Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

The temperate, subtropical climates of Odisha state, India, provide significant benefits that can help it become a potent producer of many species of edible mushrooms. The importance of mushrooms in diets has gained more attention in recent years due to their nutritional benefits. We aimed to update and discuss the current research information on nutritional components, including carbohydrates (β-glucans, trehalose, glucose), dietary fiber, proteins (ostreatin), amino acids (valine, glutamine, glutamic acid, aspartic acid, and arginine, lipids, vitamins (thiamine, riboflavin, pyridoxine, pantothenic acid, niacin, folic acid, nicotinic acid, and cobalamin), minerals (K, P, Na, Ca, Mg), flavor and taste contents of Odisha cultivated edible mushrooms. Additionally, their biological application in terms of antimicrobial action, antitumor, anti-inflammatory, anti-diabetic, cardioprotective properties, and antioxidant properties with mechanism of action are highlighted. Besides, we mentioned the limitations and prospects of mushrooms.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638369335250317040625
2025-04-04
2025-09-05
Loading full text...

Full text loading...

References

  1. SárközyA. BéniZ. DékányM. Cerebrosides and steroids from the edible mushroom Meripilus giganteus with antioxidant potential.Molecules2020256139510.3390/molecules25061395 32204362
    [Google Scholar]
  2. HawksworthD.L. Mushrooms: The extent of the unexplored potential.Int. J. Med. Mushrooms200134510.1615/IntJMedMushr.v3.i4.50
    [Google Scholar]
  3. KubicekC.P. SteindorffA.S. ChenthamaraK. Evolution and comparative genomics of the most common Trichoderma species.BMC Genomics201920148510.1186/s12864‑019‑5680‑7 31189469
    [Google Scholar]
  4. ShirurM. BarhA. AnnepuS.K. Sustainable Production of Edible and Medicinal Mushrooms: Implications on Mushroom Consumption. In: Hebsale Mallappa VK, Shirur M, Eds. Climate Change Resilient Food Systems. Hebsale MallappaV.K. ShirurM. SingaporeSpringer202131534610.1007/978‑981‑33‑4538‑6_12
    [Google Scholar]
  5. HeM.Q. WangM.Q. ChenZ.H. Potential benefits and harms: A review of poisonous mushrooms in the world.Fungal Biol. Rev.202242566810.1016/j.fbr.2022.06.002
    [Google Scholar]
  6. ThakurM. SinghH.K. Advances in the cultivation technology of tropical mushrooms in India.JNKVV Res J2014482120135
    [Google Scholar]
  7. JahanA. SinghB.K. Mushroom value chain and role of value addition.Int J Bota Res20199151410.24247/ijbrjun20192
    [Google Scholar]
  8. VermaR. Indian mushroom industry–past and present.Bulletin2013816
    [Google Scholar]
  9. SharmaV.P. AnnepuS.K. GautamY. SinghM. KamalS. Status of mushroom production in India.Mushroom Res.2017262
    [Google Scholar]
  10. MohantyS. GhoshS. NayakS. DasA.P. Isolation, identification and screening of manganese solubilizing fungi from low-grade manganese ore deposits.Geomicrobiol. J.201734430931610.1080/01490451.2016.1189016
    [Google Scholar]
  11. SachanS. PatraJ. ThatoiH. Indigenous knowledge of ethnic tribes for utilization of wild mushrooms as food and medicine in similipal biosphere reserve, Odisha, India.Int. J. Agric. Technol.201392403416
    [Google Scholar]
  12. PandaM. BarikK. ThotoiH. TayungK. Diversity of wild edible mushrooms in Mayurbhanj District of Odisha, India.Environ. Ecol.201862219225
    [Google Scholar]
  13. PandaM. ThatoiH. SahuS. TayungK. Wild edible mushrooms of Northern Odisha, India: Data on distribution and utilization by ethnic communities.Res. J. Life Sci. Bioinform. Pharm. Chem. Sci.201952248268
    [Google Scholar]
  14. RoutY. BeheraF. SahooM.P. KumarS. DeviR.S. Mushroom diversity of Dhenkanal District, Odisha, India: Source of alternative foods and medicines.European J. Med. Plants20203173025210.9734/EJMP/2020/v31i730252
    [Google Scholar]
  15. KumarS. PatilU. NaikV. RathoreS. MishraS. MishraA.K. Wild mushroom diversity of Rairangpur forest division, Odisha, India & its medicinal uses.European J. Med. Plants20213291927
    [Google Scholar]
  16. Sánchez-FernándezR.E. DiazD. DuarteG. Lappe-OliverasP. SánchezS. Macías-RubalcavaM.L. Antifungal volatile organic compounds from the endophyte Nodulisporium sp. strain GS4d2II1a: A qualitative change in the intraspecific and interspecific interactions with Pythium aphanidermatum.Microb. Ecol.201671234736410.1007/s00248‑015‑0679‑3 26408189
    [Google Scholar]
  17. ManjunathanJ. KaviyarasanV. Nutrient composition in wild and cultivated edible mushroom, Lentinus tuberregium (Fr.) Tamil Nadu., India.Int. Food Res. J.2011182809811
    [Google Scholar]
  18. MoxleyA. EbelR. CrippsC.L. AustinC.G. SteinM. WinderM. Barriers and opportunities: Specialty cultivated mushroom production in the United States.Sustainability (Basel)202214191259110.3390/su141912591
    [Google Scholar]
  19. BarrosoL.S. CopettiC. KomeroskiM.R. Physicochemical and sensory evaluation in sautéed caps and stems of edible mushrooms.J. Culin. Sci. Technol.202018430631610.1080/15428052.2019.1582448
    [Google Scholar]
  20. SingdevsachanS.K. PatraJ.K. TayungK. ThatoiH. Chemical constituents, antioxidative and antibacterial properties of medicinal mushrooms collected from Similipal Biosphere Reserve, Odisha, India.Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci.201787255957010.1007/s40011‑015‑0574‑1
    [Google Scholar]
  21. SingdevsachanS.K. PatraJ.K. TayungK. SarangiK. ThatoiH. Evaluation of nutritional and nutraceutical potentials of three wild edible mushrooms from Similipal Biosphere Reserve, Odisha, India.J Verbraucher Lebensmsi20149211112010.1007/s00003‑014‑0861‑4
    [Google Scholar]
  22. KhatunS. IslamA. CakilciogluU. ChatterjeN.C. Research on mushroom as a potential source of nutraceuticals: A review on Indian perspective.Am. J. Exp. Agric.201221477310.9734/AJEA/2012/492
    [Google Scholar]
  23. DimopoulouM. KolonasA. MourtakosS. AndroutsosO. GortziO. Nutritional composition and biological properties of sixteen edible mushroom species.Appl. Sci. (Basel)20221216807410.3390/app12168074
    [Google Scholar]
  24. KumariN. SrivastavaA.K. Analysis of antioxidant activities of common wild edible mushrooms employing cuprous assays: A comparative study.Int J Life Sci Res Arch20223111812310.53771/ijlsra.2022.3.1.0091
    [Google Scholar]
  25. AlamN. AminR. KhanA. Nutritional analysis of cultivated mushrooms in Bangladesh–Pleurotus ostreatus, Pleurotus sajor-caju, Pleurotus florida and Calocybe indica.Mycobiology200836422823210.4489/MYCO.2008.36.4.228 23997631
    [Google Scholar]
  26. GoyalR. GrewalR. GoyalR.K. GrewalR. Vitamin and mineral content of Agaricus bisporus (white button) and Pleurotus sajor-caju (dhingri) mushrooms.Int. J. Food Sci. Nutr.20205100102
    [Google Scholar]
  27. NaraianR DixitB Nutritional value of three different oyster mushrooms grown on cattail weed substrate.Archi Biotechnol Biomedi 2017; 1(1): 061-6.10.29328/journal.hjb.1001006
    [Google Scholar]
  28. ValverdeM.E. Hernández-PérezT. Paredes-LópezO. Edible mushrooms: Improving human health and promoting quality life.Int. J. Microbiol.20152015111410.1155/2015/376387 25685150
    [Google Scholar]
  29. BandaraA.R. RapiorS. MortimerP.E. KakumyanP. HydeK.D. XuJ. A review of the polysaccharide, protein and selected nutrient content of Auricularia, and their potential pharmacological value.Mycosphere201910157960710.5943/mycosphere/10/1/10
    [Google Scholar]
  30. HoL-H. ZulkifliN.A. TanT-C. Edible mushroom: Nutritional properties, potential nutraceutical values, and its utilisation in food product development.An Introduction to Mushroom.London, UKIntech Open202014810.5772/intechopen.91827
    [Google Scholar]
  31. PattanayakM. SamantaS. MaityP. Polysaccharide of an edible truffle Tuber rufum: Structural studies and effects on human lymphocytes.Int. J. Biol. Macromol.2017951037104810.1016/j.ijbiomac.2016.10.092 27818292
    [Google Scholar]
  32. KostićM. IvanovM. FernandesÂ. Antioxidant extracts of three Russula genus species express diverse biological activity.Molecules20202518433610.3390/molecules25184336 32971797
    [Google Scholar]
  33. SrikramA. SupapvanichS. Proximate compositions and bioactive compounds of edible wild and cultivated mushrooms from Northeast Thailand.Agric. Nat. Resour. (Bangk.)201650643243610.1016/j.anres.2016.08.001
    [Google Scholar]
  34. KalawS.P. AlbintoR.F. Growth performance and nutritional attributes of Pleurotus species grown on rice straw based formulations.Adv. Environ. Biol.20159187281
    [Google Scholar]
  35. RamanJ. JangK.Y. OhY.L. Cultivation and nutritional value of prominent Pleurotus spp.: An overview.Mycobiology202149111410.1080/12298093.2020.1835142 33536808
    [Google Scholar]
  36. KadnikovaI.A. CostaR. KalenikT.K. GurulevaO.N. YanguoS. Chemical composition and nutritional value of the mushroom Auricularia auricula-judae.J. Food Nutr. Res.201538478482
    [Google Scholar]
  37. DongZ. XiaoY. WuH. Selenium accumulation, speciation, and its effect on nutritive value of Flammulina velutipes (Golden needle mushroom).Food Chem.202135012866710.1016/j.foodchem.2020.128667 33288349
    [Google Scholar]
  38. GuptaA. DimriR. MishraS. KumarS. Russula rosea: A wild edible mushroom of India.Edib Med Mushr India20243910947246
    [Google Scholar]
  39. NakalembeI. KabasaJ.D. OlilaD. Comparative nutrient composition of selected wild edible mushrooms from two agro-ecological zones, Uganda.Springerplus20154143310.1186/s40064‑015‑1188‑z 26306295
    [Google Scholar]
  40. Acharya BalkrishnaA. SharmaN. SrivastavaD. ChaudharyP. AryaV. Medicinal marvels: A comprehensive study at the nutritional and therapeutic potential of russula mushrooms.Curr. Res. Environ. Appl. Mycol.2024141718810.5943/cream/14/1/4
    [Google Scholar]
  41. ManziP. AguzziA. PizzoferratoL. Nutritional value of mushrooms widely consumed in Italy.Food Chem.200173332132510.1016/S0308‑8146(00)00304‑6
    [Google Scholar]
  42. Ashraf KhanA. GaniA. MasoodiF.A. MushtaqU. Silotry NaikA. Structural, rheological, antioxidant, and functional properties of β–glucan extracted from edible mushrooms Agaricus bisporus, Pleurotus ostreatus and Coprinus attrimentarius.Bioactive Carbohydr. Diet. Fibre201711677410.1016/j.bcdf.2017.07.006
    [Google Scholar]
  43. CheungM.K. YueG.G.L. ChiuP.W.Y. LauC.B.S. A review of the effects of natural compounds, medicinal plants, and mushrooms on the gut microbiota in colitis and cancer.Front. Pharmacol.20201174410.3389/fphar.2020.00744 32499711
    [Google Scholar]
  44. BarrosL. BaptistaP. CorreiaD.M. Sá MoraisJ. FerreiraI.C.F.R. Effects of conservation treatment and cooking on the chemical composition and antioxidant activity of Portuguese wild edible mushrooms.J. Agric. Food Chem.200755124781478810.1021/jf070407o 17497883
    [Google Scholar]
  45. KalačP. A review of chemical composition and nutritional value of wild‐growing and cultivated mushrooms.J. Sci. Food Agric.201393220921810.1002/jsfa.5960 23172575
    [Google Scholar]
  46. SingdevsachanS.K. PatraJ.K. ThatoiH. Nutritional and bioactive potential of two wild edible mushrooms (Lentinus sajor-caju and Lentinus torulosus) from Similipal Biosphere Reserve, India.Food Sci. Biotechnol.201322113714510.1007/s10068‑013‑0019‑7
    [Google Scholar]
  47. JaworskaG. BernaśE. Amino acid content of frozen Agaricus bisporus and Boletus edulis mushrooms: Effects of pretreatments.Int. J. Food Prop.201316113915310.1080/10942912.2010.526278
    [Google Scholar]
  48. XuX. YanH. ChenJ. ZhangX. Bioactive proteins from mushrooms.Biotechnol. Adv.201129666767410.1016/j.biotechadv.2011.05.003 21605654
    [Google Scholar]
  49. LandiN. RagucciS. RussoR. The ribotoxin-like protein Ostreatin from Pleurotus ostreatus fruiting bodies: Confirmation of a novel ribonuclease family expressed in basidiomycetes.Int. J. Biol. Macromol.20201611329133610.1016/j.ijbiomac.2020.07.267 32755707
    [Google Scholar]
  50. PedneaultK. AngersP. AvisT.J. GosselinA. TweddellR.J. Fatty acid profiles of polar and non-polar lipids of Pleurotus ostreatus and P. cornucopiae var. ‘citrino-pileatus’ grown at different temperatures.Mycol. Res.2007111101228123410.1016/j.mycres.2007.06.014 17988848
    [Google Scholar]
  51. MattilaP. LampiA.M. RonkainenR. ToivoJ. PiironenV. Sterol and vitamin D2 contents in some wild and cultivated mushrooms.Food Chem.200276329329810.1016/S0308‑8146(01)00275‑8
    [Google Scholar]
  52. UdeC. EzenwugoA. AguR. Composition and food value of sclerotium (Osu) and edible mushroom (Pleurotus tuber-regium).J. Food Sci. Technol.2001386612614
    [Google Scholar]
  53. ChengG.Y. LiuJ. TaoM.X. LuC.M. WuG.R. Activity, thermostability and isozymes of superoxide dismutase in 17 edible mushrooms.J. Food Compos. Anal.2012261-213614310.1016/j.jfca.2012.01.001
    [Google Scholar]
  54. LiQ. ZhangH.H. ClaverI.P. ZhuK.X. PengW. ZhouH.M. Effect of different cooking methods on the flavour constituents of mushroom (Agaricus bisporus) (Lange) (Sing) soup.Int. J. Food Sci. Technol.20114651100110810.1111/j.1365‑2621.2011.02592.x
    [Google Scholar]
  55. ZhengS. LiC. NgT.B. WangH.X. A lectin with mitogenic activity from the edible wild mushroom Boletus edulis.Process Biochem.200742121620162410.1016/j.procbio.2007.09.004
    [Google Scholar]
  56. UsmanM. MurtazaG. DittaA. Nutritional, medicinal, and cosmetic value of bioactive compounds in button mushroom (Agaricus bisporus): A review.Appl. Sci. (Basel)20211113594310.3390/app11135943
    [Google Scholar]
  57. MohantaY.K. SingdevsachanS.K. ParidaU.K. PandaS.K. MohantaT.K. BaeH. Green synthesis and antimicrobial activity of silver nanoparticles using wild medicinal mushroom Ganoderma applanatum (Pers.) Pat. from Similipal Biosphere Reserve, Odisha, India.IET Nanobiotechnol.201610418418910.1049/iet‑nbt.2015.0059 27463787
    [Google Scholar]
  58. MohantaY.K. NayakD. BiswasK. Silver nanoparticles synthesized using wild mushroom show potential antimicrobial activities against food borne pathogens.Molecules201823365510.3390/molecules23030655 29538308
    [Google Scholar]
  59. BoseS. MandalS.K. HossainP. Phytochemical and pharmacological potentials of Agaricus bisporus.Res J Pharm Technol20191283811381710.5958/0974‑360X.2019.00653.X
    [Google Scholar]
  60. Abou ZaidO. SonbatyS. NeamaM. Anti-diabetic activity of Agaricus bisporus: A biochemical and pathological study.Int. J. Pharm. Sci. Res.20177217401745
    [Google Scholar]
  61. MaoY. MaoJ. MengX. Extraction optimization and bioactivity of exopolysaccharides from Agaricus bisporus.Carbohydr. Polym.20139221602160710.1016/j.carbpol.2012.11.017 23399195
    [Google Scholar]
  62. FengT. YangM. MaB. Volatile profiles of two genotype Agaricus bisporus species at different growth stages.Food Res. Int.202114010976110.1016/j.foodres.2020.109761 33648158
    [Google Scholar]
  63. HashimotoT. NonakaY. MinatoK. Suppressive effect of polysaccharides from the edible and medicinal mushrooms, Lentinus edodes and Agaricus blazei, on the expression of cytochrome P450s in mice.Biosci. Biotechnol. Biochem.20026671610161410.1271/bbb.66.1610 12224654
    [Google Scholar]
  64. YasumaT. TodaM. KoboriH. TadaN. D’Alessandro-GabazzaC.N. GabazzaE.C. Subcritical water extracts from Agaricus blazei Murrill’s mycelium inhibit the expression of immune checkpoint molecules and Axl receptor.J. Fungi (Basel)20217859010.3390/jof7080590 34436128
    [Google Scholar]
  65. MisgiatiM. SukardimanS. WidyawaruyantiA. Anti-breast cancer potency of multistage extraction from Jamur dewa (Agaricus blazei Murill) solvents on MCF-7 cells.Indones J Canc Chemoprev201782687310.14499/indonesianjcanchemoprev8iss2pp68‑73
    [Google Scholar]
  66. Verçosa JúniorD. FerrazV.P. DuarteE.R. Effects of different extracts of the mushroom Agaricus blazei Murill on the hematologic profile of mice with Ehrlich tumor.Arq. Bras. Med. Vet. Zootec.201567367968810.1590/1678‑4162‑7595
    [Google Scholar]
  67. KimY.W. KimK.H. ChoiH.J. LeeD.S. Anti-diabetic activity of β-glucans and their enzymatically hydrolyzed oligosaccharides from Agaricus blazei.Biotechnol. Lett.200527748348710.1007/s10529‑005‑2225‑8 15928854
    [Google Scholar]
  68. StojkovicD. SmiljkovicM. CiricA. An insight into antidiabetic properties of six medicinal and edible mushrooms: Inhibition of α-amylase and α-glucosidase linked to type-2 diabetes.S. Afr. J. Bot.201912010010310.1016/j.sajb.2018.01.007
    [Google Scholar]
  69. SoaresA.A. de SouzaC.G.M. DanielF.M. FerrariG.P. da CostaS.M.G. PeraltaR.M. Antioxidant activity and total phenolic content of Agaricus brasiliensis (Agaricus blazei Murril) in two stages of maturity.Food Chem.2009112477578110.1016/j.foodchem.2008.05.117
    [Google Scholar]
  70. PadilhaM.M. AvilaA.A.L. SousaP.J.C. CardosoL.G.V. PerazzoF.F. CarvalhoJ.C.T. Anti-inflammatory activity of aqueous and alkaline extracts from mushrooms (Agaricus blazei Murill).J. Med. Food200912235936410.1089/jmf.2008.0177 19459738
    [Google Scholar]
  71. SangthongS. PintathongP. PongsuaP. JiraratA. ChaiwutP. Polysaccharides from Volvariella volvacea mushroom: Extraction, biological activities and cosmetic efficacy.J. Fungi (Basel)20228657210.3390/jof8060572 35736055
    [Google Scholar]
  72. GuptaP.L. RajputM. OzaT. TrivediU. SanghviG. Eminence of microbial products in cosmetic industry.Nat. Prod. Bioprospect.20199426727810.1007/s13659‑019‑0215‑0 31214881
    [Google Scholar]
  73. AppiahT. BoakyeY.D. AgyareC. Antimicrobial activities and time‐kill kinetics of extracts of selected ghanaian mushrooms.Evid. Based Complement. Alternat. Med.201720171453435010.1155/2017/4534350 29234399
    [Google Scholar]
  74. CheungL.M. CheungP.C.K. Mushroom extracts with antioxidant activity against lipid peroxidation.Food Chem.200589340340910.1016/j.foodchem.2004.02.049
    [Google Scholar]
  75. SriramuluM. SumathiS. Photocatalytic, antioxidant, antibacterial and anti-inflammatory activity of silver nanoparticles synthesised using forest and edible mushroom.Adv Nat Sci: Nanosci Nanotechnol20178404501210.1088/2043‑6254/aa92b5
    [Google Scholar]
  76. ZającA. PiętM. StefaniukD. Pro-health and anti-cancer activity of fungal fractions isolated from milk-supplemented cultures of lentinus (Pleurotus) sajor-caju.Biomolecules2021118108910.3390/biom11081089 34439756
    [Google Scholar]
  77. FinimundyT.C. GambatoG. FontanaR. Aqueous extracts of Lentinula edodes and Pleurotus sajor-caju exhibit high antioxidant capability and promising in vitro antitumor activity.Nutr. Res.2013331768410.1016/j.nutres.2012.11.005 23351413
    [Google Scholar]
  78. KanagasabapathyG. KuppusamyU.R. Abd MalekS.N. AbdullaM.A. ChuaK.H. SabaratnamV. Glucan-rich polysaccharides from Pleurotus sajor-caju (Fr.) Singer prevents glucose intolerance, insulin resistance and inflammation in C57BL/6J mice fed a high-fat diet.BMC Complement. Altern. Med.201212126110.1186/1472‑6882‑12‑261 23259700
    [Google Scholar]
  79. GogavekarS.S. RokadeS.A. RanveerR.C. GhoshJ.S. KalyaniD.C. SahooA.K. Important nutritional constituents, flavour components, antioxidant and antibacterial properties of Pleurotus sajor-caju.J. Food Sci. Technol.20145181483149110.1007/s13197‑012‑0656‑5 25114338
    [Google Scholar]
  80. WolffE.R.S. WisbeckE. SilveiraM.L.L. GernR.M.M. PinhoM.S.L. FurlanS.A. Antimicrobial and antineoplasic activity of Pleurotus ostreatus.Appl. Biochem. Biotechnol.20081512-340241210.1007/s12010‑008‑8208‑1 18830827
    [Google Scholar]
  81. ZhangY. HuT. ZhouH. ZhangY. JinG. YangY. Antidiabetic effect of polysaccharides from Pleurotus ostreatus in streptozotocin-induced diabetic rats.Int. J. Biol. Macromol.20168312613210.1016/j.ijbiomac.2015.11.045 26627601
    [Google Scholar]
  82. walokun BA, Usen UA, Otunba AA, Olukoya DK. Comparative phytochemical evaluation, antimicrobial and antioxidant properties of Pleurotus ostreatus.Afr. J. Biotechnol.20076151732173910.5897/AJB2007.000‑2254
    [Google Scholar]
  83. JayasuriyaW.J.A.B.N. HandunnettiS.M. WanigatungeC.A. FernandoG.H. AbeytungaD.T.U. SureshT.S. Anti‐inflammatory activity of Pleurotus ostreatus, a culinary medicinal mushroom, in Wistar rats.Evid. Based Complement. Alternat. Med.202020201684538310.1155/2020/6845383 32215044
    [Google Scholar]
  84. SarangiI. GhoshD. BhutiaS.K. MallickS.K. MaitiT.K. Anti-tumor and immunomodulating effects of Pleurotus ostreatus mycelia-derived proteoglycans.Int. Immunopharmacol.2006681287129710.1016/j.intimp.2006.04.002 16782541
    [Google Scholar]
  85. PrabuM. KumuthakalavalliR. Nutritional and phytochemical studies on Pleurotus florida (Mont.) Singer and Calocybe indica P&C.World J. Pharm. Res.201434913
    [Google Scholar]
  86. ThillaimaharaniK. SharmilaK. ThangarajuP. KarthickM. KalaiselvamM. Studies on antimicrobial and antioxidant properties of oyster mushroom Pleurotus florida.Int. J. Pharm. Sci. Res.2013441540
    [Google Scholar]
  87. MenagaD. RajakumarS. AyyasamyP. Free radical scavenging activity of methanolic extract of Pleurotus florida mushroom.Int. J. Pharm. Pharm. Sci.201354601606
    [Google Scholar]
  88. ImK. NguyenT. ShinD. LeeK. LeeT. Appraisal of antioxidant and anti-inflammatory activities of various extracts from the fruiting bodies of Pleurotus florida.Molecules20141933310332610.3390/molecules19033310 24647033
    [Google Scholar]
  89. SuseemS. SaralA.M. Analysis on essential fatty acid esters of mushroom Pleurotus eous and its antibacterial activity.Asian J. Pharm. Clin. Res.201361188191
    [Google Scholar]
  90. SudhaG. VadivukkarasiS. ShreeR.B.I. LakshmananP. Antioxidant activity of various extracts from an edible mushroom Pleurotus eous.Food Sci. Biotechnol.201221366166810.1007/s10068‑012‑0086‑1
    [Google Scholar]
  91. SuseemS.R. SaralM. ReddyN. GregoryM. Evaluation of the analgesic activity of ethyl acetate, methanol and aqueous extracts of Pleurotus eous mushroom.Asian Pac. J. Trop. Med.20114211712010.1016/S1995‑7645(11)60049‑7 21771433
    [Google Scholar]
  92. YuanB. MaN. ZhaoL. In vitro and in vivo inhibitory effects of a Pleurotus eryngii protein on colon cancer cells.Food Funct.20178103553356210.1039/C7FO00895C 28880032
    [Google Scholar]
  93. LiuM. YaoW. ZhaoF. Characterization and attenuation of streptozotocin‐induced diabetic organ damage by polysaccharides from spent mushroom substrate (Pleurotus eryngii).Oxid. Med. Cell. Longev.201820181428516110.1155/2018/4285161 30364025
    [Google Scholar]
  94. ZhangC. ZhangL. LiuH. ZhangJ. HuC. JiaL. Antioxidation, anti-hyperglycaemia and renoprotective effects of extracellular polysaccharides from Pleurotus eryngii SI-04.Int. J. Biol. Macromol.201811121922810.1016/j.ijbiomac.2018.01.009 29309869
    [Google Scholar]
  95. AkyuzM. KirbagS. Antimicrobial activity of Pleurotus eryngii var. ferulae grown on various agro-wastes.EurAs J Biosci200931586310.5053/ejobios.2009.3.0.8
    [Google Scholar]
  96. PetragliaT. LatronicoT. FanigliuloA. CrescenziA. LiuzziG.M. RossanoR. Antioxidant activity of polysaccharides from the edible mushroom Pleurotus eryngii.Molecules2023285217610.3390/molecules28052176 36903422
    [Google Scholar]
  97. PhanC.W. WangJ.K. TanE.Y.Y. Giant oyster mushroom, Pleurotus giganteus (Agaricomycetes): Current status of the cultivation methods, chemical composition, biological, and health-promoting properties.Food Rev. Int.201935432434110.1080/87559129.2018.1542710
    [Google Scholar]
  98. DebnathG. DasP. SahaA.K.J.B. Green synthesis of silver nanoparticles using mushroom extract of Pleurotus giganteus: Characterization, antimicrobial, and α-amylase inhibitory activity.Bionanoscience2019961161910.1007/s12668‑019‑00650‑y
    [Google Scholar]
  99. RaiM. SenS. AcharyaK. Antimicrobial activity of four wild edible mushrooms from Darjeeling hills, West Bengal, India.Int. J. Pharm. Tech. Res.201353949956
    [Google Scholar]
  100. PhanC.W. DavidP. TanY.S. Intrastrain comparison of the chemical composition and antioxidant activity of an edible mushroom, Pleurotus giganteus, and its potent neuritogenic properties.Scient Worl J20142014111010.1155/2014/378651 25121118
    [Google Scholar]
  101. BaskaranA. ChuaK.H. SabaratnamV. Ravishankar RamM. KuppusamyU.R. Pleurotus giganteus (Berk. Karun & Hyde), the giant oyster mushroom inhibits NO production in LPS/H2O2 stimulated RAW 264.7 cells via STAT 3 and COX-2 pathways.BMC Complement. Altern. Med.20171714010.1186/s12906‑016‑1546‑6 28086773
    [Google Scholar]
  102. GhoshS.K. Study of anticancer effect of Calocybe indica mushroom on breast cancer cell line and human Ewings sarcoma cancer cell lines.NY Sci J2015851015
    [Google Scholar]
  103. ThomasASS KavithaVLM SekarJ VelmuruganM SriariyanunM ShanmugamV Antidiabetic activity and molecular docking analysis of milky mushroom (Calocybe indica) grown on the renewable substrate. E3S Web Conf 2023; 428: 02006.10.1051/e3sconf/202342802006
  104. ShashikantM. BainsA. ChawlaP. In-vitro antimicrobial and anti-inflammatory activity of modified solvent evaporated ethanolic extract of Calocybe indica: GCMS and HPLC characterization.Int. J. Food Microbiol.202237610974110.1016/j.ijfoodmicro.2022.109741 35671594
    [Google Scholar]
  105. GovindanS. JohnsonE.E.R. ChristopherJ. ShanmugamJ. ThirumalairajV. GopalanJ. Antioxidant and anti-aging activities of polysaccharides from Calocybe indica var. APK2.Exp. Toxicol. Pathol.201668632933410.1016/j.etp.2016.04.001 27174669
    [Google Scholar]
  106. EkowatiN. MaharningA.R. RatnaningtyasN.I. MumpuniA. HikamA.R. [Effects of Ethyl Acetate Extract of Jew’s Ear Mushrooms (Auricularia auricula) on Cytotoxic and Apoptosis of Cervical Cancer Cells (HeLa). In: IOP Conference Series: Earth and Environmental Science: 2020. Bristol, England: IOP Publishing 2020; 593: p. 012011.10.1088/1755‑1315/593/1/012011
  107. HikamA.R. EkowatiN. HernayantiH. The cytotoxic and apoptosis effects of chloroform extracts of Auricularia auricula on cervical cancer cells.Biosaintifika2019111323810.15294/biosaintifika.v11i1.15492
    [Google Scholar]
  108. XiangH. Sun-WaterhouseD. CuiC. WellnessH. Hypoglycemic polysaccharides from Auricularia auricula and Auricularia polytricha inhibit oxidative stress, NF-κB signaling and proinflammatory cytokine production in streptozotocin-induced diabetic mice.Food Sci. Hum. Wellness2021101879310.1016/j.fshw.2020.06.001
    [Google Scholar]
  109. CaiM. LinY. LuoY. LiangH. SunP. Extraction, antimicrobial, and antioxidant activities of crude polysaccharides from the wood ear medicinal mushroom Auricularia auricula-judae (higher basidiomycetes).Int. J. Med. Mushrooms201517659160010.1615/IntJMedMushrooms.v17.i6.90 26349516
    [Google Scholar]
  110. XuS. ZhangY. JiangK. Antioxidant activity in vitro and in vivo of the polysaccharides from different varieties of Auricularia auricula.Food Funct.2016793868387910.1039/C6FO00686H 27506886
    [Google Scholar]
  111. LiL. SuY. FengY. HongR. A comparison study on digestion, anti-inflammatory and functional properties of polysaccharides from four Auricularia species.Int. J. Biol. Macromol.20201541074108110.1016/j.ijbiomac.2020.02.324 32147347
    [Google Scholar]
  112. ZhangY. ZengY. MenY. ZhangJ. LiuH. SunY. Structural characterization and immunomodulatory activity of exopolysaccharides from submerged culture of Auricularia auricula-judae.Int. J. Biol. Macromol.201811597898410.1016/j.ijbiomac.2018.04.145 29715555
    [Google Scholar]
  113. ChenC.C. TangC.T. LaiC.Y. In vitro assessment of the antioxidant and anticancer properties of Flammulina velutipes stipe extracts.Anticancer Res.20234373057306710.21873/anticanres.16477 37352007
    [Google Scholar]
  114. FaisalS. KhanM.A. JanH. Edible mushroom (Flammulina velutipes) as biosource for silver nanoparticles: From synthesis to diverse biomedical and environmental applications.Nanotechnology202132606510110.1088/1361‑6528/abc2eb 33119546
    [Google Scholar]
  115. TabuchiA. Fukushima-SakunoE. Osaki-OkaK. Productivity and bioactivity of enokipodins A–D of Flammulina rossica and Flammulina velutipes.Biosci. Biotechnol. Biochem.202084587688610.1080/09168451.2020.1714421 31942814
    [Google Scholar]
  116. ZhangT. YeJ. XueC. Structural characteristics and bioactive properties of a novel polysaccharide from Flammulina velutipes.Carbohydr. Polym.201819714715610.1016/j.carbpol.2018.05.069 30007599
    [Google Scholar]
  117. ElhusseinyS.M. El-MahdyT.S. AwadM.F. Proteome analysis and in vitro antiviral, anticancer and antioxidant capacities of the aqueous extracts of Lentinula edodes and Pleurotus ostreatus edible mushrooms.Molecules20212615462310.3390/molecules26154623 34361776
    [Google Scholar]
  118. HataK. In vitro and in vivo antidiabetic effects of the ethanol extract from Lentinula edodes (Shiitake).Nutrafoods.20211527928410.17470/NF‑016‑1007‑4
    [Google Scholar]
  119. SharmaS. PrakashS. To detect the minimum inhibitory concentration and time-kill curve of shiitake mushroom on periodontal pathogens: An in vitro study.J. Indian Soc. Periodontol.201923321621910.4103/jisp.jisp_249_18 31143001
    [Google Scholar]
  120. NamM. ChoiJ.Y. KimM.S. Metabolic profiles, bioactive compounds, and antioxidant capacity in Lentinula edodes cultivated on log versus sawdust substrates.Biomolecules20211111165410.3390/biom11111654 34827654
    [Google Scholar]
  121. ZhangZ. WuD. LiW. Structural elucidation and anti-inflammatory activity of a proteoglycan from spent substrate of Lentinula edodes.Int. J. Biol. Macromol.20232241509152310.1016/j.ijbiomac.2022.10.239 36550792
    [Google Scholar]
  122. ZhangY. ZhouR. LiuF. NgT.B. Purification and characterization of a novel protein with activity against non-small-cell lung cancer in vitro and in vivo from the edible mushroom Boletus edulis.Int. J. Biol. Macromol.2021174778810.1016/j.ijbiomac.2021.01.149 33508361
    [Google Scholar]
  123. YounisA.M. Abdel-AzizM.M. YosriM. Evaluation of some biological applications of Pleurotus citrinopileatus and Boletus edulis fruiting bodies.Curr. Pharm. Biotechnol.201920151309132010.2174/1389201020666190904162403 31483226
    [Google Scholar]
  124. TsaiS. TsaiH. MauJ. Non-volatile taste components of Agaricus blazei, Agrocybe cylindracea and Boletus edulis.Food Chem.2008107397798310.1016/j.foodchem.2007.07.080 26065761
    [Google Scholar]
  125. WuS. WangG. YangR. CuiY. Anti-inflammatory effects of Boletus edulis polysaccharide on asthma pathology.Am. J. Transl. Res.201681044784489 27830033
    [Google Scholar]
  126. CuiF. ZhangH. LiG. LiZ. The antioxidant activities in vivo of the total flavonoids from Boletus edulis of Changbai mountain.J. Food Sci. Technol.2014398201205
    [Google Scholar]
  127. MondalA. BanerjeeD. MajumderR. MaityT.K. KhowalaS. Evaluation of in vitro antioxidant, anticancer and in vivo antitumour activity of Termitomyces clypeatus MTCC 5091.Pharm. Biol.201654112536254610.3109/13880209.2016.1168854 27225970
    [Google Scholar]
  128. KanjoW.R. NjouonkouA-L. YongabiA.K. ManfoT.F.P. TumeC. NantiaA.E. In vitro screening of the anti-diabetic activity of six species of edible termite associated mushrooms (Termitomyces spp.) from the Western Highlands of Cameroon.Curr. Res. Environ. Appl. Mycol.202212112513510.5943/cream/12/1/10
    [Google Scholar]
  129. MahamatO. André-LedouxN. ChrisopherT. MbifuA.A. AlbertK. Assessment of antimicrobial and immunomodulatory activities of termite associated fungi, Termitomyces clypeatus R. Heim (Lyophyllaceae, Basidiomycota).Clin Phytosci2018412810.1186/s40816‑018‑0089‑4
    [Google Scholar]
  130. MitraP. MandalN. RoyA. AcharyaK. Phytochemical study and antioxidative property of ethanolic extract from Termitomyces clypeatus.J. Appl. Pharm. Sci.20166712012410.7324/JAPS.2016.60718
    [Google Scholar]
  131. IsakaM. YangchumA. WongkanounS. KongthongS. Marasmane and normarasumane sesquiterpenenoids from the edible mushroom Russula nigricans.Phytochem. Lett.20172117417810.1016/j.phytol.2017.06.013
    [Google Scholar]
  132. ChenL.Y. ChengH.L. KuanY.H. LiangT.J. ChaoY.Y. LinH.C. Therapeutic potential of luteolin on impaired wound healing in streptozotocin-induced rats.Biomedicines20219776110.3390/biomedicines9070761 34209369
    [Google Scholar]
  133. LiH. WangX. XiongQ. YuY. PengL. Sulfated modification, characterization, and potential bioactivities of polysaccharide from the fruiting bodies of Russula virescens.Int. J. Biol. Macromol.20201541438144710.1016/j.ijbiomac.2019.11.025 31733257
    [Google Scholar]
  134. TaengphanW. KlungsupyaP. MaungmanT. PethtubtimI. PradermwongK. JangklangC. Anti-inflammation and active compounds of four indigenous Thai Russula mushrooms.Biol Chem Res20196155162
    [Google Scholar]
  135. PanK. JiangQ. LiuG. MiaoX. ZhongD. Optimization extraction of Ganoderma lucidum polysaccharides and its immunity and antioxidant activities.Int. J. Biol. Macromol.20135530130610.1016/j.ijbiomac.2013.01.022 23370161
    [Google Scholar]
  136. RyuD.H. ChoJ.Y. SadiqN.B. Optimization of antioxidant, anti-diabetic, and anti-inflammatory activities and ganoderic acid content of differentially dried Ganoderma lucidum using response surface methodology.Food Chem.202133512764510.1016/j.foodchem.2020.127645 32738537
    [Google Scholar]
  137. RadhikaR. RajanS. Antifungal potentials of Ganoderma lucidum extracts.Plant Cell Biotechnol. Mol. Biol.2021222227
    [Google Scholar]
  138. JosephS. JanardhananK.K. GeorgeV. BabyS. A new epoxidic ganoderic acid and other phytoconstituents from Ganoderma lucidum.Phytochem. Lett.20114338638810.1016/j.phytol.2011.08.011
    [Google Scholar]
  139. ÖzcanÖ. ErtanF. Beta-glucan content, antioxidant and antimicrobial activities of some edible mushroom species.Food Sci. Technol. (Campinas)201862475510.13189/fst.2018.060201
    [Google Scholar]
  140. WaithakaP.N. GathuruE.M. GithaigaB.M. OnkobaK.M. Antimicrobial activity of mushroom (Agaricus Bisporus) and fungal (Trametes Gibbosa) extracts from mushrooms and fungi of egerton main campus, Njoro Kenya.J. Biomed. Sci.202206310006310.4172/2254‑609X.100063
    [Google Scholar]
  141. BergendiovaK. TibenskaE. MajtanJ. Pleuran (β-glucan from Pleurotus ostreatus) supplementation, cellular immune response and respiratory tract infections in athletes.Eur. J. Appl. Physiol.201111192033204010.1007/s00421‑011‑1837‑z 21249381
    [Google Scholar]
  142. SenI.K. MajiP.K. BeheraB. Structural characterization of an immunoenhancing heteroglycan of a hybrid mushroom (pfls1h) of Pleurotus florida and Lentinus squarrosulus (Mont.) Singer.Carbohydr. Res.2013371455110.1016/j.carres.2013.02.004 23500959
    [Google Scholar]
  143. KimS.P. ParkS.O. LeeS.J. NamS.H. FriedmanM. A polysaccharide isolated from the liquid culture of Lentinus edodes (Shiitake) mushroom mycelia containing black rice bran protects mice against a Salmonella lipopolysaccharide-induced endotoxemia.J. Agric. Food Chem.20136146109871099410.1021/jf403173k 24200110
    [Google Scholar]
  144. SignorettoC. MarchiA. BertoncelliA. The anti-adhesive mode of action of a purified mushroom (Lentinus edodes) extract with anticaries and antigingivitis properties in two oral bacterial pathogens.BMC Complement. Altern. Med.20141417510.1186/1472‑6882‑14‑75 24564835
    [Google Scholar]
  145. SokovićM. ĆirićA. GlamočlijaJ. StojkovićD. Chapter 4 - The bioactive properties of mushrooms.In: Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications.Hoboken, NJWiley201611610.1002/9781118944653.ch4
    [Google Scholar]
  146. ZhuH. SunS. ZhangS. Enhanced production of total flavones and exopolysaccharides via Vitreoscilla hemoglobin biosynthesis in Phellinus igniarius.Bioresour. Technol.201110221747175110.1016/j.biortech.2010.08.085 20855202
    [Google Scholar]
  147. KimS.P. LeeS.J. NamS.H. FriedmanM. Elm tree (Ulmus parvifolia) bark bioprocessed with mycelia of Shiitake (Lentinus edodes) mushrooms in liquid culture: Composition and mechanism of protection against allergic asthma in mice.J. Agric. Food Chem.201664477378410.1021/acs.jafc.5b04972 26807923
    [Google Scholar]
  148. ParolaS. ChiodaroliL. OrlandiV. VanninC. PannoL. Lentinula edodes and Pleurotus ostreatus: Functional food with antioxidant - antimicrobial activity and an important source of Vitamin D and medicinal compounds.Funct. Food Health Dis.201771077379410.31989/ffhd.v7i10.374
    [Google Scholar]
  149. BenderS. Dumitrache-AnghelC.N. BackhausJ. A case for caution in assessing the antibiotic activity of extracts of culinary-medicinal Shiitake mushroom (Lentinus edodes (Berk.) Singer) (Agaricomycetideae).Int. J. Med. Mushrooms200351610.1615/IntJMedMushr.v5.i1.40
    [Google Scholar]
  150. BadalyanS.M. Antiprotozoal activity and mitogenic effect of mycelium of culinary-medicinal Shiitake mushroom Lentinus edodes (Berk.) Singer (Agaricomycetideae).Int. J. Med. Mushrooms20046213113810.1615/IntJMedMushr.v6.i2.40
    [Google Scholar]
  151. PapettiA. SignorettoC. SprattD.A. Components in Lentinus edodes mushroom with anti-biofilm activity directed against bacteria involved in caries and gingivitis.Food Funct.2018963489349910.1039/C7FO01727H 29882939
    [Google Scholar]
  152. CuiC. XuH. YangH. Antibacterial activity of fruiting body extracts from culinary-medicinal winter mushroom, Flammulina velutipes (Agaricomycetes) against oral pathogen Streptococcus mutans.Int. J. Med. Mushrooms202022211512410.1615/IntJMedMushrooms.2020033335 32479000
    [Google Scholar]
  153. GarciaJ. RodriguesF. CastroF. AiresA. MarquesG. SaavedraM.J. Antimicrobial, antibiofilm, and antioxidant properties of Boletus edulis and Neoboletus luridiformis against multidrug-resistant ESKAPE pathogens.Front. Nutr.2022877334610.3389/fnut.2021.773346 35281762
    [Google Scholar]
  154. HsuC.H. HwangK.C. ChiangY.H. ChouP. The mushroom Agaricus blazei Murill extract normalizes liver function in patients with chronic hepatitis B.J. Altern. Complement. Med.200814329930110.1089/acm.2006.6344 18370584
    [Google Scholar]
  155. GuC.Q. LiJ.W. ChaoF. JinM. WangX.W. ShenZ.Q. Isolation, identification and function of a novel anti-HSV-1 protein from Grifola frondosa.Antiviral Res.200775325025710.1016/j.antiviral.2007.03.011 17475344
    [Google Scholar]
  156. SorimachiK. AkimotoK. IkeharaY. InafukuK. OkuboA. YamazakiS. Secretion of TNF-α, IL-8 and nitric oxide by macrophages activated with Agaricus blazei Murill fractions in vitro.Cell Struct. Funct.200126210310810.1247/csf.26.103 11482452
    [Google Scholar]
  157. RincãoV.P. YamamotoK.A. Silva RicardoN.M.P. Polysaccharide and extracts from Lentinula edodes: Structural features and antiviral activity.Virol. J.2012913710.1186/1743‑422X‑9‑37 22336004
    [Google Scholar]
  158. ZhaoC. GaoL. WangC. LiuB. JinY. XingZ. Structural characterization and antiviral activity of a novel heteropolysaccharide isolated from Grifola frondosa against enterovirus 71.Carbohydr. Polym.201614438238910.1016/j.carbpol.2015.12.005 27083830
    [Google Scholar]
  159. ChenL. ShaoH. Extract from Agaricus blazei Murill can enhance immune responses elicited by DNA vaccine against foot-and-mouth disease.Vet. Immunol. Immunopathol.20061091-217718210.1016/j.vetimm.2005.08.028 16213597
    [Google Scholar]
  160. El-MekkawyS. MeselhyM.R. NakamuraN. Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma Lucidum.Phytochemistry19984961651165710.1016/S0031‑9422(98)00254‑4 9862140
    [Google Scholar]
  161. RazumovI. KazachinskaiaE. PuchkovaL. Protective activity of aqueous extracts from higher mushrooms against Herpes simplex virus type-2 on albino mice model.Antibiot. Khimioter.2013589-10812 24738237
    [Google Scholar]
  162. WangW.J. WuY.S. ChenS. LiuC.F. ChenS.N. Mushroom β-glucan may immunomodulate the tumor-associated macrophages in the lewis lung carcinoma.BioMed Res. Int.201520151604385 26167490
    [Google Scholar]
  163. BervenL. KarppinenP. HetlandG. SamuelsenA.B.C. The polar high molecular weight fraction of the Agaricus blazei Murill extract, AndoSan™, reduces the activity of the tumor-associated protease, legumain, in RAW 264.7 cells.J. Med. Food201518442943810.1089/jmf.2014.0018 25136950
    [Google Scholar]
  164. CheungY.C. SiuK.C. LiuY.S. WuJ.Y. Molecular properties and antioxidant activities of polysaccharide–protein complexes from selected mushrooms by ultrasound-assisted extraction.Process Biochem.201247589289510.1016/j.procbio.2012.02.004
    [Google Scholar]
  165. PetrovaR.D. ReznickA.Z. WasserS.P. DenchevC.M. NevoE. MahajnaJ. Fungal metabolites modulating NF-kappaB activity: An approach to cancer therapy and chemoprevention (review).Oncol. Rep.2008192299308 18202775
    [Google Scholar]
  166. PatelS GoyalA Recent developments in mushrooms as anti-cancer therapeutics: A review.3 Biotech20122111510.1007/s13205‑011‑0036‑2 22582152
    [Google Scholar]
  167. RoupasP. KeoghJ. NoakesM. MargettsC. TaylorP. The role of edible mushrooms in health: Evaluation of the evidence.J. Funct. Foods20124468770910.1016/j.jff.2012.05.003
    [Google Scholar]
  168. FontanaS. FlugyA. SchillaciO. In vitro antitumor effects of the cold-water extracts of Mediterranean species of genus Pleurotus (higher Basidiomycetes) on human colon cancer cells.Int. J. Med. Mushrooms2014161496310.1615/IntJMedMushr.v16.i1.50 24940904
    [Google Scholar]
  169. ChenS. YongT. ZhangY. SuJ. JiaoC. XieY. Anti-tumor and anti-angiogenic ergosterols from Ganoderma lucidum.Front Chem.201758510.3389/fchem.2017.00085 29164102
    [Google Scholar]
  170. HetlandG. JohnsonE. LybergT. KvalheimG. The mushroom Agaricus blazei Murill elicits medicinal effects on tumor, infection, allergy, and inflammation through its modulation of innate immunity and amelioration of Th1/Th2 imbalance and inflammation.Adv. Pharmacol. Sci.201120111157015 21912538
    [Google Scholar]
  171. IsrailidesC. KletsasD. ArapoglouD. In vitro cytostatic and immunomodulatory properties of the medicinal mushroom Lentinula edodes.Phytomedicine2008156-751251910.1016/j.phymed.2007.11.029 18242970
    [Google Scholar]
  172. SadavaD. StillD.W. MudryR.R. KaneS.E. Effect of Ganoderma on drug-sensitive and multidrug-resistant small-cell lung carcinoma cells.Cancer Lett.2009277218218910.1016/j.canlet.2008.12.009 19188016
    [Google Scholar]
  173. SohretogluD. HuangS. Ganoderma lucidum polysaccharides as an anti-cancer agent.Anticancer. Agents Med. Chem.201818566767410.2174/1871520617666171113121246 29141563
    [Google Scholar]
  174. WangY. MoY. LiD. XiangC. JiangZ. WangJ. The main factors inducing postharvest lignification in king oyster mushrooms (Pleurotus eryngii): Wounding and ROS-mediated senescence.Food Chem.201930112522410.1016/j.foodchem.2019.125224 31374530
    [Google Scholar]
  175. ChengA.Y. ChienY.C. LeeH.C. HsiehY.H. YuY.L. Water-extracted Ganoderma lucidum induces apoptosis and S-phase arrest via cyclin-CDK2 pathway in glioblastoma cells.Molecules20202516358510.3390/molecules25163585 32781747
    [Google Scholar]
  176. InaK. FurutaR. Complete response of metastatic gastric cancer to chemoimmunotherapy.Indian J. Med. Res.2017146114110.4103/ijmr.IJMR_132_16 29168471
    [Google Scholar]
  177. VenturellaG. FerraroV. CirlincioneF. GarganoM.L. Medicinal mushrooms: Bioactive compounds, use, and clinical trials.Int. J. Mol. Sci.202122263410.3390/ijms22020634 33435246
    [Google Scholar]
  178. GalappaththiM. DaunerL. MadawalaS. KarunarathnaS. Nutritional and medicinal benefits of Oyster (Pleurotus) mushrooms: A review.Fung Biotec202112658710.5943/FunBiotec/1/2/5
    [Google Scholar]
  179. WalkerE.H. PacoldM.E. PerisicO. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine.Mol. Cell20006490991910.1016/S1097‑2765(05)00089‑4 11090628
    [Google Scholar]
  180. LeeK.M. LeeD.E. SeoS.K. Phosphatidylinositol 3-kinase, a novel target molecule for the inhibitory effects of kaempferol on neoplastic cell transformation.Carcinogenesis20103181338134310.1093/carcin/bgq102 20530555
    [Google Scholar]
  181. LinH.C. LinM.H. LiaoJ.H. Antroquinonol, a ubiquinone derivative from the mushroom Antrodia camphorata, inhibits colon cancer stem cell-like properties: Insights into the molecular mechanism and inhibitory targets.J. Agric. Food Chem.2017651515910.1021/acs.jafc.6b04101 27997180
    [Google Scholar]
  182. GaoY. ZhouS. Cancer prevention and treatment by Ganoderma, a mushroom with medicinal properties.Food Rev. Int.200319327532510.1081/FRI‑120023480
    [Google Scholar]
  183. ZhaoH. ZhangQ. ZhaoL. HuangX. WangJ. KangX. Spore powder of Ganoderma lucidum improves cancer‐related fatigue in breast cancer patients undergoing endocrine therapy: A pilot clinical trial.Evid. Based Complement. Alternat. Med.201220121809614 22203880
    [Google Scholar]
  184. EchigoR. ShimohataN. KaratsuK. Trehalose treatment suppresses inflammation, oxidative stress, and vasospasm induced by experimental subarachnoid hemorrhage.J. Transl. Med.20121018010.1186/1479‑5876‑10‑80 22546323
    [Google Scholar]
  185. MuszyńskaB. KrakowskaA. Sułkowska-ZiajaK. OpokaW. ReczyńskiW. BaśB. In vitro cultures and fruiting bodies of culinary-medicinal Agaricus bisporus (white button mushroom) as a source of selected biologically-active elements.J. Food Sci. Technol.201552117337734410.1007/s13197‑015‑1830‑3
    [Google Scholar]
  186. HetlandG. TangenJ.M. MahmoodF. Antitumor, anti-inflammatory and antiallergic effects of Agaricus blazei mushroom extract and the related medicinal basidiomycetes mushrooms, Hericium erinaceus and Grifola frondosa: A review of preclinical and clinical studies.Nutrients2020125133910.3390/nu12051339 32397163
    [Google Scholar]
  187. SongH.H. ChaeH.S. OhS.R. LeeH.K. ChinY.W. Anti-inflammatory and anti-allergic effect of Agaricus blazei extract in bone marrow-derived mast cells.Am. J. Chin. Med.20124051073108410.1142/S0192415X12500796 22928836
    [Google Scholar]
  188. WangY.X. ZhangT. YinJ.Y. Structural characterization and rheological properties of an alkali-extracted β-glucan from Hypsizygus marmoreus.Food Hydrocoll.202212610747510.1016/j.foodhyd.2021.107475
    [Google Scholar]
  189. BaroneR. Caruso BavisottoC. RappaF. JNK pathway and heat shock response mediate the survival of C26 colon carcinoma bearing mice fed with the mushroom Pleurotus eryngii var. eryngii without affecting tumor growth or cachexia.Food Funct.20211273083309510.1039/D0FO03171B 33720221
    [Google Scholar]
  190. GuoC. GuoD. FangL. Ganoderma lucidum polysaccharide modulates gut microbiota and immune cell function to inhibit inflammation and tumorigenesis in colon.Carbohydr. Polym.202126711823110.1016/j.carbpol.2021.118231 34119183
    [Google Scholar]
  191. WangY. LiuY. WangH. LiC. QiP. BaoJ. Agaricus bisporus lectins mediates islet β-cell proliferation through regulation of cell cycle proteins.Exp. Biol. Med. (Maywood)2012237328729610.1258/ebm.2011.011251 22393165
    [Google Scholar]
  192. RatnaningtyasN.I. HernayantiH. AndarwantiS. EkowatiN. PurwantiE.S. SukmawatiD. Effects of Ganoderma lucidum extract on diabetic rats.Biosaintifika201810364264710.15294/biosaintifika.v10i3.15356
    [Google Scholar]
  193. WangG. WangL. ZhouJ. XuX. The possible role of PD-1 protein in Ganoderma lucidum–mediated immunomodulation and cancer treatment.Integr. Cancer Ther.201918153473541988027510.1177/1534735419880275 31595795
    [Google Scholar]
  194. NieY. LuoF. Dietary fiber: An opportunity for a global control of hyperlipidemia.Oxid. Med. Cell. Longev.202120211554234210.1155/2021/5542342 33897940
    [Google Scholar]
  195. XuY. ZhangX. YanX.H. Characterization, hypolipidemic and antioxidant activities of degraded polysaccharides from Ganoderma lucidum.Int. J. Biol. Macromol.201913570671610.1016/j.ijbiomac.2019.05.166 31129213
    [Google Scholar]
  196. FerreiraI.C. VazJ.A. VasconcelosM.H. MartinsA. Compounds from wild mushrooms with antitumor potential.Anticancer. Agents Med. Chem.201010542443610.2174/1871520611009050424 20545620
    [Google Scholar]
  197. YildizO. CanZ. LaghariA.Q. ŞahinH. MalkoçM. Wild edible mushrooms as a natural source of phenolics and antioxidants.J. Food Biochem.201539214815410.1111/jfbc.12107
    [Google Scholar]
  198. CarneiroA.A.J. FerreiraI.C.F.R. DueñasM. Chemical composition and antioxidant activity of dried powder formulations of Agaricus blazei and Lentinus edodes.Food Chem.201313842168217310.1016/j.foodchem.2012.12.036 23497872
    [Google Scholar]
  199. IslamT. YaoF. KangW. LuL. XuB. A systematic study on mycochemical profiles, antioxidant, and anti-inflammatory activities of 30 varieties of Jew’s ear (Auricularia auricula-judae).Food Sci. Hum. Wellness202211478179410.1016/j.fshw.2022.03.005
    [Google Scholar]
  200. ZhangR.Y. HuD.D. GuJ.G. ZuoX.M. HuQ.X. ZhangJ.X. Evaluation of oyster mushroom strains for resistance to Pseudomonas tolaasii by inoculation in spawned substrates.Eur. J. Plant Pathol.2013137111912610.1007/s10658‑013‑0223‑6
    [Google Scholar]
  201. BadalyanS.M. BarkhudaryanA. RapiorS. Recent progress in research on the pharmacological potential of mushrooms and prospects for their clinical application.Medicinal Mushrooms. AgrawalD. DhanasekaranM. SingaporeSpringer201917010.1007/978‑981‑13‑6382‑5_1
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638369335250317040625
Loading
/content/journals/cddt/10.2174/0115701638369335250317040625
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-diabetic; antimicrobial action; antioxidant; antioxidants; antitumor; Mushroom; proteins
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test