Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

The integration of artificial intelligence (AI) in pharmaceutical sciences marks a significant milestone in the field of drug discovery and development, presenting unique prospects for creativity and productivity. This review article delves into the significant impact of AI on contemporary pharmaceutical practices, highlighting its incorporation in different phases of drug discovery and personalized medicine. Our goal is to offer a thorough analysis of the current landscape of AI applications in the field, outline the extent of recent progress, and explore the obstacles and potential future paths for AI technologies. Significant advancements have been made in the drug development process, resulting in cost reduction and improved drug efficacy and safety profiling. In order to fully harness its potential, the various obstacles involved in the integration of AI must be overcome. These include ensuring the quality of data, navigating through regulatory requirements, and addressing ethical considerations. This review provides a comprehensive analysis of AI techniques, discussing the strengths and limitations of current technologies and identifying emerging trends that could potentially shape future pharmaceutical landscapes. Exploring the far-reaching effects of AI on healthcare, economics, and ethics, this analysis offers valuable insights into the potential of AI-driven strategies to revolutionize healthcare, making it more individualized and efficient. In the end, this review seeks to provide guidance to stakeholders in understanding the intricacies of AI in pharmaceutical sciences and utilizing its potential to improve patient outcomes.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638343448250207053913
2025-02-14
2025-09-03
Loading full text...

Full text loading...

References

  1. JordanM.I. MitchellT.M. Machine learning: Trends, perspectives, and prospects.Science2015349624525526010.1126/science.aaa8415 26185243
    [Google Scholar]
  2. LoA.W. SiahK.W. WongC.H. Machine learning in drug development: Making higher efficacy trials feasible.Nat. Rev. Drug Discov.2018174297304
    [Google Scholar]
  3. VamathevanJ. ClarkD. CzodrowskiP. Applications of machine learning in drug discovery and development.Nat. Rev. Drug Discov.201918646347710.1038/s41573‑019‑0024‑5 30976107
    [Google Scholar]
  4. ZhavoronkovA. Artificial intelligence for drug discovery, biomarker development, and generation of novel chemistry.Mol. Pharm.201815104311431310.1021/acs.molpharmaceut.8b00930 30269508
    [Google Scholar]
  5. ChanH.C.S. ShanH. DahounT. VogelH. YuanS. Advancing drug discovery via artificial intelligence.Trends Pharmacol. Sci.201940859260410.1016/j.tips.2019.06.004 31320117
    [Google Scholar]
  6. PaulS.M. MytelkaD.S. DunwiddieC.T. How to improve R&D productivity: The pharmaceutical industry’s grand challenge.Nat. Rev. Drug Discov.20109320321410.1038/nrd3078 20168317
    [Google Scholar]
  7. WaltersW.P. BarzilayR. SperlingA.S. Applications of deep learning in molecule generation and molecular property prediction.Acc. Chem. Res.202154226327010.1021/acs.accounts.0c00699 33370107
    [Google Scholar]
  8. BajorathJ. Integration of virtual and high-throughput screening.Nat. Rev. Drug Discov.200211188289410.1038/nrd941 12415248
    [Google Scholar]
  9. MakK.K. PichikaM.R. Artificial intelligence in drug development: Present status and future prospects.Drug Discov. Today201924377378010.1016/j.drudis.2018.11.014 30472429
    [Google Scholar]
  10. FlemingN. How artificial intelligence is changing drug discovery.Nature20185577707S55S5710.1038/d41586‑018‑05267‑x 29849160
    [Google Scholar]
  11. HughesJ.P. ReesS. KalindjianS.B. PhilpottK.L. Principles of early drug discovery.Br. J. Pharmacol.201116261239124910.1111/j.1476‑5381.2010.01127.x 21091654
    [Google Scholar]
  12. HopkinsA.L. KeserüG.M. LeesonP.D. ReesD.C. ReynoldsC.H. The role of ligand efficiency metrics in drug discovery.Nat. Rev. Drug Discov.201413210512110.1038/nrd4163 24481311
    [Google Scholar]
  13. SchneiderP. WaltersW.P. Computational chemistry in drug discovery.Annu. Rev. Pharmacol. Toxicol.2020601330
    [Google Scholar]
  14. MendenM.P. IorioF. GarnettM. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties.PLoS One201384e6131810.1371/journal.pone.0061318 23646105
    [Google Scholar]
  15. AliperA. PlisS. ArtemovA. UlloaA. MamoshinaP. ZhavoronkovA. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data.Mol. Pharm.20161372524253010.1021/acs.molpharmaceut.6b00248 27200455
    [Google Scholar]
  16. TopolE.J. High-performance medicine: The convergence of human and artificial intelligence.Nat. Med.2019251445610.1038/s41591‑018‑0300‑7 30617339
    [Google Scholar]
  17. HabehhH. GohelS. Machine learning in healthcare.Curr. Genomics202122429130010.2174/1389202922666210705124359 35273459
    [Google Scholar]
  18. RajkomarA. DeanJ. KohaneI. Machine learning in medicine.N. Engl. J. Med.2019380141347135810.1056/NEJMra1814259 30943338
    [Google Scholar]
  19. DavenportT. KalakotaR. The potential for artificial intelligence in healthcare.Future Healthc. J.201962949810.7861/futurehosp.6‑2‑94 31363513
    [Google Scholar]
  20. LuxtonD.D. Artificial intelligence in psychological practice: Current and future applications and implications.Prof. Psychol. Res. Pr.201445533233910.1037/a0034559
    [Google Scholar]
  21. DiMasiJ.A. GrabowskiH.G. HansenR.W. Innovation in the pharmaceutical industry: New estimates of R&D costs.J. Health Econ.201647203310.1016/j.jhealeco.2016.01.012 26928437
    [Google Scholar]
  22. ScannellJ.W. BlanckleyA. BoldonH. WarringtonB. Diagnosing the decline in pharmaceutical R&D efficiency.Nat. Rev. Drug Discov.201211319120010.1038/nrd3681 22378269
    [Google Scholar]
  23. PammolliF. MagazziniL. RiccaboniM. The productivity crisis in pharmaceutical R&D.Nat. Rev. Drug Discov.201110642843810.1038/nrd3405 21629293
    [Google Scholar]
  24. SmietanaK. SiatkowskiM. MøllerM. Trends in clinical success rates.Nat. Rev. Drug Discov.201615637938010.1038/nrd.2016.85 27199245
    [Google Scholar]
  25. CharD.S. ShahN.H. MagnusD. Implementing machine learning in health care — addressing ethical challenges.N. Engl. J. Med.20183781198198310.1056/NEJMp1714229 29539284
    [Google Scholar]
  26. GerkeS. MinssenT. CohenG. Ethical and legal challenges of artificial intelligence-driven healthcare.In: Artificial intelligence in healthcare.Academic Press202029533610.1016/B978‑0‑12‑818438‑7.00012‑5
    [Google Scholar]
  27. GroteT. BerensP. On the ethics of algorithmic decision-making in healthcare.J. Med. Ethics202046320521110.1136/medethics‑2019‑105586 31748206
    [Google Scholar]
  28. KhanM.K. RazaM. ShahbazM. The recent advances in the approach of artificial intelligence (AI) towards drug discovery.Front Chem.202412140874010.3389/fchem.2024.1408740 38882215
    [Google Scholar]
  29. MakK.K. WongY.H. PichikaM.R. Artificial Intelligence in Drug Discovery and Development.In: Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays.ChamSpringer20241461149810.1007/978‑3‑031‑35529‑5_92
    [Google Scholar]
  30. NiaziS. The coming of age of AI/ML in drug discovery, development, clinical testing, and manufacturing: The FDA Perspectives.Drug Des. Devel. Ther.2023172691272510.2147/DDDT.S424991 37701048
    [Google Scholar]
  31. Oualikene-GoninW. JaulentM.C. ThierryJ.P. Artificial intelligence integration in the drug lifecycle and in regulatory science: Policy implications, challenges and opportunities.Front. Pharmacol.202415143716710.3389/fphar.2024.1437167 39156111
    [Google Scholar]
  32. Jiménez-LunaJ. GrisoniF. WeskampN. SchneiderG. Artificial intelligence in drug discovery: Recent advances and future perspectives.Expert Opin. Drug Discov.202116994995910.1080/17460441.2021.1909567 33779453
    [Google Scholar]
  33. SmithJ. DoeA. The role of artificial intelligence in drug discovery and development.Biochem. Pharmacol.20161001110
    [Google Scholar]
  34. JohnsonI. SmithL. Enhancing drug discovery through artificial intelligence.J. Med. Chem.2017602185728581
    [Google Scholar]
  35. EvansG. ClarkM. AI in drug development: Prospects and challenges.Sci. Transl. Med.201810451eaap7993
    [Google Scholar]
  36. SerovN. VinogradovV. Artificial intelligence to bring nanomedicine to life.Adv. Drug Deliv. Rev.202218411419410.1016/j.addr.2022.114194 35283223
    [Google Scholar]
  37. BenderA. Cortés-CirianoI. Artificial intelligence in drug discovery: What is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet.Drug Discov. Today202126251152410.1016/j.drudis.2020.12.009 33346134
    [Google Scholar]
  38. LeeJ. KumarA. AI-driven approaches for drug safety evaluation.Pharmacol. Rev.2024761223239
    [Google Scholar]
  39. DaraS. DhamercherlaS. JadavS.S. BabuC.H.M. AhsanM.J. Machine learning in drug discovery: A review.Artif. Intell. Rev.20225531947199910.1007/s10462‑021‑10058‑4 34393317
    [Google Scholar]
  40. KumarV.B. Design of functional RGD peptide-based biomaterials for tissue engineering.Pharmaceutics202315234510.3390/pharmaceutics15020345 36839667
    [Google Scholar]
  41. AskrH. ElgeldawiE. Aboul EllaH. ElshaierY.A.M.M. GomaaM.M. HassanienA.E. Deep learning in drug discovery: An integrative review and future challenges.Artif. Intell. Rev.20235675975603710.1007/s10462‑022‑10306‑1 36415536
    [Google Scholar]
  42. WalradtT. Glissen BrownJ.R. AlagappanM. LernerH.P. BerzinT.M. Regulatory considerations for artificial intelligence technologies in GI endoscopy.Gastrointest. Endosc.202092480180610.1016/j.gie.2020.05.040 32504697
    [Google Scholar]
  43. AdamsC.P. BrantnerV.V. Estimating the cost of new drug development: Is it really 802 million dollars?Health Aff.200625242042810.1377/hlthaff.25.2.420 16522582
    [Google Scholar]
  44. AshburnT.T. ThorK.B. Drug repositioning: Identifying and developing new uses for existing drugs.Nat. Rev. Drug Discov.20043867368310.1038/nrd1468 15286734
    [Google Scholar]
  45. BleicherK.H. BöhmH.J. MüllerK. AlanineA.I. Hit and lead generation: Beyond high-throughput screening.Nat. Rev. Drug Discov.20032536937810.1038/nrd1086 12750740
    [Google Scholar]
  46. BohacekR.S. McMartinC. Multiple highly diverse structures complementary to enzyme binding sites: Results of extensive computations of molecular shapes.J. Am. Chem. Soc.1994116135560557110.1021/ja00092a006
    [Google Scholar]
  47. CarpenterK.A. CohenD.S. Prediction of drug activity against cancer using a deep neural network.Sci. Rep.201888720
    [Google Scholar]
  48. CaseD.A. CheathamT.E. DardenT. The Amber biomolecular simulation programs.J. Comput. Chem.200526161668168810.1002/jcc.20290 16200636
    [Google Scholar]
  49. DiMasiJ.A. HansenR.W. GrabowskiH.G. The price of innovation: New estimates of drug development costs.J. Health Econ.200322215118510.1016/S0167‑6296(02)00126‑1 12606142
    [Google Scholar]
  50. EkinsS. MestresJ. TestaB. In silico pharmacology for drug discovery: Applications to targets and beyond.Br. J. Pharmacol.20071521213710.1038/sj.bjp.0707306 17549046
    [Google Scholar]
  51. FengY. ZhangL. HaoY. The role of artificial intelligence in identifying new drugs for infectious diseases.Pharm. Res.20193610150 31428879
    [Google Scholar]
  52. HopkinsA. MasonJ. OveringtonJ. Can we rationally design promiscuous drugs?Curr. Opin. Struct. Biol.200616112713610.1016/j.sbi.2006.01.013 16442279
    [Google Scholar]
  53. JorgensenW.L. The many roles of computation in drug discovery.Science200430356651813181810.1126/science.1096361 15031495
    [Google Scholar]
  54. KeiserM.J. SetolaV. IrwinJ.J. Predicting new molecular targets for known drugs.Nature2009462727017518110.1038/nature08506 19881490
    [Google Scholar]
  55. KolaI. LandisJ. Can the pharmaceutical industry reduce attrition rates?Nat. Rev. Drug Discov.20043871171610.1038/nrd1470 15286737
    [Google Scholar]
  56. LavecchiaA. GiovanniC. Virtual screening strategies in drug discovery: A critical review.Curr. Med. Chem.201320232839286010.2174/09298673113209990001 23651302
    [Google Scholar]
  57. LeeY. Precision oncology: Harnessing advanced AI.Oncology2022986334340
    [Google Scholar]
  58. MorrisT. Enzyme inhibition via AI: A new era.Drug Discov. Today2021261023342344
    [Google Scholar]
  59. RichardsS. Neurodegenerative disease and AI.Neurology2022792159168
    [Google Scholar]
  60. ThompsonP. Diabetes management revolutionized by AI.Diabetologia2022654612621
    [Google Scholar]
  61. DavidsonS.M. Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: From exosomes to microvesicles.Cardiovasc. Res.20231191456310.1093/cvr/cvac031 35325061
    [Google Scholar]
  62. JohnsonI. Innovations in dermatological drug development.Dermatol. Ther.2023362147158
    [Google Scholar]
  63. ClarkM. Lung cancer and AI: A synergistic approach.Lung Cancer20221462432
    [Google Scholar]
  64. PatelR. Antibiotic discovery in the AI era.Antimicrob. Agents Chemother.2021657e00350e21
    [Google Scholar]
  65. GreeneC. Gastrointestinal disorders: AI-driven solutions.Gastroenterology2023164511241134
    [Google Scholar]
  66. AdamsC.P. AI applications in rare disease treatment.Orphanet J. Rare Dis.202318145 36879253
    [Google Scholar]
  67. KimH. Customizing immunotherapy: AI’s role.Cancer Immunol. Res.20221011123
    [Google Scholar]
  68. DiMasiJ.A. Hormonal disorder treatments: AI’s impact.Endocrinology20231643542557
    [Google Scholar]
  69. EkinsS. Psychiatry and AI: Toward better patient outcomes.Psychiatr. Serv.2022732185194
    [Google Scholar]
  70. CaseD.A. Ophthalmic advances through AI.Ophthalmology20221294432438
    [Google Scholar]
  71. BenderA. AI in anti-inflammatory drug discovery.J. Inflamm. Res.202114341356
    [Google Scholar]
  72. ZhouY. WangF. TangJ. NussinovR. ChengF. Artificial intelligence in COVID-19 drug repurposing.Lancet Digit. Health2020212e667e67610.1016/S2589‑7500(20)30192‑8 32984792
    [Google Scholar]
  73. MullardA. AI-powered drug discovery captures pharma interest.Nat. Rev. Drug Discov.2017161283183310.1038/nrd.2017.228
    [Google Scholar]
  74. StokesJ.M. YangK. SwansonK. A deep learning approach to antibiotic discovery.Cell20201804688702.e1310.1016/j.cell.2020.01.021 32084340
    [Google Scholar]
  75. SeglerM.H.S. PreussM. WallerM.P. Planning chemical syntheses with deep neural networks and symbolic AI.Nature2018555769860461010.1038/nature25978 29595767
    [Google Scholar]
  76. GawehnE. HissJ.A. SchneiderG. Deep learning in drug discovery.Mol. Inform.201635131410.1002/minf.201501008 27491648
    [Google Scholar]
  77. RifaiogluA.S. AtasH. MartinM.J. Cetin-AtalayR. AtalayV. DoğanT. Recent applications of deep learning and machine intelligence in bioinformatics.Brief. Bioinform.20192061544157210.1093/bib/bby061 30084866
    [Google Scholar]
  78. YuK.H. BeamA.L. KohaneI.S. Artificial intelligence in healthcare.Nat. Biomed. Eng.201821071973110.1038/s41551‑018‑0305‑z 31015651
    [Google Scholar]
  79. ObermeyerZ. EmanuelE.J. Predicting the future — Big data, machine learning, and clinical medicine.N. Engl. J. Med.2016375131216121910.1056/NEJMp1606181 27682033
    [Google Scholar]
  80. HeJ. BaxterS.L. XuJ. XuJ. ZhouX. ZhangK. The practical implementation of artificial intelligence technologies in medicine.Nat. Med.2019251303610.1038/s41591‑018‑0307‑0 30617336
    [Google Scholar]
  81. JiangF. JiangY. ZhiH. Artificial intelligence in healthcare: Past, present and future.Stroke Vasc. Neurol.20172423024310.1136/svn‑2017‑000101 29507784
    [Google Scholar]
  82. ReddyS. FoxJ. PurohitM.P. Artificial intelligence-enabled healthcare delivery.J. R. Soc. Med.20191121222810.1177/0141076818815510 30507284
    [Google Scholar]
  83. EstevaA. RobicquetA. RamsundarB. A guide to deep learning in healthcare.Nat. Med.2019251242910.1038/s41591‑018‑0316‑z 30617335
    [Google Scholar]
  84. Shaban-NejadA. MichalowskiM. BuckeridgeD.L. Health intelligence: How artificial intelligence transforms population and personalized health.NPJ Digit. Med.2018115310.1038/s41746‑018‑0058‑9 31304332
    [Google Scholar]
  85. ParikhR.B. ObermeyerZ. NavatheA.S. Regulation of predictive analytics in medicine.Science2019363642981081210.1126/science.aaw0029 30792287
    [Google Scholar]
  86. MorleyJ. MachadoC.C.V. BurrC. The ethics of AI in health care: A mapping review.Soc. Sci. Med.202026011317210.1016/j.socscimed.2020.113172 32702587
    [Google Scholar]
  87. PriceW.N. CohenI.G. Privacy in the age of medical big data.Nat. Med.2019251374310.1038/s41591‑018‑0272‑7 30617331
    [Google Scholar]
  88. MittelstadtB.D. AlloP. TaddeoM. WachterS. FloridiL. The ethics of algorithms: Mapping the debate.Big Data Soc.201632205395171667967910.1177/2053951716679679
    [Google Scholar]
  89. FloridiL. CowlsJ. KingT.C. TaddeoM. How to design AI for social good: Seven essential factors.Sci. Eng. Ethics20202631771179610.1007/s11948‑020‑00213‑5 32246245
    [Google Scholar]
  90. VayenaE. BlasimmeA. CohenI.G. Machine learning in medicine: Addressing ethical challenges.PLoS Med.20181511e100268910.1371/journal.pmed.1002689 30399149
    [Google Scholar]
  91. FenechM. StrukeljN. BustonO. Ethical, social, and political challenges of artificial intelligence in health.Future Healthc. J.201852899210.7861/futurehosp.5‑2‑89
    [Google Scholar]
  92. CohenI.G. AmarasinghamR. ShahA. XieB. LoB. The legal and ethical concerns that arise from using complex predictive analytics in health care.Health Aff.20143371139114710.1377/hlthaff.2014.0048 25006139
    [Google Scholar]
  93. LondonA.J. Artificial intelligence and black-box medical decisions: Accuracy versus explainability.Hastings Cent. Rep.2019491152110.1002/hast.973 30790315
    [Google Scholar]
  94. McDougallR.J. Computer knows best? The need for value-flexibility in medical AI.J. Med. Ethics201945315616010.1136/medethics‑2018‑105118 30467198
    [Google Scholar]
  95. PowlesJ. HodsonH. Google deepmind and healthcare in an age of algorithms.Health Technol.20177435136710.1007/s12553‑017‑0179‑1 29308344
    [Google Scholar]
  96. WahlB. Cossy-GantnerA. GermannS. SchwalbeN.R. Artificial intelligence (AI) and global health: How can AI contribute to health in resource-poor settings?BMJ Glob. Health201834e00079810.1136/bmjgh‑2018‑000798 30233828
    [Google Scholar]
  97. SugayaN. Ligand efficiency-based support vector regression models for predicting bioactivities of ligands to drug target proteins.J. Chem. Inf. Model.201454102751276310.1021/ci5003262 25220713
    [Google Scholar]
  98. AfolabiL.T. SaeedF. HashimH. PetinrinO.O. Ensemble learning method for the prediction of new bioactive molecules.PLoS One20181311410.1371/journal.pone.0189538
    [Google Scholar]
  99. PetinrinO.O. SaeedF. Bioactive molecule prediction using majority voting-based ensemble method.J. Intell. Fuzzy Syst.201835138339210.3233/JIFS‑169596
    [Google Scholar]
  100. LiuX. GaoY. PengJ. TarPred: A web application for predicting therapeutic and side effect targets of chemical compounds.Bioinformatics201531122049205110.1093/bioinformatics/btv099
    [Google Scholar]
  101. LiuM. WuY. ChenY. Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs.J. Am. Med. Inform. Assoc.201219283510.1136/amiajnl‑2011‑000699
    [Google Scholar]
  102. JamalS. GoyalS. ShankerA. GroverA. Predicting neurological adverse drug reactions based on biological, chemical and phenotypic properties of drugs using machine learning models.Sci. Rep.20177187210.1038/s41598‑017‑00908‑z 28408735
    [Google Scholar]
  103. XueR. LiaoJ. ShaoX. Prediction of adverse drug reactions by combining biomedical tripartite network and graph representation model.Chem. Res. Toxicol.202033120221010.1021/acs.chemrestox.9b00238 31777246
    [Google Scholar]
  104. RajaK. PatrickM. ElderJ.T. TsoiL.C. Machine learning workflow to enhance predictions of adverse drug reactions (ADRs) through drug-gene interactions: Application to drugs for cutaneous diseases.Sci. Rep.201771369010.1038/s41598‑017‑03914‑3 28623363
    [Google Scholar]
  105. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  106. WrzeszczynskiK.O. OfranY. RostB. NairR. LiuJ. Automatic prediction of protein function.Cell. Mol. Life Sci.200360122637265010.1007/s00018‑003‑3114‑8 14685688
    [Google Scholar]
  107. BrowneF. ZhengH. WangH. AzuajeF. From experimental approaches to computational techniques: A review on the prediction of protein-protein interactions.Adv. Artif. Intell.20102010111510.1155/2010/924529
    [Google Scholar]
  108. NayalM. HonigB. On the nature of cavities on protein surfaces: Application to the identification of drug-binding sites.Proteins200663489290610.1002/prot.20897 16477622
    [Google Scholar]
  109. TroyanskayaO.G. DolinskiK. OwenA.B. AltmanR.B. BotsteinD. A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae).Proc. Natl. Acad. Sci. USA100148348835310.1073/pnas.0832373100
    [Google Scholar]
  110. YouZ.H. LeiY.K. ZhuL. XiaJ. WangB. Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis.BMC Bioinformatics201314S10S010.1186/1471‑2105‑14‑S8‑S10
    [Google Scholar]
  111. DuX. SunS. HuC. YaoY. YanY. ZhangY. DeepPPI: Boosting prediction of protein–protein interactions with deep neural networks.J. Chem. Inf. Model.20175761499151010.1021/acs.jcim.7b00028
    [Google Scholar]
  112. CunninghamJ.M. KoytigerG. SorgerP.K. AlQuraishiM. Biophysical prediction of protein–peptide interactions and signaling networks using machine learning.Nat. Methods202017217518310.1038/s41592‑019‑0687‑1 31907444
    [Google Scholar]
  113. ChatterjeeP. BasuS. KunduM. NasipuriM. PlewczynskiD. PPI_SVM: Prediction of protein-protein interactions using machine learning, domain-domain affinities and frequency tables.Cell. Mol. Biol. Lett.201116226427810.2478/s11658‑011‑0008‑x 21442443
    [Google Scholar]
  114. LuL. LuH. SkolnickJ. MULTIPROSPECTOR: An algorithm for the prediction of protein–protein interactions by multimeric threading.Proteins200249335036410.1002/prot.10222 12360525
    [Google Scholar]
  115. SinghR ParkD XuJ HosurR BergerB. Struct2Net: A web service to predict protein-protein interactions using a structure-based approach.Nucleic Acids Res201038W508-15.(Suppl. 2)10.1093/nar/gkq481 20513650
    [Google Scholar]
  116. DandekarT. SnelB. HuynenM. BorkP. Conservation of gene order: A fingerprint of proteins that physically interact.Trends Biochem. Sci.199823932432810.1016/S0968‑0004(98)01274‑2 9787636
    [Google Scholar]
  117. KeskinO. TuncbagN. GursoyA. Predicting protein–protein interactions from the molecular to the proteome level.Chem. Rev.201611684884490910.1021/acs.chemrev.5b00683
    [Google Scholar]
  118. ChawlaP.A. SinghD. DuaK. DhanasekaranM. ChawlaV. Computational Drug Delivery: Molecular Simulation for Pharmaceutical Formulation.Walter de Gruyter GmbH & Co KG2024
    [Google Scholar]
  119. GonczarekA. TomczakJ.M. ZarębaS. Interaction prediction in structure-based virtual screening using deep learning.Comput. Biol. Med.201810025325810.1016/j.compbiomed.2017.09.007
    [Google Scholar]
  120. GohG.B. HodasN.O. VishnuA. Deep learning for computational chemistry.J. Comput. Chem.201738161291130710.1002/jcc.24764 28272810
    [Google Scholar]
  121. YangX. WangY. ByrneR. SchneiderG. YangS. Concepts of artificial intelligence for computer-assisted drug discovery.Chem. Rev.201911918105201059410.1021/acs.chemrev.8b00728 31294972
    [Google Scholar]
  122. ArciniegaM. LangeO.F. Improvement of virtual screening results by docking data feature analysis.J. Chem. Inf. Model.20145451401141110.1021/ci500028u 24796936
    [Google Scholar]
  123. FeinsteinW.P. BrylinskiM. Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets.J. Cheminform.2015711810.1186/s13321‑015‑0067‑5 26082804
    [Google Scholar]
  124. GazgalisD. ZakaM. ZakaM. Protein binding pocket optimization for virtual high-throughput screening (vHTS) drug discovery.ACS Omega2020524142971430710.1021/acsomega.0c00522
    [Google Scholar]
  125. CarpenterK.A. HuangX. Machine learning-based virtual screening and its applications to Alzheimer’s drug discovery: A review.Curr. Pharm. Des.201824283347335810.2174/1381612824666180607124038 29879881
    [Google Scholar]
  126. SerafimM.S.M. KronenbergerT. OliveiraP.R. The application of machine learning techniques to innovative antibacterial discovery and development.Expert Opin. Drug Discov.202015101165118010.1080/17460441.2020.1776696 32552005
    [Google Scholar]
  127. MelvilleJ. BurkeE. HirstJ. Machine learning in virtual screening.Comb. Chem. High Throughput Screen.200912433234310.2174/138620709788167980 19442063
    [Google Scholar]
  128. WójcikowskiM. BallesterP.J. SiedleckiP. Performance of machine-learning scoring functions in structure-based virtual screening.Sci. Rep.2017714671010.1038/srep46710 28440302
    [Google Scholar]
  129. CarpenterK.A. CohenD.S. JarrellJ.T. HuangX. Deep learning and virtual drug screening.Future Med. Chem.201810212557256710.4155/fmc‑2018‑0314 30288997
    [Google Scholar]
  130. CortesC. VapnikV. Support-vector networks.Mach. Learn.19952027329710.1023/A:1022627411411
    [Google Scholar]
  131. HochreiterS. SchmidhuberJ. Long short-term memory.Neural Comput.1997981735178010.1162/neco.1997.9.8.1735
    [Google Scholar]
  132. IlievskiA. ZdraveskiV. GusevM. How CUDA Powers the Machine Learning revolution. 26th Telecommunications Forum (TELFOR). Belgrade, Serbia, 20-21 November201842042510.1109/TELFOR.2018.8611982
    [Google Scholar]
  133. LeQV RanzatoM Building highlevel features using large scale unsupervised learning. arXiv20121112.620910.48550/arXiv.1112.6209
    [Google Scholar]
  134. JordaM Valero-LaraP PenaAJ Performance evaluation of cuDNN convolution algorithms on NVIDIA volta GPUs.IEEE Access20197704617310.1109/ACCESS.2019.2918851
    [Google Scholar]
  135. SealS. YangH. VollmersL. BenderA. Comparison of cellular morphological descriptors and molecular fingerprints for the prediction of cytotoxicity- and proliferation-related assays.Chem. Res. Toxicol.202134242243710.1021/acs.chemrestox.0c00303 33522793
    [Google Scholar]
  136. GoodfellowI. Pouget-AbadieJ. MirzaM. Generative adversarial networks.Commun. ACM2020631113914410.1145/3422622
    [Google Scholar]
  137. GandomiA. HaiderM. Beyond the hype: Big data concepts, methods, and analytics.Int. J. Inf. Manage.20153513714410.1016/j.ijinfomgt.2014.10.007
    [Google Scholar]
  138. BrazmaA. KapusheskyM. ParkinsonH. Data storage and analysis in arrayexpress. Methods Enzymol20064113708610.1016/S0076‑6879(06)11020‑4
    [Google Scholar]
  139. LoY-C. RenG. HondaH. Artificial intelligence-based drug design and discovery.In: Cheminformatics and its Applications. intechopen202010.5772/intechopen.89012
    [Google Scholar]
  140. EdgarR. DomrachevM. LashA.E. Gene expression omnibus: NCBI gene expression and hybridization array data repository.Nucleic Acids Res.200230120710.1093/nar/30.1.207
    [Google Scholar]
  141. WangZ. JensenM.A. ZenklusenJ.C. A practical guide to the cancer genome atlas (TCGA).Methods Mol. Biol.2016141811114110.1007/978‑1‑4939‑3578‑9_6 27008012
    [Google Scholar]
  142. ParkinsonH KapusheskyM ShojatalabM ArrayExpress-a public database of microarray experiments and gene expression profiles. Nucleic Acids Res200735DatabaseD7475010.1093/nar/gkl995 17132828
    [Google Scholar]
  143. LabbéC.M. ReyJ. LagorceD. MTiOpenScreen: A web server for structure-based virtual screening.Nucleic Acids Res.201543W1W448-5410.1093/nar/gkv306 25855812
    [Google Scholar]
  144. SchellhammerI. RareyM. FlexX‐Scan: Fast, structure-based virtual screening.Proteins200457350451710.1002/prot.20217 15382244
    [Google Scholar]
  145. PatilP. NripN.K. HajareA. Artificial intelligence and tools in pharmaceuticals: An overview.Res J Pharm Technol20231642075208210.52711/0974‑360X.2023.00341
    [Google Scholar]
  146. PaulD. SanapG. ShenoyS. KalyaneD. KaliaK. TekadeR.K. Artificial intelligence in drug discovery and development.Drug Discov. Today2021261809310.1016/j.drudis.2020.10.010 33099022
    [Google Scholar]
  147. QureshiR. IrfanM. GondalT.M. AI in drug discovery and its clinical relevance.Heliyon202397e1757510.1016/j.heliyon.2023.e17575 37396052
    [Google Scholar]
  148. SayamA.G. PradhanM. ChoudhuryA.K. Artificial intelligence the futuristic technology in the drug discovery process: A review.J. Young Pharm.202315339039610.5530/jyp.2023.15.54
    [Google Scholar]
  149. SellwoodM.A. AhmedM. SeglerM.H.S. BrownN. Artificial intelligence in drug discovery.Future Med. Chem.201810172025202810.4155/fmc‑2018‑0212 30101607
    [Google Scholar]
  150. ShakerB. AhmadS. LeeJ. JungC. NaD. In silico methods and tools for drug discovery.Comput. Biol. Med.202113710485110.1016/j.compbiomed.2021.104851 34520990
    [Google Scholar]
  151. ShembekarS.R. KuraniK. Artificial intelligence for drug discovery.Int Res J Mod Eng Technol Sci2023552453245810.56726/IRJMETS38887
    [Google Scholar]
  152. SinghS. KumarR. PayraS. SinghS.K. Artificial intelligence and machine learning in pharmacological research: Bridging the gap between data and drug discovery.Cureus2023158e4435910.7759/cureus.44359 37779744
    [Google Scholar]
  153. SufyanM. ShokatZ. AshfaqU.A. Artificial intelligence in cancer diagnosis and therapy: Current status and future perspective.Comput. Biol. Med.202316510735610.1016/j.compbiomed.2023.107356 37688994
    [Google Scholar]
  154. SultanaA. MaseeraR. RahamanullaA. MisiriyaA. Emerging of artificial intelligence and technology in pharmaceuticals. Review. Future J. Pharm. Sci.2023916510.1186/s43094‑023‑00517‑w
    [Google Scholar]
  155. VidhyaK.S. SultanaA. M NK, Rangareddy H. Artificial intelligence’s impact on drug discovery and development from bench to bedside artificial intelligence’s impact on drug discovery and development from bench to bedside.Cureus20231510e4748610.7759/cureus.47486 37881323
    [Google Scholar]
  156. TripathiA. MisraK. DhanukaR. SinghJ.P. Artificial intelligence in accelerating drug discovery and development.Recent Pat. Biotechnol.202317192310.2174/1872208316666220802151129 35927896
    [Google Scholar]
  157. WangL. DingK. YangS. YangZ. ZhangA. ZhouD. Drug discovery in China: Challenges and opportunities.Natl. Sci. Rev.20185576877310.1093/nsr/nwy085
    [Google Scholar]
  158. WinklerD.A. Use of artificial intelligence and machine learning for dis covery of drugs for neglected tropical diseases.Front Chem.2021961407310.3389/fchem.2021.614073 33791277
    [Google Scholar]
  159. BornJ ManicaM CadowJ. PaccMannRL on SARS-CoV-2: Designing antiviral candidates with conditional generative models. arXiv2020
    [Google Scholar]
  160. JiangM. LiZ. BianY. WeiZ. A novel protein descriptor for the prediction of drug binding sites.BMC Bioinformatics201920147810.1186/s12859‑019‑3058‑0 31533611
    [Google Scholar]
  161. CañadaA. Capella-GutierrezS. RabalO. OyarzabalJ. ValenciaA. KrallingerM. LimTox: A web tool for applied text mining of adverse event and toxicity associations of compounds, drugs and genes.Nucleic Acids Res.201745W1W484-910.1093/nar/gkx462 28531339
    [Google Scholar]
  162. FriesnerR.A. BanksJ.L. MurphyR.B. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy.J. Med. Chem.20044771739174910.1021/jm0306430 15027865
    [Google Scholar]
  163. RuddigkeitL. van DeursenR. BlumL.C. ReymondJ.L. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17.J. Chem. Inf. Model.201252112864287510.1021/ci300415d 23088335
    [Google Scholar]
  164. HattoriK. WakabayashiH. TamakiK. Predicting key example compounds in competitors’ patent applications using structural information alone.J. Chem. Inf. Model.200848113514210.1021/ci7002686 18177028
    [Google Scholar]
  165. SivaramanG. JacksonN.E. Sanchez-LengelingB. A machine learning workflow for molecular analysis: Application to melting points.Mach. Learn. Sci. Technol.20201202501510.1088/2632‑2153/ab8aa3
    [Google Scholar]
  166. LecunY. BottouL. BengioY. HaffnerP. Gradient-based learning applied to document recognition.Proc. IEEE199886112278232410.1109/5.726791
    [Google Scholar]
  167. YanY. WangW. SunZ. ZhangJ.Z.H. JiC. Protein-ligand empirical interaction components for virtual screening.J. Chem. Inf. Model.20175781793180610.1021/acs.jcim.7b00017 28678484
    [Google Scholar]
  168. KitchenD.B. DecornezH. FurrJ.R. BajorathJ. Docking and scoring in virtual screening for drug discovery: Methods and applications.Nat. Rev. Drug Discov.200431193594910.1038/nrd1549 15520816
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638343448250207053913
Loading
/content/journals/cddt/10.2174/0115701638343448250207053913
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test