Skip to content
2000
image of A Comprehensive Review on the Pharmacokinetics and Bioanalysis of Piperaquine

Abstract

Piperaquine is an important partner drug in artemisinin-based combination therapy, which is highly effective for the treatment of uncomplicated malaria. Several studies have been reported on its pharmacokinetic profiles in different populations, as well as its bioanalytical methods. Piperaquine shows a very large volume of distribution (up to 877 l/kg), a low oral clearance (0.3-1.9 l/h/kg), and an extremely long terminal elimination half-life (up to 30 days) in both healthy volunteers and malarial patients. Piperaquine metabolism is primarily mediated by CYP3A4, and to a lesser extent by CYP2D6 and CYP2C8. The oral bioavailability of piperaquine can be influenced by the consumption of high-fat food. The pharmacokinetics of piperaquine is affected by body weight, age, and pregnancy. Piperaquine has limited clinically relevant interactions with most commonly prescribed drugs. Plasma has been the most commonly studied matrix, and the most used pretreatment techniques involve protein precipitation. HPLC-UV and HPLC-MS/MS are usually used for the quantification of piperaquine in biological samples with researchers seeking a balance between affordability and sensitivity. This review summarizes the analytical assays used for the quantification of piperaquine in biological samples and its pharmacokinetic properties, with particular attention to information on food–drug interactions, drug-drug interactions, and pharmacokinetic characteristics in special populations, including pregnant women and children.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002374755250613064601
2025-06-27
2025-09-15
Loading full text...

Full text loading...

References

  1. Daily J.P. Minuti A. Khan N. Diagnosis, treatment, and prevention of malaria in the US. JAMA 2022 328 5 460 471 10.1001/jama.2022.12366 35916842
    [Google Scholar]
  2. Venkatesan P. WHO world malaria report 2024. Lancet Microbe 2025 6 4 101073 10.1016/j.lanmic.2025.101073 39923782
    [Google Scholar]
  3. Van Den Ham K.M. Bower L.K. Li S. Lorenzi H. Doumbo S. Doumtabe D. Kayentao K. Ongoiba A. Traore B. Crompton P.D. Schmidt N.W. The gut microbiome is associated with susceptibility to febrile malaria in Malian children. Nat. Commun. 2024 15 1 9525 10.1038/s41467‑024‑52953‑8 39500866
    [Google Scholar]
  4. Barsosio H.C. Webster J. Omiti F. K’Oloo A. Odero I.A. Ojuok M.A. Odiwa D. Omondi B. Okello E. Dodd J. Taegtmeyer M. Kuile F.O. Lesosky M. Kariuki S. Hill J. Delivery effectiveness of and adherence to intermittent preventive treatment for malaria in pregnancy with dihydroartemisinin–piperaquine with or without targeted information transfer or sulfadoxine–pyrimethamine in western Kenya: A three-armed, pragmatic, open-label, cluster-randomised trial. Lancet Glob. Health 2024 12 10 e1660 e1672 10.1016/S2214‑109X(24)00261‑4 39304238
    [Google Scholar]
  5. Pasay C.J. Rockett R. Sekuloski S. Griffin P. Marquart L. Peatey C. Wang C.Y.T. O’Rourke P. Elliott S. Baker M. Möhrle J.J. McCarthy J.S. Piperaquine monotherapy of drug-susceptible Plasmodium falciparum infection results in rapid clearance of parasitemia but is followed by the appearance of gametocytemia. J. Infect. Dis. 2016 214 1 105 113 10.1093/infdis/jiw128 27056954
    [Google Scholar]
  6. Ferreira L.T. Cassiano G.C. Alvarez L.C.S. Okombo J. Calit J. Fontinha D. Gil-Iturbe E. Coyle R. Andrade C.H. Sunnerhagen P. Bargieri D.Y. Prudêncio M. Quick M. Cravo P.V. Lee M.C.S. Fidock D.A. Costa F.T.M. A novel 4-aminoquinoline chemotype with multistage antimalarial activity and lack of cross-resistance with PfCRT and PfMDR1 mutants. PLoS Pathog. 2024 20 10 e1012627 10.1371/journal.ppat.1012627 39471233
    [Google Scholar]
  7. Singh R. Singh R. Srihari V. Makde R.D. Investigation unveiling new insights into the antimalarial mechanism of chloroquine: Role in perturbing nucleation events during heme to β-hematin transformation. ACS Infect. Dis. 2023 9 8 1647 1657 10.1021/acsinfecdis.3c00278 37471056
    [Google Scholar]
  8. Keating G.M. Dihydroartemisinin/Piperaquine. Drugs 2012 72 7 937 961 10.2165/11203910‑000000000‑00000 22515619
    [Google Scholar]
  9. Deng C. Wu W. Yuan Y. Li G. Zhang H. Zheng S. Li M. Tan R. Wang Y. Nadia J. Feng D. Li D. Wu Z. Xu Q. Li C. Wang Z. Liang Y. Doehl J.S.P. Su X. Bacar A. Said Abdallah K. Mohamed H. Msa Mliva A. Wellems T.E. Song J. Malaria control by mass drug administration with artemisinin plus piperaquine on Grande Comore island, Union of Comoros. Open Forum Infect. Dis. 2023 10 3 ofad076 10.1093/ofid/ofad076 36910690
    [Google Scholar]
  10. Wallender E. Ali A.M. Hughes E. Kakuru A. Jagannathan P. Muhindo M.K. Opira B. Whalen M. Huang L. Duvalsaint M. Legac J. Kamya M.R. Dorsey G. Aweeka F. Rosenthal P.J. Savic R.M. Identifying an optimal dihydroartemisinin-piperaquine dosing regimen for malaria prevention in young Ugandan children. Nat. Commun. 2021 12 1 6714 10.1038/s41467‑021‑27051‑8 34795281
    [Google Scholar]
  11. Tse E.G. Korsik M. Todd M.H. The past, present and future of anti-malarial medicines. Malar. J. 2019 18 1 93 10.1186/s12936‑019‑2724‑z 30902052
    [Google Scholar]
  12. Xie Y. Zhang Y. Lin F. Chen X. Xing J. The effect of malaria-induced alteration of metabolism on piperaquine disposition in Plasmodium yoelii infected mice and predicted in malaria patients. Int. J. Antimicrob. Agents 2024 64 1 107209 10.1016/j.ijantimicag.2024.107209 38761871
    [Google Scholar]
  13. Tarning J. Lindegardh N. Quantification of the antimalarial piperaquine in plasma. Trans. R. Soc. Trop. Med. Hyg. 2008 102 5 409 411 10.1016/j.trstmh.2008.02.011 18378269
    [Google Scholar]
  14. Ma R. Guo D.X. Li H.F. Liu H.X. Zhang Y.R. Ji J.B. Xing J. Wang S.Q. Spectroscopic methodologies and molecular docking studies on the interaction of antimalarial drug piperaquine and its metabolites with human serum albumin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019 222 117158 10.1016/j.saa.2019.117158 31181505
    [Google Scholar]
  15. Chotsiri P. White N.J. Tarning J. Pharmacokinetic considerations in seasonal malaria chemoprevention. Trends Parasitol. 2022 38 8 673 682 10.1016/j.pt.2022.05.003 35688778
    [Google Scholar]
  16. Hung T.Y. Davis T.M.E. Ilett K.F. Karunajeewa H. Hewitt S. Denis M.B. Lim C. Socheat D. Population pharmacokinetics of piperaquine in adults and children with uncomplicated falciparum or vivax malaria. Br. J. Clin. Pharmacol. 2004 57 3 253 262 10.1046/j.1365‑2125.2003.02004.x 14998421
    [Google Scholar]
  17. Liu H. Zhou H. Cai T. Yang A. Zang M. Xing J. The metabolism of piperaquine to its antiplasmodial metabolites and their pharmacokinetic profiles in healthy volunteers. Antimicrob. Agents Chemother. 2018 62 8 e00260-18 10.1128/AAC.00260‑18 29784841
    [Google Scholar]
  18. Hughes E. Imperial M. Wallender E. Kajubi R. Huang L. Jagannathan P. Zhang N. Kakuru A. Natureeba P. Mwima M.W. Muhindo M. Mwebaza N. Clark T.D. Opira B. Nakalembe M. Havlir D. Kamya M. Rosenthal P.J. Dorsey G. Aweeka F. Savic R.M. Piperaquine exposure is altered by pregnancy, HIV, and nutritional status in Ugandan women. Antimicrob. Agents Chemother. 2020 64 12 e01013-20 10.1128/AAC.01013‑20 33020153
    [Google Scholar]
  19. Ahmed T. Sharma P. Gautam A. Varshney B. Kothari M. Ganguly S. Moehrle J.J. Paliwal J. Saha N. Batra V. Safety, tolerability, and single- and multiple-dose pharmacokinetics of piperaquine phosphate in healthy subjects. J. Clin. Pharmacol. 2008 48 2 166 175 10.1177/0091270007310384 18199893
    [Google Scholar]
  20. Charman S.A. Andreu A. Barker H. Blundell S. Campbell A. Campbell M. Chen G. Chiu F.C.K. Crighton E. Katneni K. Morizzi J. Patil R. Pham T. Ryan E. Saunders J. Shackleford D.M. White K.L. Almond L. Dickins M. Smith D.A. Moehrle J.J. Burrows J.N. Abla N. An in vitro toolbox to accelerate anti-malarial drug discovery and development. Malar. J. 2020 19 1 1 10.1186/s12936‑019‑3075‑5 31898492
    [Google Scholar]
  21. Lee T.M.N. Huang L. Johnson M.K. Lizak P. Kroetz D. Aweeka F. Parikh S. In vitro metabolism of piperaquine is primarily mediated by CYP3A4. Xenobiotica 2012 42 11 1088 1095 10.3109/00498254.2012.693972 22671777
    [Google Scholar]
  22. Xie Y. Zhang Y. Liu H. Xing J. Metabolic retroversion of piperaquine (PQ) via hepatic cytochrome P450-mediated N-oxidation and reduction: Not an important contributor to the prolonged elimination of PQ. Drug Metab. Dispos. 2021 49 5 379 388 10.1124/dmd.120.000306 33674271
    [Google Scholar]
  23. Tarning J. Bergqvist Y. Day N.P. Bergquist J. Arvidsson B. White N.J. Ashton M. Lindegårdh N. Characterization of human urinary metabolites of the antimalarial piperaquine. Drug Metab. Dispos. 2006 34 12 2011 2019 10.1124/dmd.106.011494 16956956
    [Google Scholar]
  24. Yang A. Zang M. Liu H. Fan P. Xing J. Metabolite identification of the antimalarial piperaquine in vivo using liquid chromatography–high‐resolution mass spectrometry in combination with multiple data‐mining tools in tandem. Biomed. Chromatogr. 2016 30 8 1324 1330 10.1002/bmc.3689 26821381
    [Google Scholar]
  25. Xing J. Zhou H. Zhang L. Ji J. Xie Y. The effect of retroconversion metabolism of N-oxide metabolites by intestinal microflora on piperaquine elimination in mice, as well as in humans predicted using a PBPK model. Curr. Drug Metab. 2023 24 2 131 138 10.2174/1389200224666230320112429 36941813
    [Google Scholar]
  26. Sim I.K. Davis T.M.E. Ilett K.F. Effects of a high-fat meal on the relative oral bioavailability of piperaquine. Antimicrob. Agents Chemother. 2005 49 6 2407 2411 10.1128/AAC.49.6.2407‑2411.2005 15917540
    [Google Scholar]
  27. Chinh N.T. Quang N.N. Thanh N.X. Dai B. Travers T. Edstein M.D. Pharmacokinetics of the antimalarial drug piperaquine in healthy Vietnamese subjects. Am. J. Trop. Med. Hyg. 2008 79 4 620 623 10.4269/ajtmh.2008.79.620 18840754
    [Google Scholar]
  28. Reuter S.E. Evans A.M. Shakib S. Lungershausen Y. Francis B. Valentini G. Bacchieri A. Ubben D. Pace S. Effect of food on the pharmacokinetics of piperaquine and dihydroartemisinin. Clin. Drug Investig. 2015 35 9 559 567 10.1007/s40261‑015‑0312‑8 26293519
    [Google Scholar]
  29. Whalen M.E. Kajubi R. Chamankhah N. Huang L. Orukan F. Wallender E. Kamya M.R. Dorsey G. Jagannathan P. Rosenthal P.J. Mwebaza N. Aweeka F.T. Reduced exposure to piperaquine, compared to adults, in young children receiving dihydroartemisinin-piperaquine as malaria chemoprevention. Clin. Pharmacol. Ther. 2019 106 6 1310 1318 10.1002/cpt.1534 31173649
    [Google Scholar]
  30. Tarning J. Rijken M.J. McGready R. Phyo A.P. Hanpithakpong W. Day N.P.J. White N.J. Nosten F. Lindegardh N. Population pharmacokinetics of dihydroartemisinin and piperaquine in pregnant and nonpregnant women with uncomplicated malaria. Antimicrob. Agents Chemother. 2012 56 4 1997 2007 10.1128/AAC.05756‑11 22252822
    [Google Scholar]
  31. Kajubi R. Huang L. Jagannathan P. Chamankhah N. Were M. Ruel T. Koss C.A. Kakuru A. Mwebaza N. Kamya M. Havlir D. Dorsey G. Rosenthal P.J. Aweeka F.T. Antiretroviral therapy with efavirenz accentuates pregnancy-associated reduction of dihydroartemisinin-piperaquine exposure during malaria chemoprevention. Clin. Pharmacol. Ther. 2017 102 3 520 528 10.1002/cpt.664 28187497
    [Google Scholar]
  32. Banda C.G. Dzinjalamala F. Mukaka M. Mallewa J. Maiden V. Terlouw D.J. Lalloo D.G. Khoo S.H. Mwapasa V. Pharmacokinetics of piperaquine and safety profile of dihydroartemisinin-piperaquine co-administered with antiretroviral therapy in malaria-uninfected HIV-positive Malawian adults. Antimicrob. Agents Chemother. 2018 62 8 e00634-18 10.1128/AAC.00634‑18 29784846
    [Google Scholar]
  33. Hung T.Y. Davis T.M.E. Ilett K.F. Measurement of piperaquine in plasma by liquid chromatography with ultraviolet absorbance detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2003 791 1-2 93 101 10.1016/S1570‑0232(03)00209‑5 12798169
    [Google Scholar]
  34. Lindegårdh N. Ashton M. Bergqvist Y. Automated solid-phase extraction method for the determination of piperaquine in whole blood by rapid liquid chromatography. Ther. Drug Monit. 2003 25 5 544 551 10.1097/00007691‑200310000‑00002 14508376
    [Google Scholar]
  35. Tarning J. Singtoroj T. Annerberg A. Ashton M. Bergqvist Y. White N.J. Day N.P.J. Lindegardh N. Development and validation of an automated solid phase extraction and liquid chromatographic method for the determination of piperaquine in urine. J. Pharm. Biomed. Anal. 2006 41 1 213 218 10.1016/j.jpba.2005.10.027 16311004
    [Google Scholar]
  36. Lindegårdh N. White N.J. Day N.P.J. High throughput assay for the determination of piperaquine in plasma. J. Pharm. Biomed. Anal. 2005 39 3-4 601 605 10.1016/j.jpba.2005.03.031 15905062
    [Google Scholar]
  37. Liu C. Zhang R. Hong X. Huang T. Mi S. Wang N. Pharmacokinetics of piperaquine after single and multiple oral administrations in healthy volunteers. Yakugaku Zasshi 2007 127 10 1709 1714 10.1248/yakushi.127.1709 17917428
    [Google Scholar]
  38. Choemang A. Na-Bangchang K. An alternative HPLC with ultraviolet detection for determination of piperaquine in plasma. J. Chromatogr. Sci. 2018 57 1 27 32 10.1093/chromsci/bmy077 30169629
    [Google Scholar]
  39. Singhal P. Gaur A. Gautam A. Varshney B. Paliwal J. Batra V. Sensitive and rapid liquid chromatography/tandem mass spectrometric assay for the quantification of piperaquine in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007 859 1 24 29 10.1016/j.jchromb.2007.09.021 17923446
    [Google Scholar]
  40. Lindegardh N. Annerberg A. White N.J. Day N.P.J. Development and validation of a liquid chromatographic-tandem mass spectrometric method for determination of piperaquine in plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2008 862 1-2 227 236 10.1016/j.jchromb.2007.12.011 18191623
    [Google Scholar]
  41. Hodel E.M. Zanolari B. Mercier T. Biollaz J. Keiser J. Olliaro P. Genton B. Decosterd L.A. A single LC–tandem mass spectrometry method for the simultaneous determination of 14 antimalarial drugs and their metabolites in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009 877 10 867 886 10.1016/j.jchromb.2009.02.006 19249251
    [Google Scholar]
  42. Kjellin L.L. Dorsey G. Rosenthal P.J. Aweeka F. Huang L. Determination of the antimalarial drug piperaquine in small volume pediatric plasma samples by LC-MS/MS. Bioanalysis 2014 6 23 3081 3089 10.4155/bio.14.254 25529877
    [Google Scholar]
  43. Aziz M.Y. Hoffmann K.J. Ashton M. LC–MS/MS quantitation of antimalarial drug piperaquine and metabolites in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017 1063 253 258 10.1016/j.jchromb.2017.06.035 28863865
    [Google Scholar]
  44. Mwebaza N. Cheah V. Forsman C. Kajubi R. Marzan F. Wallender E. Dorsey G. Rosenthal P.J. Aweeka F. Huang L. Determination of piperaquine concentration in human plasma and the correlation of capillary versus venous plasma concentrations. PLoS One 2020 15 5 e0233893 10.1371/journal.pone.0233893 32470030
    [Google Scholar]
  45. Huang L. Sok V. Aslam-Mir U. Marzan F. Whalen M. Rosenthal P.J. Aweeka F. Determination of unbound piperaquine in human plasma by ultra-high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. Open 2022 2 100042 10.1016/j.jcoa.2022.100042 35531322
    [Google Scholar]
  46. Blessborn D. Kaewkhao N. Tarning J. A high-throughput LC-MS/MS assay for piperaquine from dried blood spots: Improving malaria treatment in resource-limited settings. J. Mass Spectrom. Adv. Clin. Lab 2024 31 19 26 10.1016/j.jmsacl.2023.12.004 38229676
    [Google Scholar]
  47. Röshammar D. Hai T.N. Friberg Hietala S. Van Huong N. Ashton M. Pharmacokinetics of piperaquine after repeated oral administration of the antimalarial combination CV8 in 12 healthy male subjects. Eur. J. Clin. Pharmacol. 2006 62 5 335 341 10.1007/s00228‑005‑0084‑9 16570188
    [Google Scholar]
  48. Chinh N.T. Quang N.N. Thanh N.X. Dai B. Geue J.P. Addison R.S. Travers T. Edstein M.D. Pharmacokinetics and bioequivalence evaluation of two fixed-dose tablet formulations of dihydroartemisinin and piperaquine in Vietnamese subjects. Antimicrob. Agents Chemother. 2009 53 2 828 831 10.1128/AAC.00927‑08 19047656
    [Google Scholar]
  49. Hanboonkunupakarn B. Ashley E.A. Jittamala P. Tarning J. Pukrittayakamee S. Hanpithakpong W. Chotsiri P. Wattanakul T. Panapipat S. Lee S.J. Day N.P.J. White N.J. Open-label crossover study of primaquine and dihydroartemisinin-piperaquine pharmacokinetics in healthy adult thai subjects. Antimicrob. Agents Chemother. 2014 58 12 7340 7346 10.1128/AAC.03704‑14 25267661
    [Google Scholar]
  50. Quang N.N. Chavchich M. Anh C.X. Birrell G.W. van Breda K. Travers T. Rowcliffe K. Edstein M.D. Comparison of the pharmacokinetics and ex vivo antimalarial activities of artesunate-amodiaquine and artemisinin-piperaquine in healthy volunteers for preselection malaria therapy. Am. J. Trop. Med. Hyg. 2018 99 1 65 72 10.4269/ajtmh.17‑0434 29741150
    [Google Scholar]
  51. Chotsiri P. Gutman J.R. Ahmed R. Poespoprodjo J.R. Syafruddin D. Khairallah C. Asih P.B.S. L’lanziva A. Otieno K. Kariuki S. Ouma P. Were V. Katana A. Price R.N. Desai M. ter Kuile F.O. Tarning J. Piperaquine pharmacokinetics during intermittent preventive treatment for malaria in pregnancy. Antimicrob. Agents Chemother. 2021 65 3 e01150-20 10.1128/AAC.01150‑20 33361303
    [Google Scholar]
  52. Tarning J. Ashley E.A. Lindegardh N. Stepniewska K. Phaiphun L. Day N.P.J. McGready R. Ashton M. Nosten F. White N.J. Population pharmacokinetics of piperaquine after two different treatment regimens with dihydroartemisinin-piperaquine in patients with Plasmodium falciparum malaria in Thailand. Antimicrob. Agents Chemother. 2008 52 3 1052 1061 10.1128/AAC.00955‑07 18180343
    [Google Scholar]
  53. Nguyen D.V.H. Nguyen Q.P. Nguyen N.D. Le T.T.T. Nguyen T.D. Dinh D.N. Nguyen T.X. Bui D. Chavchich M. Edstein M.D. Pharmacokinetics and ex vivo pharmacodynamic antimalarial activity of dihydroartemisinin-piperaquine in patients with uncomplicated falciparum malaria in Vietnam. Antimicrob. Agents Chemother. 2009 53 8 3534 3537 10.1128/AAC.01717‑08 19528277
    [Google Scholar]
  54. Hoglund R.M. Adam I. Hanpithakpong W. Ashton M. Lindegardh N. Day N.P.J. White N.J. Nosten F. Tarning J. A population pharmacokinetic model of piperaquine in pregnant and non-pregnant women with uncomplicated Plasmodium falciparum malaria in Sudan. Malar. J. 2012 11 1 398 10.1186/1475‑2875‑11‑398 23190801
    [Google Scholar]
  55. Lon C. Manning J.E. Vanachayangkul P. So M. Sea D. Se Y. Gosi P. Lanteri C. Chaorattanakawee S. Sriwichai S. Chann S. Kuntawunginn W. Buathong N. Nou S. Walsh D.S. Tyner S.D. Juliano J.J. Lin J. Spring M. Bethell D. Kaewkungwal J. Tang D. Chuor C.M. Satharath P. Saunders D. Efficacy of two versus three-day regimens of dihydroartemisinin-piperaquine for uncomplicated malaria in military personnel in northern Cambodia: An open-label randomized trial. PLoS One 2014 9 3 e93138 10.1371/journal.pone.0093138 24667662
    [Google Scholar]
  56. Millat-Martínez P. Salman S. Moore B.R. Baro B. Page-Sharp M. Batty K.T. Robinson L.J. Pomat W. Karunajeewa H. Laman M. Manning L. Mitjà O. Bassat Q. Piperaquine pharmacokinetic and pharmacodynamic profiles in healthy volunteers of Papua New Guinea after administration of three-monthly doses of dihydroartemisinin-piperaquine. Antimicrob. Agents Chemother. 2022 66 8 e00185-22 10.1128/aac.00185‑22 35862743
    [Google Scholar]
  57. Tarning J. Lindegardh N. Sandberg S. Day N.J.P. White N.J. Ashton M. Pharmacokinetics and metabolism of the antimalarial piperaquine after intravenous and oral single doses to the rat. J. Pharm. Sci. 2008 97 8 3400 3410 10.1002/jps.21226 17969131
    [Google Scholar]
  58. Ashley E.A. Stepniewska K. Lindegardh N. Annerberg A. Tarning J. McGready R. Phaiphun L. Singhasivanon P. White N.J. Nosten F. Comparison of plasma, venous and capillary blood levels of piperaquine in patients with uncomplicated falciparum malaria. Eur. J. Clin. Pharmacol. 2010 66 7 705 712 10.1007/s00228‑010‑0804‑7 20300743
    [Google Scholar]
  59. Rijken M.J. McGready R. Phyo A.P. Lindegardh N. Tarning J. Laochan N. Than H.H. Mu O. Win A.K. Singhasivanon P. White N. Nosten F. Pharmacokinetics of dihydroartemisinin and piperaquine in pregnant and nonpregnant women with uncomplicated falciparum malaria. Antimicrob. Agents Chemother. 2011 55 12 5500 5506 10.1128/AAC.05067‑11 21947392
    [Google Scholar]
  60. Crowe A. Ilett K.F. Karunajeewa H.A. Batty K.T. Davis T.M.E. Role of P glycoprotein in absorption of novel antimalarial drugs. Antimicrob. Agents Chemother. 2006 50 10 3504 3506 10.1128/AAC.00708‑06 16917012
    [Google Scholar]
  61. Liu H. Zhou H. Xing J. The antiplasmodial activity of the carboxylic acid metabolite of piperaquine and its pharmacokinetic profiles in healthy volunteers. J. Antimicrob. Chemother. 2024 79 1 78 81 10.1093/jac/dkad349 37965893
    [Google Scholar]
  62. Moore B.R. Benjamin J.M. Auyeung S.O. Salman S. Yadi G. Griffin S. Page-Sharp M. Batty K.T. Siba P.M. Mueller I. Rogerson S.J. Davis T.M.E. Safety, tolerability and pharmacokinetic properties of coadministered azithromycin and piperaquine in pregnant Papua New Guinean women. Br. J. Clin. Pharmacol. 2016 82 1 199 212 10.1111/bcp.12910 26889763
    [Google Scholar]
  63. Adam I. Tarning J. Lindegardh N. Mahgoub H. McGready R. Nosten F. Pharmacokinetics of piperaquine in pregnant women in Sudan with uncomplicated Plasmodium falciparum malaria. Am. J. Trop. Med. Hyg. 2012 87 1 35 40 10.4269/ajtmh.2012.11‑0410 22764289
    [Google Scholar]
  64. Benjamin J.M. Moore B.R. Salman S. Page-Sharp M. Tawat S. Yadi G. Lorry L. Siba P.M. Batty K.T. Robinson L.J. Mueller I. Davis T.M.E. Population pharmacokinetics, tolerability, and safety of dihydroartemisinin-piperaquine and sulfadoxine-pyrimethamine-piperaquine in pregnant and nonpregnant Papua New Guinean women. Antimicrob. Agents Chemother. 2015 59 7 4260 4271 10.1128/AAC.00326‑15 25963981
    [Google Scholar]
  65. Karunajeewa H.A. Ilett K.F. Mueller I. Siba P. Law I. Page-Sharp M. Lin E. Lammey J. Batty K.T. Davis T.M.E. Pharmacokinetics and efficacy of piperaquine and chloroquine in Melanesian children with uncomplicated malaria. Antimicrob. Agents Chemother. 2008 52 1 237 243 10.1128/AAC.00555‑07 17967917
    [Google Scholar]
  66. Tarning J. Zongo I. Somé F.A. Rouamba N. Parikh S. Rosenthal P.J. Hanpithakpong W. Jongrak N. Day N.P.J. White N.J. Nosten F. Ouedraogo J-B. Lindegardh N. Population pharmacokinetics and pharmacodynamics of piperaquine in children with uncomplicated falciparum malaria. Clin. Pharmacol. Ther. 2012 91 3 497 505 10.1038/clpt.2011.254 22258469
    [Google Scholar]
  67. Salman S. Page-Sharp M. Batty K.T. Kose K. Griffin S. Siba P.M. Ilett K.F. Mueller I. Davis T.M.E. Pharmacokinetic comparison of two piperaquine-containing artemisinin combination therapies in Papua New Guinean children with uncomplicated malaria. Antimicrob. Agents Chemother. 2012 56 6 3288 3297 10.1128/AAC.06232‑11 22470119
    [Google Scholar]
  68. Sambol N.C. Yan L. Creek D.J. McCormack S.A. Arinaitwe E. Bigira V. Wanzira H. Kakuru A. Tappero J.W. Lindegardh N. Tarning J. Nosten F. Aweeka F.T. Parikh S. Population pharmacokinetics of piperaquine in young Ugandan children treated with dihydroartemisinin-piperaquine for uncomplicated malaria. Clin. Pharmacol. Ther. 2015 98 1 87 95 10.1002/cpt.104 25732044
    [Google Scholar]
  69. Xie Y. Liu H. Chen X. Xing J. The effect of gastric pH on the pharmacokinetics-pharmacodynamics of naphthoquine in rodents, as well as in human predicted using a PBPK model. Curr. Drug Metab. 2021 22 5 363 371 10.2174/1389200222666210129102411 33511926
    [Google Scholar]
  70. Milando F.A. Jongo S. Abdulla S. Nyaulingo G. Tumbo A.M. Mswata S. Tiago J. Bongole B.S. Mirambo A. Kassimu K. Mbarak H. Rashid M.A. Hamad A. Mihayo M. Ndanzi T. Zuberi O. Saadia N. Somboka M. Yamba-Yamba M. Ngonyani T. Nditi A. Msuya M. Mwalimu B. Msuya H.M. Awadh K. Ali A. Marrast A.C. Gossen D. Neequaye A. El-Gaaloul M. Ramachandruni H. Borghini-Fuhrer I. Pharmacokinetics of a novel piperaquine dispersible granules formulation under fasting and various fed conditions versus piperaquine tablets when fasted in healthy Tanzanian adults: A randomized, phase I study. Clin. Transl. Sci. 2025 18 2 e70133 10.1111/cts.70133 39905737
    [Google Scholar]
  71. Hai T.N. Hietala S.F. Van Huong N. Ashton M. The influence of food on the pharmacokinetics of piperaquine in healthy Vietnamese volunteers. Acta Trop. 2008 107 2 145 149 10.1016/j.actatropica.2008.05.013 18585670
    [Google Scholar]
  72. Annerberg A. Lwin K.M. Lindegardh N. Khrutsawadchai S. Ashley E. Day N.P.J. Singhasivanon P. Tarning J. White N.J. Nosten F. A small amount of fat does not affect piperaquine exposure in patients with malaria. Antimicrob. Agents Chemother. 2011 55 9 3971 3976 10.1128/AAC.00279‑11 21709087
    [Google Scholar]
  73. Tarning J. Lindegardh N. Lwin K.M. Annerberg A. Kiricharoen L. Ashley E. White N.J. Nosten F. Day N.P.J. Population pharmacokinetic assessment of the effect of food on piperaquine bioavailability in patients with uncomplicated malaria. Antimicrob. Agents Chemother. 2014 58 4 2052 2058 10.1128/AAC.02318‑13 24449770
    [Google Scholar]
  74. Moore B.R. Benjamin J.M. Salman S. Griffin S. Ginny E. Page-Sharp M. Robinson L.J. Siba P. Batty K.T. Mueller I. Davis T.M.E. Effect of coadministered fat on the tolerability, safety, and pharmacokinetic properties of dihydroartemisinin-piperaquine in Papua New Guinean children with uncomplicated malaria. Antimicrob. Agents Chemother. 2014 58 10 5784 5794 10.1128/AAC.03314‑14 25049242
    [Google Scholar]
  75. Lwin K.M. Phyo A.P. Tarning J. Hanpithakpong W. Ashley E.A. Lee S.J. Cheah P. Singhasivanon P. White N.J. Lindegårdh N. Nosten F. Randomized, double-blind, placebo-controlled trial of monthly versus bimonthly dihydroartemisinin-piperaquine chemoprevention in adults at high risk of malaria. Antimicrob. Agents Chemother. 2012 56 3 1571 1577 10.1128/AAC.05877‑11 22252804
    [Google Scholar]
  76. Mwebaza N. Roh M.E. Geng Y.Z. Opio L. Opira B. Marzan F. Mwima M.W. Ssemukuye T. Guo K. Gingrich D. Fotaki N. Kakuru A. Kizza J. Aguti M. Adrama H. Kamya M. Dorsey G. Rosenthal P.J. Aweeka F.T. Huang L. Drug-drug interaction between dihydroartemisinin-piperaquine and sulfadoxine-pyrimethamine during malaria chemoprevention in pregnant women. Clin. Pharmacol. Ther. 2025 117 2 506 514 10.1002/cpt.3471 39402742
    [Google Scholar]
  77. Chairat K. Jittamala P. Hanboonkunupakarn B. Pukrittayakamee S. Hanpithakpong W. Blessborn D. White N.J. Day N.P.J. Tarning J. Enantiospecific pharmacokinetics and drug–drug interactions of primaquine and blood-stage antimalarial drugs. J. Antimicrob. Chemother. 2018 73 11 3102 3113 10.1093/jac/dky297 30085149
    [Google Scholar]
  78. Aziz M.Y. Hoffmann K.J. Ashton M. Inhibition of CYP3A by antimalarial piperaquine and its metabolites in human liver microsomes with IVIV extrapolation. J. Pharm. Sci. 2018 107 5 1461 1467 10.1016/j.xphs.2018.01.009 29352982
    [Google Scholar]
  79. Hanboonkunupakarn B. van der Pluijm R.W. Hoglund R. Pukrittayakamee S. Winterberg M. Mukaka M. Waithira N. Chotivanich K. Singhasivanon P. White N.J. Dondorp A.M. Tarning J. Jittamala P. Sequential open-label study of the safety, tolerability, and pharmacokinetic interactions between dihydroartemisinin-piperaquine and mefloquine in healthy Thai adults. Antimicrob. Agents Chemother. 2019 63 8 e00060-19 10.1128/AAC.00060‑19 31182525
    [Google Scholar]
  80. Leong F.J. Jain J.P. Feng Y. Goswami B. Stein D.S. Winnips C. A phase 1 evaluation of the pharmacokinetic/pharmacodynamic interaction of the anti-malarial agents KAF156 and piperaquine. Malar. J. 2018 17 1 7 10.1186/s12936‑017‑2162‑8 29304859
    [Google Scholar]
  81. Kobylinski K.C. Jittamala P. Hanboonkunupakarn B. Pukrittayakamee S. Pantuwatana K. Phasomkusolsil S. Davidson S.A. Winterberg M. Hoglund R.M. Mukaka M. van der Pluijm R.W. Dondorp A. Day N.P.J. White N.J. Tarning J. Safety, pharmacokinetics, and mosquito-lethal effects of ivermectin in combination with dihydroartemisinin-piperaquine and primaquine in healthy adult Thai subjects. Clin. Pharmacol. Ther. 2020 107 5 1221 1230 10.1002/cpt.1716 31697848
    [Google Scholar]
  82. Minzi O.M. Mnkugwe R.H. Ngaimisi E. Kinung’hi S. Hansson A. Pohanka A. Kamuhabwa A. Aklillu E. Effect of dihydroartemisinin-piperaquine on the pharmacokinetics of praziquantel for treatment of schistosoma mansoni infection. Pharmaceuticals 2021 14 5 400 10.3390/ph14050400 33922522
    [Google Scholar]
  83. Kuemmerle A. Gossen D. Janin A. Stokes A. Abla N. Szramowska M. Lorch U. El Gaaloul M. Borghini-Fuhrer I. Chalon S. Randomized, placebo‐controlled, double‐blind phase I trial of co‐administered pyronaridine and piperaquine in healthy adults of sub‐Saharan origin. Clin. Transl. Sci. 2024 17 4 e13738 10.1111/cts.13738 38594824
    [Google Scholar]
  84. Banda C.G. Nkosi D. Allen E. Workman L. Madanitsa M. Chirwa M. Kapulula M. Muyaya S. Munharo S. Wiesner L. Phiri K.S. Mwapasa V. Ter Kuile F.O. Maartens G. Barnes K.I. Effect of dihydroartemisinin/piperaquine for malaria intermittent preventive treatment on dolutegravir exposure in pregnant women living with HIV. J. Antimicrob. Chemother. 2022 77 6 1733 1737 10.1093/jac/dkac081 35288747
    [Google Scholar]
  85. Hong H. Aslam-Mir U. Kajubi R. Wallender E. Mwebaza N. Dorsey G. Rosenthal P.J. Aweeka F.T. Huang L. Efavirenz-based antiretroviral therapy but not pregnancy increased unbound piperaquine exposure in women during malaria chemoprevention. Antimicrob. Agents Chemother. 2023 67 4 e01427-22 10.1128/aac.01427‑22 36916944
    [Google Scholar]
  86. Chotsiri P. Wattanakul T. Hoglund R.M. Hanboonkunupakarn B. Pukrittayakamee S. Blessborn D. Jittamala P. White N.J. Day N.P.J. Tarning J. Population pharmacokinetics and electrocardiographic effects of dihydroartemisinin–piperaquine in healthy volunteers. Br. J. Clin. Pharmacol. 2017 83 12 2752 2766 10.1111/bcp.13372 28695570
    [Google Scholar]
  87. Banda C.G. Nkosi D. Allen E. Workman L. Madanitsa M. Chirwa M. Kapulula M. Muyaya S. Munharo S. Tarning J. Phiri K.S. Mwapasa V. ter Kuile F.O. Maartens G. Barnes K.I. Impact of dolutegravir-based antiretroviral therapy on piperaquine exposure following dihydroartemisinin-piperaquine intermittent preventive treatment of malaria in pregnant women living with HIV. Antimicrob. Agents Chemother. 2022 66 12 e00584-22 10.1128/aac.00584‑22 36374096
    [Google Scholar]
  88. Byakika-Kibwika P. Ssenyonga R. Lamorde M. Blessborn D. Tarning J. Piperaquine concentration and malaria treatment outcomes in Ugandan children treated for severe malaria with intravenous Artesunate or quinine plus Dihydroartemisinin-Piperaquine. BMC Infect. Dis. 2019 19 1 1025 10.1186/s12879‑019‑4647‑2 31795967
    [Google Scholar]
  89. Mhango E.K.G. Snorradottir B.S. Kachingwe B.H.K. Katundu K.G.H. Gizurarson S. Estimation of pediatric dosage of antimalarial drugs, using pharmacokinetic and physiological approach. Pharmaceutics 2023 15 4 1076 10.3390/pharmaceutics15041076 37111562
    [Google Scholar]
  90. Hoglund R.M. Workman L. Edstein M.D. Thanh N.X. Quang N.N. Zongo I. Ouedraogo J.B. Borrmann S. Mwai L. Nsanzabana C. Price R.N. Dahal P. Sambol N.C. Parikh S. Nosten F. Ashley E.A. Phyo A.P. Lwin K.M. McGready R. Day N.P.J. Guerin P.J. White N.J. Barnes K.I. Tarning J. Population pharmacokinetic properties of piperaquine in falciparum malaria: An individual participant data meta-analysis. PLoS Med. 2017 14 1 e1002212 10.1371/journal.pmed.1002212 28072872
    [Google Scholar]
  91. Mlugu E.M. Minzi O.M.S. Johansson M. Kamuhabwa A.A.R. Aklillu E. Pharmacokinetics of piperaquine and its association with intermittent malaria preventive therapy outcomes during pregnancy. BMC Pharmacol. Toxicol. 2024 25 1 38 10.1186/s40360‑024‑00762‑6 38978151
    [Google Scholar]
  92. Ding J. Hoglund R.M. Tagbor H. Tinto H. Valéa I. Mwapasa V. Kalilani-Phiri L. Van Geertruyden J.P. Nambozi M. Mulenga M. Hachizovu S. Ravinetto R. D’Alessandro U. Tarning J. Population pharmacokinetics of amodiaquine and piperaquine in African pregnant women with uncomplicated Plasmodium falciparum infections. CPT Pharmacometrics Syst. Pharmacol. 2024 13 11 1893 1903 10.1002/psp4.13211 39228131
    [Google Scholar]
  93. Olafuyi O. Coleman M. Badhan R.K.S. The application of physiologically based pharmacokinetic modelling to assess the impact of antiretroviral‐mediated drug–drug interactions on piperaquine antimalarial therapy during pregnancy. Biopharm. Drug Dispos. 2017 38 8 464 478 10.1002/bdd.2087 28710808
    [Google Scholar]
  94. Pernaute-Lau L. Camara M. Nóbrega de Sousa T. Morris U. Ferreira M.U. Gil J.P. An update on pharmacogenetic factors influencing the metabolism and toxicity of artemisinin-based combination therapy in the treatment of malaria. Expert Opin. Drug Metab. Toxicol. 2022 18 1 39 59 10.1080/17425255.2022.2049235 35285373
    [Google Scholar]
  95. Staehli Hodel E.M. Csajka C. Ariey F. Guidi M. Kabanywanyi A.M. Duong S. Decosterd L.A. Olliaro P. Beck H.P. Genton B. Effect of single nucleotide polymorphisms in cytochrome P450 isoenzyme and N-acetyltransferase 2 genes on the metabolism of artemisinin-based combination therapies in malaria patients from Cambodia and Tanzania. Antimicrob. Agents Chemother. 2013 57 2 950 958 10.1128/AAC.01700‑12 23229480
    [Google Scholar]
  96. Liu H. Xie Y. Cai T. Xing J. No effect of PXR (8055C>T) polymorphism on the pharmacokinetic profiles of piperaquine in healthy Chinese subjects. Curr. Drug Metab. 2022 23 2 164 170 10.2174/1389200223666220215151945 35168517
    [Google Scholar]
  97. Liu H. Zang M. Yang A. Ji J. Xing J. Simultaneous determination of piperaquine and its N ‐oxidated metabolite in rat plasma using LC‐MS/MS. Biomed. Chromatogr. 2017 31 10 e3974 10.1002/bmc.3974 28299804
    [Google Scholar]
  98. Abla N. Howgate E. Rowland-Yeo K. Dickins M. Bergagnini-Kolev M.C. Chen K.F. McFeely S. Bonner J.J. Santos L.G.A. Gobeau N. Burt H. Barter Z. Jones H.M. Wesche D. Charman S.A. Möhrle J.J. Burrows J.N. Almond L.M. Development and application of a PBPK modeling strategy to support antimalarial drug development. CPT Pharmacometrics Syst. Pharmacol. 2023 12 9 1335 1346 10.1002/psp4.13013 37587640
    [Google Scholar]
  99. Taskar K.S. Harada I. Alluri R.V. Physiologically-based pharmacokinetic (PBPK) modelling of transporter mediated drug absorption, clearance and drug-drug interactions. Curr. Drug Metab. 2021 22 7 523 531 10.2174/1389200221999210101233340 33397250
    [Google Scholar]
  100. Almond L.M. Abduljalil K. Pansari A. Kusmider B. Jones H.M. Rowland Yeo K. Gardner I. Faisal M. Marrast A.C. El Gaaloul M. Möhrle J.J. Abla N. PBPK-led assessment of antimalarial drug concentrations in breastmilk: A strategy for optimal use of prediction methods to guide decision making in an understudied population. CPT Pharmacometrics Syst. Pharmacol. 2025 ••• psp4.13311 10.1002/psp4.13311 39930940
    [Google Scholar]
  101. Warhurst D.C. Craig J.C. Adagu I.S. Guy R.K. Madrid P.B. Fivelman Q.L. Activity of piperaquine and other 4-aminoquinoline antiplasmodial drugs against chloroquine-sensitive and resistant blood-stages of Plasmodium falciparum. Biochem. Pharmacol. 2007 73 12 1910 1926 10.1016/j.bcp.2007.03.011 17466277
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002374755250613064601
Loading
/content/journals/cdm/10.2174/0113892002374755250613064601
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: malaria ; LC-MS/MS ; metabolism ; pharmacokinetic ; bioanalysis ; Piperaquine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test