Skip to content
2000
image of HFD-induced Alterations in Renal Tubular Oatp4c1-P-gp Transport Systems in Mice: Impact on Digoxin Renal Excretion and Gadolinium-Enhanced Radiological Manifestations

Abstract

Objective

The clearance of digoxin in obese patients with renal impairment is reduced, leading to elevated serum concentrations and increased risks of digoxin toxicity. However, the exact mechanism of such alterations in obese patients remains unclear. Previous studies have suggested that the organic anion transporting polypeptide 4c1 (Oatp4c1, Slco4c1) mediates the elimination of digoxin at the basal membrane of the proximal tubule (PT), indicating its potential role in the pharmacokinetic changes in obese patients. This study aims to investigate the effects of a high-fat diet HFD on digoxin pharmacokinetics and transporter expression in mouse models and further analyze its significance by detecting the expression of transporters in human renal tissue samples.

Methods

First, HFD-induced obese mouse model was established. Mice were intraperitoneally injected with digoxin, and 24-hour urine samples and blood samples at five time points were collected. Pharmacokinetic evaluation was performed using liquid chromatography-tandem mass spectrometry. Renal pathological changes and the expression of digoxin transporters (Oatp4c1 and P-glycoprotein (P-gp)) were assessed using histological staining, Western blots (WB), as well as quantitative polymerase chain reaction (qPCR). Human renal pathologic alterations and expression of transporter proteins showed consistency with the results of animal experiments. To explore the potential use of gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA) as a marker for Oatp4c1 function, drug interactions between digoxin and Gd-EOB-DTPA were assessed in mice.

Results

HFD-induced obese mice showed significant increases in body weight, blood glucose, and triglyceride, along with elevated blood concentration of digoxin, increased areas under the curve, reduced renal clearance rate (CLr), and prolonged half-life (t1/2). Histological staining revealed proximal tubular epithelial cell detachment and slight fibrosis in the kidney of the HFD group, with decreased expression of villin, the protein marker for PT. Immunofluorescent staining and Western blots for digoxin transporters showed a significant reduction of Oatp4c1 and P-gp proteins, suggesting that the renal elimination of digoxin was affected by the reduced level of Oatp4c1 and P-gp proteins. Co-administration of digoxin and Gd-EOB-DTPA resulted in a reduced clearance of Gd-EOB-DTPA, suggesting that both share the same transporter. The blood concentration of Gd-EOB-DTPA was higher (77.5%) in the HFD group. Renal magnetic resonance imaging (MRI) intensity was lower in the HFD group after Gd-EOB-DTPA administration compared to the Chow group.

Conclusion

Obesity-induced kidney damage results in decreased Oatp4c1 and P-gp expression and function in PT, resulting in a reduction of digoxin renal clearance. The inhibition of Gd-EOB-DTPA clearance by digoxin co-administration and the increased Gd-EOB-DTPA blood concentration in the HFD group both suggest its potential use in characterizing the Oatp4c1 function .

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002371501250610074757
2025-06-23
2025-09-15
Loading full text...

Full text loading...

/deliver/fulltext/cdm/10.2174/0113892002371501250610074757/BMS-CDM-2024-235.html?itemId=/content/journals/cdm/10.2174/0113892002371501250610074757&mimeType=html&fmt=ahah

References

  1. Khalili S. Safavi-Naini S.A.A. Zarand P. Masoumi S. Farsi Y. Hosseinpanah F. Azizi F. Metabolic health’s central role in chronic kidney disease progression: A 20-year study of obesity-metabolic phenotype transitions. Sci. Rep. 2024 14 1 5244 10.1038/s41598‑024‑56061‑x 38438600
    [Google Scholar]
  2. Iqbal J. Wu H.X. Nawaz M.A. Jiang H.L. Xu S.N. Huang B.L. Li L. Cai J.M. Zhou H.D. Risk of incident chronic kidney disease in metabolically healthy obesity and metabolically unhealthy normal weight: A systematic review and meta‐analysis. Obes. Rev. 2024 25 2 e13656 10.1111/obr.13656 37904643
    [Google Scholar]
  3. Cho Y.K. Lee J. Kim H.S. Park J.Y. Lee W.J. Kim Y.J. Jung C.H. Impact of transition in metabolic health and obesity on the incident chronic kidney disease: A nationwide cohort study. J. Clin. Endocrinol. Metab. 2020 105 3 e148 e157 10.1210/clinem/dgaa033 31967306
    [Google Scholar]
  4. Kyomya J. Atwiine F. Shegena E.A. Muhindo R. Yadesa T.M. Drug-related problems and associated factors among patients with kidney dysfunction at a tertiary hospital in southwestern Uganda: A prospective observational study. BMC Nephrol. 2023 24 1 375 10.1186/s12882‑023‑03437‑2 38114948
    [Google Scholar]
  5. Xiao K.B. Grennell E. Ngoy A. George T.P. Foll L.B. Hendershot C.S. Sloan M.E. Cannabis self-administration in the human laboratory: A scoping review of ad libitum studies. Psychopharmacology (Berl.) 2023 240 7 1393 1415 10.1007/s00213‑023‑06360‑4 37157001
    [Google Scholar]
  6. Koren G. Clinical pharmacokinetic significance of the renal tubular secretion of digoxin. Clin. Pharmacokinet. 1987 13 5 334 343 10.2165/00003088‑198713050‑00004 3319348
    [Google Scholar]
  7. Ivanyuk A. Livio F. Biollaz J. Buclin T. Renal drug transporters and drug interactions. Clin. Pharmacokinet. 2017 56 8 825 892 10.1007/s40262‑017‑0506‑8 28210973
    [Google Scholar]
  8. Steiness E. Renal tubular secretion of digoxin. Circulation 1974 50 1 103 107 10.1161/01.CIR.50.1.103 4835256
    [Google Scholar]
  9. Silverman M. Trainor C. In vivo determination of cellular uptake in the kidney. Fed. Proc. 1982 41 14 3054 3060 6754459
    [Google Scholar]
  10. Gibson T.P. Quintanilla A. Effect of quinidine on the renal handling of digoxin. J. Lab. Clin. Med. 1980 96 6 1062 1070 7430762
    [Google Scholar]
  11. Pedersen E.K. Dorph-Pedersen A. Hvidt S. Klitgaard A.N. Nielsen-Kudsk F. Digoxin-verapamil interaction. Clin. Pharmacol. Ther. 1981 30 3 311 316 10.1038/clpt.1981.165 7273594
    [Google Scholar]
  12. Fenster P.E. White N.W. Jr Hanson C.D. Pharmacokinetic evaluation of the digoxin-amiodarone interaction. J. Am. Coll. Cardiol. 1985 5 1 108 112 10.1016/S0735‑1097(85)80091‑7 3964797
    [Google Scholar]
  13. Lannoy D.I.A. Koren G. Klein J. Charuk J. Silverman M. Cyclosporin and quinidine inhibition of renal digoxin excretion: Evidence for luminal secretion of digoxin. Am. J. Physiol. 1992 263 4 Pt 2 F613 F622 1357987
    [Google Scholar]
  14. He J. Yu Y. Prasad B. Chen X. Unadkat J.D. Mechanism of an unusual, but clinically significant, digoxin–bupropion drug interaction. Biopharm. Drug Dispos. 2014 35 5 253 263 10.1002/bdd.1890 24436229
    [Google Scholar]
  15. Klein H.O. Lang R. Segni D.E. Kaplinsky E. Verapamil-digoxin interaction. N. Engl. J. Med. 1980 303 3 160 10.1056/NEJM198007173030316 7383080
    [Google Scholar]
  16. Roman R.J. Kauker M.L. Renal tubular transport of 3H-digoxin in saline diuresis in rats. Circ. Res. 1976 38 3 185 191 10.1161/01.RES.38.3.185 1248066
    [Google Scholar]
  17. Brater D.C. The pharmacological role of the kidney. Drugs 1980 19 1 31 48 10.2165/00003495‑198019010‑00003 6988197
    [Google Scholar]
  18. Mikkaichi T. Suzuki T. Onogawa T. Tanemoto M. Mizutamari H. Okada M. Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc. Nat. Acad. Sci. 2004 3569 74 10.1073/pnas.0304987101
    [Google Scholar]
  19. Tanigawara Y. Okamura N. Hirai M. Yasuhara M. Ueda K. Kioka N. Komano T. Hori R. Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1). J. Pharmacol. Exp. Ther. 1992 263 2 840 845 10.1016/S0022‑3565(25)10423‑0 1359120
    [Google Scholar]
  20. Wu W. Bush K.T. Nigam S.K. Key role for the organic anion transporters, OAT1 and OAT3, in the in vivo handling of uremic toxins and solutes. Sci. Rep. 2017 7 1 4939 10.1038/s41598‑017‑04949‑2 28694431
    [Google Scholar]
  21. Galetin A. Brouwer K.L.R. Tweedie D. Yoshida K. Sjöstedt N. Aleksunes L. Chu X. Evers R. Hafey M.J. Lai Y. Matsson P. Riselli A. Shen H. Sparreboom A. Varma M.V.S. Yang J. Yang X. Yee S.W. Zamek-Gliszczynski M.J. Zhang L. Giacomini K.M. Membrane transporters in drug development and as determinants of precision medicine. Nat. Rev. Drug Discov. 2024 23 4 255 280 10.1038/s41573‑023‑00877‑1 38267543
    [Google Scholar]
  22. Liu S. Zhao Y. Lu S. Zhang T. Lindenmeyer M.T. Nair V. Gies S.E. Wu G. Nelson R.G. Czogalla J. Aypek H. Zielinski S. Liao Z. Schaper M. Fermin D. Cohen C.D. Delic D. Krebs C.F. Grahammer F. Wiech T. Kretzler M. Meyer-Schwesinger C. Bonn S. Huber T.B. Single-cell transcriptomics reveals a mechanosensitive injury signaling pathway in early diabetic nephropathy. Genome Med. 2023 15 1 2 10.1186/s13073‑022‑01145‑4 36627643
    [Google Scholar]
  23. Wu J. Sun Z. Yang S. Fu J. Fan Y. Wang N. Hu J. Ma L. Peng C. Wang Z. Lee K. He J.C. Li Q. Kidney single-cell transcriptome profile reveals distinct response of proximal tubule cells to SGLT2i and ARB treatment in diabetic mice. Mol. Ther. 2022 30 4 1741 1753 10.1016/j.ymthe.2021.10.013 34678510
    [Google Scholar]
  24. Wu H. Villalobos G.R. Yao X. Reilly D. Chen T. Rankin M. Myshkin E. Breyer M.D. Humphreys B.D. Mapping the single-cell transcriptomic response of murine diabetic kidney disease to therapies. Cell Metab. 2022 34 7 1064 1078.e6 10.1016/j.cmet.2022.05.010 35709763
    [Google Scholar]
  25. Zhang W.Y. Sun H.Y. Zhang W.L. Feng R. Effect of type 2 diabetes on liver images of GD-EOB-DTPA-enhanced MRI during the hepatobiliary phase. Sci. Rep. 2023 13 1 543 10.1038/s41598‑023‑27730‑0 36631556
    [Google Scholar]
  26. Hamm B. Staks T. Mühler A. Bollow M. Taupitz M. Frenzel T. Wolf K.J. Weinmann H.J. Lange L. Phase I clinical evaluation of Gd-EOB-DTPA as a hepatobiliary MR contrast agent: Safety, pharmacokinetics, and MR imaging. Radiology 1995 195 3 785 792 10.1148/radiology.195.3.7754011 7754011
    [Google Scholar]
  27. Weinmann H.J. Schuhmann-Giampieri G. Schmitt-Willich H. Vogler H. Frenzel T. Gries H. A new lipophilic gadolinium chelate as a tissue‐specific contrast medium for MRI. Magn. Reson. Med. 1991 22 2 233 237 10.1002/mrm.1910220214 1812351
    [Google Scholar]
  28. Gschwend S. Ebert W. Schultze-Mosgau M. Breuer J. Pharmacokinetics and imaging properties of Gd-EOB-DTPA in patients with hepatic and renal impairment. Invest. Radiol. 2011 46 9 556 566 10.1097/RLI.0b013e31821a218a 21623212
    [Google Scholar]
  29. Kawahara M. Sakata A. Miyashita T. Tamai I. Tsuji A. Physiologically based pharmacokinetics of digoxin in mdr1a knockout mice. J. Pharm. Sci. 1999 88 12 1281 1287 10.1021/js9901763 10585223
    [Google Scholar]
  30. Gai Z. Zhou G. Gui T. Itoh S. Oikawa K. Uetani K. Muragaki Y. Trps1 haploinsufficiency promotes renal fibrosis by increasing Arkadia expression. J. Am. Soc. Nephrol. 2010 21 9 1468 1476 10.1681/ASN.2009121201 20507941
    [Google Scholar]
  31. Ikarashi N. Kagami M. Kobayashi Y. Ishii M. Toda T. Ochiai W. Sugiyama K. Changes in the pharmacokinetics of digoxin in polyuria in streptozotocin-induced diabetic mice and lithium carbonate-treated mice. Xenobiotica 2011 41 6 486 493 10.3109/00498254.2011.551848 21319957
    [Google Scholar]
  32. Lungkaphin A. Arjinajarn P. Pongchaidecha A. Srimaroeng C. Chatsudthipong L. Chatsudthipong V. Impaired insulin signaling affects renal organic anion transporter 3 (Oat3) function in streptozotocin-induced diabetic rats. PLoS One 2014 9 5 e96236 10.1371/journal.pone.0096236 24801871
    [Google Scholar]
  33. Motta S.E. Silva I.P.H. Daryadel A. Haykir B. Pastor-Arroyo E.M. Bettoni C. Hernando N. Wagner C.A. Expression of NaPi-IIb in rodent and human kidney and upregulation in a model of chronic kidney disease. Pflugers Arch. 2020 472 4 449 460 10.1007/s00424‑020‑02370‑9 32219532
    [Google Scholar]
  34. Zeni L. Norden A.G.W. Cancarini G. Unwin R.J. A more tubulocentric view of diabetic kidney disease. J. Nephrol. 2017 30 6 701 717 10.1007/s40620‑017‑0423‑9 28840540
    [Google Scholar]
  35. Kogot-Levin A. Hinden L. Riahi Y. Israeli T. Tirosh B. Cerasi E. Mizrachi E.B. Tam J. Mosenzon O. Leibowitz G. Proximal tubule mTORC1 Is a central player in the pathophysiology of diabetic nephropathy and its correction by SGLT2 inhibitors. Cell Rep. 2020 32 4 107954 10.1016/j.celrep.2020.107954 32726619
    [Google Scholar]
  36. Evans R.L. Owens S.M. Ruch S. Kennedy R.H. Seifen E. The effect of age on digoxin pharmacokinetics in Fischer-344 rats. Toxicol. Appl. Pharmacol. 1990 102 1 61 67 10.1016/0041‑008X(90)90083‑7 2296772
    [Google Scholar]
  37. Mahmood I. A GFR-based method to predict the effect of renal impairment on the exposure or clearance of renally excreted drugs: A comparative study between a simple GFR method and a physiologically based pharmacokinetic model. Drugs R D. 2020 20 4 377 387 10.1007/s40268‑020‑00327‑y 33150526
    [Google Scholar]
  38. Scotcher D. Jones C. Posada M. Galetin A. Rostami-Hodjegan A. Key to opening kidney for in vitro-in vivo extrapolation entrance in health and disease: Part II: Mechanistic models and in vitro-in vivo extrapolation. AAPS J. 2016 18 5 1082 1094 10.1208/s12248‑016‑9959‑1 27506526
    [Google Scholar]
  39. Ewy G.A. Groves B.M. Ball M.F. Nimmo L. Jackson B. Marcus F. Digoxin metabolism in obesity. Circulation 1971 44 5 810 814 10.1161/01.CIR.44.5.810 5115072
    [Google Scholar]
  40. Saadany E.T. Rosmalen V.B. Gai Z. Hiller C. Verheij J. Stieger B. Gulik V.T. Visentin M. Kullak-Ublick G.A. microRNA‐206 modulates the hepatic expression of the organic anion‐transporting polypeptide 1B1. Liver Int. 2019 39 12 2350 2359 10.1111/liv.14212 31408569
    [Google Scholar]
  41. Clarke J.D. Novak P. Lake A.D. Hardwick R.N. Cherrington N.J. Impaired N‐linked glycosylation of uptake and efflux transporters in human non‐alcoholic fatty liver disease. Liver Int. 2017 37 7 1074 1081 10.1111/liv.13362 28097795
    [Google Scholar]
  42. Lu X. Dong Y. Jian Z. Li Q. Gong L. Tang L. Zhou X. Liu M. Systematic investigation of the effects of long-term administration of a high-fat diet on drug transporters in the mouse liver, kidney and intestine. Curr. Drug Metab. 2019 20 9 742 755 10.2174/1389200220666190902125435 31475894
    [Google Scholar]
  43. Cavet M.E. West M. Simmons N.L. Transport and epithelial secretion of the cardiac glycoside, digoxin, by human intestinal epithelial (Caco‐2) cells. Br. J. Pharmacol. 1996 118 6 1389 1396 10.1111/j.1476‑5381.1996.tb15550.x 8832062
    [Google Scholar]
  44. Ernest S. Rajaraman S. Megyesi J. Bello-Reuss E.N. Expression of MDR1 (multidrug resistance) gene and its protein in normal human kidney. Nephron 1997 77 3 284 289 10.1159/000190289 9375821
    [Google Scholar]
  45. Cheymol G. Drug pharmacokinetics in the obese. Fundam. Clin. Pharmacol. 1988 2 3 239 256 10.1111/j.1472‑8206.1988.tb00635.x 3042569
    [Google Scholar]
  46. Thakkar N. Slizgi J.R. Brouwer K.L.R. Effect of liver disease on hepatic transporter expression and function. J. Pharm. Sci. 2017 106 9 2282 2294 10.1016/j.xphs.2017.04.053 28465155
    [Google Scholar]
  47. Canet M.J. Hardwick R.N. Lake A.D. Dzierlenga A.L. Clarke J.D. Cherrington N.J. Modeling human nonalcoholic steatohepatitis-associated changes in drug transporter expression using experimental rodent models. Drug Metab. Dispos. 2014 42 4 586 595 10.1124/dmd.113.055996 24384915
    [Google Scholar]
  48. Hardwick R.N. Fisher C.D. Canet M.J. Scheffer G.L. Cherrington N.J. Variations in ATP-binding cassette transporter regulation during the progression of human nonalcoholic fatty liver disease. Drug Metab. Dispos. 2011 39 12 2395 2402 10.1124/dmd.111.041012 21878559
    [Google Scholar]
  49. Jeong H.J. Lee S.H. Kang H.E. Changes in digoxin pharmacokinetics associated with hepatic P‐glycoprotein upregulation in rats with non‐alcoholic fatty liver disease. Fundam. Clin. Pharmacol. 2021 35 6 1100 1108 10.1111/fcp.12687 33914974
    [Google Scholar]
  50. Li Z. Zhang J. Zhang Y. Zhou L. Zhao J. Lyu Y. Poon L.H. Lin Z. To K.K.W. Yan X. Zuo Z. Intestinal absorption and hepatic elimination of drugs in high‐fat high‐cholesterol diet‐induced non‐alcoholic steatohepatitis rats: Exemplified by simvastatin. Br. J. Pharmacol. 2021 178 3 582 599 10.1111/bph.15298 33119943
    [Google Scholar]
  51. Gibson T.P. Quintanilla A.P. Effect of volume expansion and furosemide diuresis on the renal clearance of digoxin. J. Pharmacol. Exp. Ther. 1981 219 1 54 59 10.1016/S0022‑3565(25)32760‑6 6793714
    [Google Scholar]
  52. Gibson T.P. Ribner H.S. Quintanilla A.P. Effect of acute changes in serum digoxin concentration on renal digoxin clearance. Clin. Pharmacol. Ther. 1984 36 4 478 484 10.1038/clpt.1984.207 6478733
    [Google Scholar]
  53. Scotcher D. Jones C.R. Galetin A. Rostami-Hodjegan A. Delineating the role of various factors in renal disposition of digoxin through application of physiologically based kidney model to renal impairment populations. J. Pharmacol. Exp. Ther. 2017 360 3 484 495 10.1124/jpet.116.237438 28057840
    [Google Scholar]
  54. Mooradian A.D. Digitalis. Clin. Pharmacokinet. 1988 15 3 165 179 10.2165/00003088‑198815030‑00002 3052985
    [Google Scholar]
  55. Sumner D.J. Russell A.J. Digoxin pharmacokinetics: Multicompartmental analysis and its clinical implications. Br. J. Clin. Pharmacol. 1976 3 2 221 229 10.1111/j.1365‑2125.1976.tb00596.x 973956
    [Google Scholar]
  56. Hager W.D. Fenster P. Mayersohn M. Perrier D. Graves P. Marcus F.I. Goldman S. Digoxin-quinidine interaction. N. Engl. J. Med. 1979 300 22 1238 1241 10.1056/NEJM197905313002202 431681
    [Google Scholar]
  57. Chen Z.S. Tiwari A.K. Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J. 2011 278 18 3226 3245 10.1111/j.1742‑4658.2011.08235.x 21740521
    [Google Scholar]
  58. Engelhart D.C. Granados J.C. Shi D. Jr S.M.H. Jr Baker M.E. Abagyan R. Nigam S.K. Systems biology analysis reveals eight slc22 transporter subgroups, including OATs, OCTs, and OCTNs. Int. J. Mol. Sci. 2020 21 5 1791 10.3390/ijms21051791 32150922
    [Google Scholar]
  59. Croop J.M. Raymond M. Haber D. Devault A. Arceci R.J. Gros P. Housman D.E. The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues. Mol. Cell. Biol. 1989 9 3 1346 1350 2471060
    [Google Scholar]
  60. Maher J.M. Slitt A.L. Cherrington N.J. Cheng X. Klaassen C.D. Tissue distribution and hepatic and renal ontogeny of the multidrug resistance-associated protein (Mrp) family in mice. Drug Metab. Dispos. 2005 33 7 947 955 10.1124/dmd.105.003780 15802388
    [Google Scholar]
  61. Jemnitz K. Heredi-Szabo K. Janossy J. Ioja E. Vereczkey L. Krajcsi P. ABCC2/Abcc2: A multispecific transporter with dominant excretory functions. Drug Metab. Rev. 2010 42 3 402 436 10.3109/03602530903491741 20082599
    [Google Scholar]
  62. Nolin T.D. Frye R.F. Le P. Sadr H. Naud J. Leblond F.A. Pichette V. Himmelfarb J. ESRD impairs nonrenal clearance of fexofenadine but not midazolam. J. Am. Soc. Nephrol. 2009 20 10 2269 2276 10.1681/ASN.2009010082 19696225
    [Google Scholar]
  63. Toyohara T. Suzuki T. Morimoto R. Akiyama Y. Souma T. Shiwaku H.O. Takeuchi Y. Mishima E. Abe M. Tanemoto M. Masuda S. Kawano H. Maemura K. Nakayama M. Sato H. Mikkaichi T. Yamaguchi H. Fukui S. Fukumoto Y. Shimokawa H. Inui K. Terasaki T. Goto J. Ito S. Hishinuma T. Rubera I. Tauc M. Fujii-Kuriyama Y. Yabuuchi H. Moriyama Y. Soga T. Abe T. SLCO4C1 transporter eliminates uremic toxins and attenuates hypertension and renal inflammation. J. Am. Soc. Nephrol. 2009 20 12 2546 2555 10.1681/ASN.2009070696 19875811
    [Google Scholar]
  64. Akiyama Y. Kikuchi K. Saigusa D. Suzuki T. Takeuchi Y. Mishima E. Yamamoto Y. Ishida A. Sugawara D. Jinno D. Shima H. Toyohara T. Suzuki C. Souma T. Moriguchi T. Tomioka Y. Ito S. Abe T. Indoxyl sulfate down-regulates SLCO4C1 transporter through up-regulation of GATA3. PLoS One 2013 8 7 e66518 10.1371/journal.pone.0066518 23874392
    [Google Scholar]
  65. Naud J. Michaud J. Beauchemin S. Hébert M.J. Roger M. Lefrancois S. Leblond F.A. Pichette V. Effects of chronic renal failure on kidney drug transporters and cytochrome P450 in rats. Drug Metab. Dispos. 2011 39 8 1363 1369 10.1124/dmd.111.039115 21525170
    [Google Scholar]
  66. Lozano H.I. Langer O. Use of imaging to assess the activity of hepatic transporters. Expert Opin. Drug Metab. Toxicol. 2020 16 2 149 164 10.1080/17425255.2020.1718107 31951754
    [Google Scholar]
  67. Melillo N. Scotcher D. Kenna J.G. Green C. Hines C.D.G. Laitinen I. Hockings P.D. Ogungbenro K. Gunwhy E.R. Sourbron S. Waterton J.C. Schuetz G. Galetin A. Use of in vivo imaging and physiologically-based kinetic modelling to predict hepatic transporter mediated drug–drug interactions in rats. Pharmaceutics 2023 15 3 896 10.3390/pharmaceutics15030896 36986758
    [Google Scholar]
  68. Bhattacharyya T. Mallett C.L. Shapiro E.M. MRI-based cell tracking of oatp-expressing cell transplants by pre-labeling with Gd-EOB-DTPA. Mol. Imaging Biol. 2024 26 2 233 239 10.1007/s11307‑024‑01904‑2 38448775
    [Google Scholar]
  69. Shuboni-Mulligan D.D. Parys M. Blanco-Fernandez B. Mallett C.L. Schnegelberger R. Takada M. Chakravarty S. Hagenbuch B. Shapiro E.M. Dynamic contrast–enhanced MRI of OATP dysfunction in diabetes. Diabetes 2019 68 2 271 280 10.2337/db18‑0525 30487262
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002371501250610074757
Loading
/content/journals/cdm/10.2174/0113892002371501250610074757
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test