar]
  58. EngelhartD.C. GranadosJ.C. ShiD. JrS.M.H.Jr BakerM.E. AbagyanR. NigamS.K. Systems biology analysis reveals eight slc22 transporter subgroups, including OATs, OCTs, and OCTNs.Int. J. Mol. Sci.2020215179110.3390/ijms2105179132150922
    [Google Scholar]
  59. CroopJ.M. RaymondM. HaberD. DevaultA. ArceciR.J. GrosP. HousmanD.E. The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues.Mol. Cell. Biol.198993134613502471060
    [Google Scholar]
  60. MaherJ.M. SlittA.L. CherringtonN.J. ChengX. KlaassenC.D. Tissue distribution and hepatic and renal ontogeny of the multidrug resistance-associated protein (Mrp) family in mice.Drug Metab. Dispos.200533794795510.1124/dmd.105.00378015802388
    [Google Scholar]
  61. JemnitzK. Heredi-SzaboK. JanossyJ. IojaE. VereczkeyL. KrajcsiP. ABCC2/Abcc2: A multispecific transporter with dominant excretory functions.Drug Metab. Rev.201042340243610.3109/0360253090349174120082599
    [Google Scholar]
  62. NolinT.D. FryeR.F. LeP. SadrH. NaudJ. LeblondF.A. PichetteV. HimmelfarbJ. ESRD impairs nonrenal clearance of fexofenadine but not midazolam.J. Am. Soc. Nephrol.200920102269227610.1681/ASN.200901008219696225
    [Google Scholar]
  63. ToyoharaT. SuzukiT. MorimotoR. AkiyamaY. SoumaT. ShiwakuH.O. TakeuchiY. MishimaE. AbeM. TanemotoM. MasudaS. KawanoH. MaemuraK. NakayamaM. SatoH. MikkaichiT. YamaguchiH. FukuiS. FukumotoY. ShimokawaH. InuiK. TerasakiT. GotoJ. ItoS. HishinumaT. RuberaI. TaucM. Fujii-KuriyamaY. YabuuchiH. MoriyamaY. SogaT. AbeT. SLCO4C1 transporter eliminates uremic toxins and attenuates hypertension and renal inflammation.J. Am. Soc. Nephrol.200920122546255510.1681/ASN.200907069619875811
    [Google Scholar]
  64. AkiyamaY. KikuchiK. SaigusaD. SuzukiT. TakeuchiY. MishimaE. YamamotoY. IshidaA. SugawaraD. JinnoD. ShimaH. ToyoharaT. SuzukiC. SoumaT. MoriguchiT. TomiokaY. ItoS. AbeT. Indoxyl sulfate down-regulates SLCO4C1 transporter through up-regulation of GATA3.PLoS One201387e6651810.1371/journal.pone.006651823874392
    [Google Scholar]
  65. NaudJ. MichaudJ. BeaucheminS. HébertM.J. RogerM. LefrancoisS. LeblondF.A. PichetteV. Effects of chronic renal failure on kidney drug transporters and cytochrome P450 in rats.Drug Metab. Dispos.20113981363136910.1124/dmd.111.03911521525170
    [Google Scholar]
  66. LozanoH.I. LangerO. Use of imaging to assess the activity of hepatic transporters.Expert Opin. Drug Metab. Toxicol.202016214916410.1080/17425255.2020.171810731951754
    [Google Scholar]
  67. MelilloN. ScotcherD. KennaJ.G. GreenC. HinesC.D.G. LaitinenI. HockingsP.D. OgungbenroK. GunwhyE.R. SourbronS. WatertonJ.C. SchuetzG. GaletinA. Use of in vivo imaging and physiologically-based kinetic modelling to predict hepatic transporter mediated drug–drug interactions in rats.Pharmaceutics202315389610.3390/pharmaceutics1503089636986758
    [Google Scholar]
  68. BhattacharyyaT. MallettC.L. ShapiroE.M. MRI-based cell tracking of oatp-expressing cell transplants by pre-labeling with Gd-EOB-DTPA.Mol. Imaging Biol.202426223323910.1007/s11307‑024‑01904‑238448775
    [Google Scholar]
  69. Shuboni-MulliganD.D. ParysM. Blanco-FernandezB. MallettC.L. SchnegelbergerR. TakadaM. ChakravartyS. HagenbuchB. ShapiroE.M. Dynamic contrast–enhanced MRI of OATP dysfunction in diabetes.Diabetes201968227128010.2337/db18‑052530487262
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002371501250610074757
Loading
/content/journals/cdm/10.2174/0113892002371501250610074757
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test