Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Introduction

Vitamin D plays a crucial role in maintaining muscle and bone health and has been increasingly implicated in neurological disorders, including depression and anxiety, which are conditions closely associated with dysregulation of the serotonin 1A receptor (5-HT1A receptor). This study employs molecular modeling techniques to investigate the potential agonistic activity of Vitamin D on the 5-HT1A receptor. Additionally, it seeks to elucidate the key structural motifs and molecular interactions that underline the binding affinity between Vitamin D and the receptor. The insights gained from this research may inform the design of Vitamin D-derived compounds with optimized pharmacological profiles, contributing to therapeutic advancements in related neurological conditions.

Methods

We selected five structures of the 5-HT1A receptor (PDB IDs: 7E2Y, 7E2Z, 8W8B, 8JSP, and 8JT6) for Protein-Ligand Interaction Fingerprint (PLIF) analysis. We conducted molecular docking to evaluate the binding efficiency of two forms of Vitamin D, ergocalciferol and cholecalciferol, to the 5-HT1A receptor. Following this, we performed Molecular Dynamics (MD) simulations to assess the stability of these interactions.

Results and Discussion

Docking results revealed binding energies below -6.64 kcal/mol for both forms of Vitamin D, with ergocalciferol achieving a maximum binding energy of -7.78 kcal/mol. ASP116 emerged as a pivotal residue in stabilizing these interactions. MD simulations indicated that the Vitamin D-5-HT1A complexes exhibited stability comparable to the serotonin-bound 5-HT1A receptor complex.

Conclusion

Our study suggests that Vitamin D may function as an agonist for the 5-HT1A receptor, with ASP116 playing a critical role in binding. Yet, further and studies are necessary to validate these findings and explore the therapeutic potential of Vitamin D-derived compounds.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638359333250314062331
2025-04-03
2025-10-19
Loading full text...

Full text loading...

References

  1. DeLucaH.F. History of the discovery of vitamin D and its active metabolites.Bonekey Rep.2014347910.1038/bonekey.2013.21324466410
    [Google Scholar]
  2. SorrentiV. BurianiA. DavinelliS. ScapagniniG. FortinguerraS. Vitamin D physiology, deficiency, genetic influence, and the effects of daily vs. bolus doses of vitamin D on overall health: A clinical approach.Nutraceuticals20233340342010.3390/nutraceuticals3030030
    [Google Scholar]
  3. PludowskiP. GrantW.B. KarrasS.N. ZittermannA. PilzS. Vitamin D supplementation: A review of the evidence arguing for a daily dose of 2000 International Units (50 µg) of Vitamin D for adults in the general population.Nutrients202416339110.3390/nu1603039138337676
    [Google Scholar]
  4. BasitS. Vitamin D in health and disease: A literature review.Br. J. Biomed. Sci.201370416117210.1080/09674845.2013.1166995124400428
    [Google Scholar]
  5. YoungMR.I. XiongY. Influence of vitamin D on cancer risk and treatment: Why the variability?Trends Cancer Res.2018134353[PMID: 30369773
    [Google Scholar]
  6. SeraphinG. RiegerS. HewisonM. CapobiancoE. LisseT.S. The impact of vitamin D on cancer: A mini review.J. Steroid Biochem. Mol. Biol.202323110630810.1016/j.jsbmb.2023.10630837054849
    [Google Scholar]
  7. KearnsM.D. AlvarezJ.A. SeidelN. TangprichaV. TangprichaV. Impact of vitamin D on infectious disease.Am. J. Med. Sci.2015349324526210.1097/MAJ.000000000000036025334038
    [Google Scholar]
  8. TahaR. AbureeshS. AlghamdiS. The relationship between vitamin D and infections including COVID-19: Any hopes?Int. J. Gen. Med.2021143849387010.2147/IJGM.S31742134335050
    [Google Scholar]
  9. NardinM. VerdoiaM. NardinS. Vitamin D and cardiovascular diseases: From physiology to pathophysiology and outcomes.Biomedicines202412476810.3390/biomedicines1204076838672124
    [Google Scholar]
  10. ThompsonB. WaterhouseM. EnglishD.R. Vitamin D supplementation and major cardiovascular events: D-Health randomised controlled trial.BMJ2023381e07523010.1136/bmj‑2023‑07523037380191
    [Google Scholar]
  11. AthanassiouL. Kostoglou-AthanassiouI. KoutsilierisM. ShoenfeldY. Vitamin D and autoimmune rheumatic diseases.Biomolecules202313470910.3390/biom1304070937189455
    [Google Scholar]
  12. SîrbeC. RednicS. GramaA. PopT.L. An update on the effects of vitamin D on the immune system and autoimmune diseases.Int. J. Mol. Sci.20222317978410.3390/ijms2317978436077185
    [Google Scholar]
  13. PlantoneD. PrimianoG. MancoC. LocciS. ServideiS. De StefanoN. Vitamin D in neurological diseases.Int. J. Mol. Sci.20222418710.3390/ijms2401008736613531
    [Google Scholar]
  14. AnwarM.J. AleneziS.K. AlhowailA.H. Molecular insights into the pathogenic impact of vitamin D deficiency in neurological disorders.Biomed. Pharmacother.202316211471810.1016/j.biopha.2023.11471837084561
    [Google Scholar]
  15. Garcia-GarciaA. TancrediN. LeonardoE.D. 5-HT1A receptors in mood and anxiety: Recent insights into autoreceptor versus heteroreceptor function.Psychopharmacology (Berl.)2014231462363610.1007/s00213‑013‑3389‑x24337875
    [Google Scholar]
  16. Carhart-HarrisR.L. NuttD.J. Serotonin and brain function: A tale of two receptors.J. Psychopharmacol.20173191091112010.1177/026988111772591528858536
    [Google Scholar]
  17. KaufmanJ. DeLorenzoC. ChoudhuryS. ParseyR.V. The 5-HT1A receptor in major depressive disorder.Eur. Neuropsychopharmacol.201626339741010.1016/j.euroneuro.2015.12.03926851834
    [Google Scholar]
  18. WangL. ZhangY. DuX. DingT. GongW. LiuF. Review of antidepressants in clinic and active ingredients of traditional Chinese medicine targeting 5-HT1A receptors.Biomed. Pharmacother.201912010940810.1016/j.biopha.2019.10940831541883
    [Google Scholar]
  19. WangC. JiangY. MaJ. Structural basis for molecular recognition at serotonin receptors.Science2013340613261061410.1126/science.123280723519210
    [Google Scholar]
  20. VarnäsK. HalldinC. HallH. Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain.Hum. Brain Mapp.200422324626010.1002/hbm.2003515195291
    [Google Scholar]
  21. LanfumeyL. HamonM. Central 5-HT1A receptors: Regional distribution and functional characteristics.Nucl. Med. Biol.200027542943510.1016/S0969‑8051(00)00107‑410962246
    [Google Scholar]
  22. ElbermawiA. AliA.R. AmenY. Anti-diabetic activities of phenolic compounds of Alternaria sp., an endophyte isolated from the leaves of desert plants growing in Egypt.RSC Advances20221238249352494510.1039/D2RA02532A36199870
    [Google Scholar]
  23. EberiniI. DanieleS. ParraviciniC. In silico identification of new ligands for GPR17: A promising therapeutic target for neurodegenerative diseases.J. Comput. Aided Mol. Des.201125874375210.1007/s10822‑011‑9455‑821744154
    [Google Scholar]
  24. TranQ.H. NguyenQ.T. TranT.T.N. Identification of small molecules as potential inhibitors of interleukin 6: A multi-computational investigation.Mol. Divers.20232752315233010.1007/s11030‑022‑10558‑736319930
    [Google Scholar]
  25. DamaleM.G. PatilR. AnsariS.A. Identification of dual site inhibitors of tankyrase through virtual screening of protein-ligand interaction fingerprint (PLIF)–derived pharmacophore models, molecular dynamics, and ADMET studies.Struct. Chem.202031276977910.1007/s11224‑019‑01467‑x
    [Google Scholar]
  26. LairdE. WardM. McSorleyE. StrainJ.J. WallaceJ. Vitamin D and bone health: Potential mechanisms.Nutrients20102769372410.3390/nu207069322254049
    [Google Scholar]
  27. WrzosekM. ŁukaszkiewiczJ. WrzosekM. Vitamin D and the central nervous system.Pharmacol. Rep.201365227127810.1016/S1734‑1140(13)71003‑X23744412
    [Google Scholar]
  28. NautiyalK.M. HenR. Serotonin receptors in depression: From A to B.F1000 Res.2017612310.12688/f1000research.9736.128232871
    [Google Scholar]
  29. RaymondJ.R. MukhinY.V. GettysT.W. GarnovskayaM.N. The recombinant 5‐HT1A receptor: G protein coupling and signalling pathways.Br. J. Pharmacol.199912781751176410.1038/sj.bjp.070272310482904
    [Google Scholar]
  30. TrueC.D. Preparation of an iodinated radioligand.Curr. Protoc. Neurosci.199711A-3A10.1002/0471142301.nsa03as1
    [Google Scholar]
  31. SharifN.A. DraceC.D. WilliamsG.W. CriderJ.Y. Cloned human 5-HT1A receptor pharmacology determined using agonist binding and measurement of cAMP accumulation.J. Pharm. Pharmacol.200456101267127410.1211/002235704434615482641
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638359333250314062331
Loading
/content/journals/cddt/10.2174/0115701638359333250314062331
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test