Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Introduction

Superfoods' nutritional characteristics and health benefits have garnered attention recently. These foods contain vitamins, minerals, flavonoids, and polyphenols, which prevent disease and promote health. This review examines the nutritional and therapeutic properties of amla, maca, jackfruit, Brazil nuts, and goji berries. Recent study highlights their role to mitigate chronic diseases like diabetes, heart disease, dementia, and cancer.

Objective

This extensive review aims to cover the health and nutritional benefits of su-perfoods. It also discusses the macro- and micronutrients of amla, maca, jackfruit, Brazil nuts, and goji berries. Additionally, we explore the potential of superfoods to protect against chronic diseases, including diabetes, cardiovascular disease, cognitive decline, and cancer.

Methods

A comprehensive investigation was carried out to find published literature using Web of Science, PubMed, and Scopus. In addition to Boolean operators (AND, OR), keywords such as “superfood,” “bioactive compounds”, “functional foods”, and “health benefits” were integrated. Superfoods, their bioactive ingredients, and potential health benefits based on preclinical or clinical data were the subject of permitted research. Research on isolated or synthesized substances unrelated to superfoods, articles without experimental data, and non-peer-reviewed databases were excluded.

Results and Discussion

Our research reveals that superfoods include health-promoting phytochemicals, carotenoids, flavonoids, and polyphenols. They may prevent diseases like diabetes, cardiovascular disease, cancer, and obesity. In conclusion, superfoods improve health and wellness in numerous ways.

Conclusion

Superfoods prevent chronic illnesses and improve health. This review discusses the nutritional content and health advantages of superfoods, which may encourage their consumption. More research is needed to promote global health and wellness using superfoods.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638355532250408095114
2025-04-23
2025-10-19
Loading full text...

Full text loading...

References

  1. Fernández-RíosA. LasoJ. AldacoR. MargalloM. Superfoods: A super impact on health and the environment?Curr. Opin. Environ. Sci. Health20233110041010.1016/j.coesh.2022.100410
    [Google Scholar]
  2. MittalR.K. SharmaV. BiswasT. MishraI. Recent advances in nitrogen-containing heterocyclic scaffolds as antiviral agents.Med. Chem.202420548750210.2174/0115734064280150231212113012
    [Google Scholar]
  3. MittalR.K. PurohitP. SankaranarayananM. In-vitro antiviral activity and in-silico targeted study of quinoline-3-carboxylate derivatives against SARS-CoV-2 isolate.Mol. Divers.20231510.1007/s11030‑023‑10703‑w37480422
    [Google Scholar]
  4. MittalR.K. PurohitP. AggarwalM. An eco-friendly synthetic approach through C (sp3)-H functionalization of the viral fusion “Spike Protein” inhibitors.Biointerface Res. Appl. Chem.20231326910.33263/BRIAC132.169
    [Google Scholar]
  5. MittalR.K. KrishnaG. SharmaV. Biotechnological advances in enzymatic hydrolysis and fermentation for edible insects: Functionality, acceptability, and safety.Curr. Pharm. Biotechnol.20242691287130210.2174/0113892010304236240517060354
    [Google Scholar]
  6. PurohitP. MittalR.K. SharmaV. A synergistic broad-spectrum viral entry blocker: In-silico approach.Biointerface Res. Appl. Chem.202213111110.33263/BRIAC131.007
    [Google Scholar]
  7. CobosÁ. DíazO. ‘Superfoods’: Reliability of the information for consumers available on the web.Foods202312354610.3390/foods1203054636766074
    [Google Scholar]
  8. MittalR.K. MishraR. UddinR. SharmaV. Hydrogel breakthroughs in biomedicine: Recent advances and implications.Curr. Pharm. Biotechnol.202425111436145110.2174/011389201028102123122910022838288792
    [Google Scholar]
  9. BiswasT. MittalR.K. SharmaV. MishraI. Nitrogen-fused heterocycles: Empowering anticancer drug discovery.Med. Chem.2024204369384
    [Google Scholar]
  10. MittalR.K. MishraR. SharmaV. MishraI. 1,3,4-Thiadiazole: A versatile scaffold for drug discovery.Lett. Org. Chem.202421540041310.2174/0115701786274678231124101033
    [Google Scholar]
  11. MittalR.K. MishraR. UddinR. BhargavR. KumarN. Epigallocatechin gallate (EGCG) formulations: Unlocking potential in nutraceutical and pharmaceutical sectors.J. Nat. Prod.2024152113
    [Google Scholar]
  12. MittalR.K. KrishnaG. SharmaV. PurohitP. MishraR. Spirulina unveiled: A comprehensive review on biotechnological innovations, nutritional proficiency, and clinical implications.Curr. Pharm. Biotechnol.202426101441145810.2174/011389201030452424051402373538803172
    [Google Scholar]
  13. MittalR.K. KrishnaG. SharmaV. Exploring edible insects: A review on protein diversity, extraction techniques, and health benefits.Curr. Pharm. Biotechnol.20242510.2174/011389201030417724051306372138803171
    [Google Scholar]
  14. SiróI. KápolnaE. KápolnaB. LugasiA. Functional food. Product development, marketing and consumer acceptance—A review.Appetite200851345646710.1016/j.appet.2008.05.06018582508
    [Google Scholar]
  15. MagrachA. SanzM.J. Environmental and social consequences of the increase in the demand for ‘superfoods’ world‐wide.People Nat.20202226727810.1002/pan3.10085
    [Google Scholar]
  16. MeyerdingS.G.H. KürzdörferA. GasslerB. Consumer preferences for superfood ingredients—The case of bread in Germany.Sustainability20181012466710.3390/su10124667
    [Google Scholar]
  17. ProestosC. Superfoods: Recent data on their role in the prevention of diseases.Curr. Res. Nutr. Food Sci.20186357659310.12944/CRNFSJ.6.3.02
    [Google Scholar]
  18. SantiniA. CammarataS.M. CaponeG. Nutraceuticals: Opening the debate for a regulatory framework.Br. J. Clin. Pharmacol.201884465967210.1111/bcp.1349629433155
    [Google Scholar]
  19. van den DriesscheJ.J. PlatJ. MensinkR.P. Effects of superfoods on risk factors of metabolic syndrome: A systematic review of human intervention trials.Food Funct.2018941944196610.1039/C7FO01792H29557436
    [Google Scholar]
  20. McClementsD.J. McClementsD.J. Nutraceuticals: Superfoods or superfads?In:Future Foods: How Modern Science Is Transforming the Way We Eat.Springer2019167201
    [Google Scholar]
  21. KumarR.N. AhamedH.N. Superfoods and their impact on brain health. A systematic review.Discover Food202551110.1007/s44187‑024‑00267‑5
    [Google Scholar]
  22. MotohashiN. SakagamiH. Anthocyanins as functional food colors.In: Bioactive Heterocycles VII Flavonoids and Anthocyanins in Plants, and Latest Bioactive Heterocycles II. Berlin, Heidelberg: Springer2009II140
    [Google Scholar]
  23. LinJ.K. WengM.S. Flavonoids as nutraceuticals.In: The Science of Flavonoids.New York, NYSpringer200621323810.1007/978‑0‑387‑28822‑2_8
    [Google Scholar]
  24. de Pascual-TeresaS. Sanchez-BallestaM.T. Anthocyanins: From plant to health.Phytochem. Rev.20087228129910.1007/s11101‑007‑9074‑0
    [Google Scholar]
  25. ChenK. LuP. BeerakaN.M. Mitochondrial mutations and mitoepigenetics: Focus on regulation of oxidative stress-induced responses in breast cancers.Semin. Cancer Biol.202283556569
    [Google Scholar]
  26. MittalR.K. MishraR. SharmaV. PurohitP. Bioactive exploration in functional foods: Unlocking nature’s treasures.Curr. Pharm. Biotechnol.202425111419143510.2174/011389201028258023112004165938031768
    [Google Scholar]
  27. SinghM.P. SoniK. BhamraR. MittalR.K. Superfood: Value and need.Curr. Nutr. Food Sci.2022181656810.2174/1573401317666210420123013
    [Google Scholar]
  28. VariyaB.C. BakraniaA.K. PatelS.S. Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms.Pharmacol. Res.201611118020010.1016/j.phrs.2016.06.01327320046
    [Google Scholar]
  29. PardeshiS. DhodapkarR. KumarA. Molecularly imprinted microspheres and nanoparticles prepared using precipitation polymerisation method for selective extraction of gallic acid from Emblica officinalis.Food Chem.201414638539310.1016/j.foodchem.2013.09.08424176358
    [Google Scholar]
  30. PriyaF.F. IslamM.S. Phyllanthus emblica Linn. (Amla)—A natural gift to humans: An overview.J Dis Med Plants2019519
    [Google Scholar]
  31. KumarG. MadkaV. PathuriG. GantaV. RaoC.V. Molecular mechanisms of cancer prevention by gooseberry (Phyllanthus emblica).Nutr. Cancer20227472291230210.1080/01635581.2021.200898834839775
    [Google Scholar]
  32. HasanM.R. IslamM.N. IslamM.R. Phytochemistry, pharmacological activities and traditional uses of Emblica officinalis: A review.Int. Curr. Pharm. J.201652142110.3329/icpj.v5i2.26441
    [Google Scholar]
  33. JainS.K. KhurdiyaD.S. Vitamin C enrichment of fruit juice based ready-to-serve beverages through blending of Indian gooseberry (Emblica officinalis Gaertn.) juice.Plant Foods Hum. Nutr.2004592636610.1007/s11130‑004‑0019‑015678753
    [Google Scholar]
  34. GulM LiuZW Iahtisham-UlHaq Functional and nutraceutical significance of Amla (Phyllanthus emblica L.): A review.Antioxidants202211581610.3390/antiox1105081635624683
    [Google Scholar]
  35. BansalV. SharmaA. GhanshyamC. SinglaM.L. Coupling of chromatographic analyses with pretreatment for the determination of bioactive compounds in Emblica officinalis juice.Anal. Methods20146241041810.1039/C3AY41375F
    [Google Scholar]
  36. YangF. YaseenA. ChenB. Chemical constituents from the fruits of Phyllanthus emblica L.Biochem. Syst. Ecol.20209210412210.1016/j.bse.2020.104122
    [Google Scholar]
  37. MirunaliniS. KrishnaveniM. Therapeutic potential of Phyllanthus emblica (amla): The ayurvedic wonder.J. Basic Clin. Physiol. Pharmacol.20102119310510.1515/JBCPP.2010.21.1.9320506691
    [Google Scholar]
  38. GoyalR.K. PatelS.S. Emblica officinalis Geart.: A comprehensive review on phytochemistry, pharmacology and ethnomedicinal uses.Res. J. Med. Plant20126161610.3923/rjmp.2012.6.16
    [Google Scholar]
  39. NambiarS.S. ShettyN.P. Phytochemical profiling and assessment of low-density lipoprotein oxidation, foam cell-preventing ability and antioxidant activity of commercial products of Emblica officinalis fruit.J. Food Biochem.201539321822910.1111/jfbc.12122
    [Google Scholar]
  40. PoltanovE.A. ShikovA.N. DormanH.J.D. Chemical and antioxidant evaluation of Indian gooseberry (Emblica officinalis gaertn., syn. Phyllanthus emblica L.) supplements.Phytother. Res.20092391309131510.1002/ptr.277519172666
    [Google Scholar]
  41. BhattJ. GopaB. HemavathiK. A comparative clinical study of hypolipidemic efficacy of Amla (Emblica officinalis) with 3-hydroxy-3-methylglutaryl-coenzyme-A reductase inhibitor simvastatin.Indian J. Pharmacol.201244223824210.4103/0253‑7613.9385722529483
    [Google Scholar]
  42. KoshyS.M. BobbyZ. HariharanA.P. GopalakrishnaS.M. Amla (Emblica officinalis) extract is effective in preventing high fructose diet–induced insulin resistance and atherogenic dyslipidemic profile in ovariectomized female albino rats.Menopause201219101146115510.1097/gme.0b013e31824e5bf722692334
    [Google Scholar]
  43. JagdaleY.D. MahaleS.V. ZohraB. Nutritional profile and potential health benefits of super foods: A review.Sustainability20211316924010.3390/su13169240
    [Google Scholar]
  44. AkhtarM.S. RamzanA. AliA. AhmadM. Effect of Amla fruit (Emblica officinalis Gaertn.) on blood glucose and lipid profile of normal subjects and type 2 diabetic patients.Int. J. Food Sci. Nutr.201162660961610.3109/09637486.2011.56056521495900
    [Google Scholar]
  45. KumarN.P. AnnamalaiA.R. ThakurR.S. Antinociceptive property of Emblica officinalis Gaertn (Amla) in high fat diet-fed/low dose streptozotocin induced diabetic neuropathy in rats.Indian J. Exp. Biol.20094710778
    [Google Scholar]
  46. RodríguezM.L. EstrelaJ.M. OrtegaÁ. Natural polyphenols and apoptosis induction in cancer therapy.In: J Carcinog Mutag S.20136
    [Google Scholar]
  47. GoelB. PathakN. NimD. SinghS. DixitR. ChaurasiaR. Evaluation of analgesic activity of Emblica officinalis in albino rats.Int. J. Basic Clin. Pharmacol.20143236536810.5455/2319‑2003.ijbcp20140421
    [Google Scholar]
  48. HuangC.Z. TungY.T. HsiaS.M. WuC.H. YenG.C. The hepatoprotective effect of Phyllanthus emblica L. fruit on high fat diet-induced non-alcoholic fatty liver disease (NAFLD) in SD rats.Food Funct.20178284285010.1039/C6FO01585A28128372
    [Google Scholar]
  49. Justin ThenmozhiA. DhivyabharathiM. ManivasagamT. EssaM.M. Tannoid principles of Emblica officinalis attenuated aluminum chloride induced apoptosis by suppressing oxidative stress and tau pathology via Akt/GSK-3βsignaling pathway.J. Ethnopharmacol.2016194202910.1016/j.jep.2016.08.04727566203
    [Google Scholar]
  50. HusainI. AkhtarM. MadaanT. Tannins enriched fraction of Emblica officinalis fruits alleviates high-salt and cholesterol diet-induced cognitive impairment in rats via Nrf2–ARE pathway.Front. Pharmacol.201892310.3389/fphar.2018.0002329441016
    [Google Scholar]
  51. UddinM.S. MamunA.A. HossainM.S. AkterF. IqbalM.A. AsaduzzamanM. Exploring the effect of Phyllanthus emblica L. on cognitive performance, brain antioxidant markers and acetylcholinesterase activity in rats: Promising natural gift for the mitigation of Alzheimer’s disease.Ann. Neurosci.201623421822910.1159/00044948227780989
    [Google Scholar]
  52. CardosoB.R. DuarteG.B.S. ReisB.Z. CozzolinoS.M.F. Brazil nuts: Nutritional composition, health benefits and safety aspects.Food Res. Int.2017100Pt 291810.1016/j.foodres.2017.08.03628888463
    [Google Scholar]
  53. PachecoA. ScusselV. Aflatoxins evaluation on in-shell and shelled dry Brazil nuts for export analysed by LC-MS/MS - 2006 and 2007 harvests.World Mycotoxin J.20092329530410.3920/WMJ2008.1077
    [Google Scholar]
  54. SantosO.V. CorrêaN.C.F. SoaresF.A.S.M. GioielliL.A. CostaC.E.F. LannesS.C.S. Chemical evaluation and thermal behavior of Brazil nut oil obtained by different extraction processes.Food Res. Int.201247225325810.1016/j.foodres.2011.06.038
    [Google Scholar]
  55. MaguireL.S. O’SullivanS.M. GalvinK. O’ConnorT.P. O’BrienN.M. Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut.Int. J. Food Sci. Nutr.200455317117810.1080/0963748041000172517515223592
    [Google Scholar]
  56. RyanE. GalvinK. O’ConnorT.P. MaguireA.R. O’BrienN.M. Fatty acid profile, tocopherol, squalene and phytosterol content of Brazil, pecan, pine, pistachio and cashew nuts.Int. J. Food Sci. Nutr.2006573-421922810.1080/0963748060076807717127473
    [Google Scholar]
  57. RosE. MataixJ. Fatty acid composition of nuts – Implications for cardiovascular health.Br. J. Nutr.200696Suppl. 2S29S3510.1017/BJN2006186117125530
    [Google Scholar]
  58. MoodleyR. KindnessA. JonnalagaddaS.B. Elemental composition and chemical characteristics of five edible nuts (almond, Brazil, pecan, macadamia and walnut) consumed in Southern Africa.J. Environ. Sci. Health B200742558559110.1080/0360123070139159117562467
    [Google Scholar]
  59. KannamkumarathS.S. WrobelK. WrobelK. VonderheideA. CarusoJ.A. HPLC–ICP–MS determination of selenium distribution and speciation in different types of nut.Anal. Bioanal. Chem.2002373645446010.1007/s00216‑002‑1354‑312172680
    [Google Scholar]
  60. AmpeC. Van DammeJ. de CASTRO LAB, Sampaio MJAM, Van Montagu M, Vandekerckhove J. The amino‐acid sequence of the 2S sulphur‐rich proteins from seeds of Brazil nut (Bertholletia excelsa H.B.K.).Eur. J. Biochem.1986159359760110.1111/j.1432‑1033.1986.tb09926.x3758080
    [Google Scholar]
  61. SunS.S. AltenbachS.B. LeungF.W. Properties, biosynthesis and processing of a sulfur-rich protein in Brazil nut (Bertholletia excelsa H.B.K.).Eur. J. Biochem.1987162347748310.1111/j.1432‑1033.1987.tb10665.x3830150
    [Google Scholar]
  62. BahadoranZ. GolzarandM. MirmiranP. SaadatiN. AziziF. The association of dietary phytochemical index and cardiometabolic risk factors in adults: Tehran lipid and glucose study.J. Hum. Nutr. Diet.201326Suppl. 114515310.1111/jhn.1204823581519
    [Google Scholar]
  63. BollingB.W. ChenC.Y.O. McKayD.L. BlumbergJ.B. Tree nut phytochemicals: Composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts.Nutr. Res. Rev.201124224427510.1017/S095442241100014X22153059
    [Google Scholar]
  64. JohnJ.A. ShahidiF. Phenolic compounds and antioxidant activity of Brazil nut (Bertholletia excelsa).J. Funct. Foods20102319620910.1016/j.jff.2010.04.008
    [Google Scholar]
  65. AlasalvarC. BollingB.W. Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects.Br. J. Nutr.2015113Suppl. 2S68S7810.1017/S000711451400372926148924
    [Google Scholar]
  66. GonçalvesA.M. FernandesK.G. RamosL.A. CavalheiroÉ.T.G. NóbregaJ.A. Determination and fractionation of barium in Brazil nuts.J. Braz. Chem. Soc.200920476076910.1590/S0103‑50532009000400020
    [Google Scholar]
  67. LemireM. FillionM. BarbosaF.Jr GuimarãesJ.R.D. MerglerD. Elevated levels of selenium in the typical diet of Amazonian riverside populations.Sci. Total Environ.2010408194076408410.1016/j.scitotenv.2010.05.02220646739
    [Google Scholar]
  68. ParekhP.P. KhanA.R. TorresM.A. KittoM.E. Concentrations of selenium, barium, and radium in Brazil nuts.J. Food Compos. Anal.200821433233510.1016/j.jfca.2007.12.001
    [Google Scholar]
  69. ChoudhuryH. CaryR. Barium and barium compounds.2001Available from: [https://iris.who.int/handle/10665/42398
    [Google Scholar]
  70. StrunzC.C. OliveiraT.V. VinagreJ.C.M. LimaA. CozzolinoS. MaranhãoR.C. Brazil nut ingestion increased plasma selenium but had minimal effects on lipids, apolipoproteins, and high-density lipoprotein function in human subjects.Nutr. Res.200828315115510.1016/j.nutres.2008.01.00419083402
    [Google Scholar]
  71. ArianeM.K. MaristelaM. SilmaraM. Properties of Brazil nuts: A review.Afr. J. Biotechnol.201514864264810.5897/AJB2014.14184
    [Google Scholar]
  72. SuredaA. BibiloniM.M. MartorellM. Mediterranean diets supplemented with virgin olive oil and nuts enhance plasmatic antioxidant capabilities and decrease xanthine oxidase activity in people with metabolic syndrome: The Predimed study.Mol. Nutr. Food Res.201660122654266410.1002/mnfr.20160045027600061
    [Google Scholar]
  73. MaranhãoP.A. Kraemer-AguiarL.G. de OliveiraC.L. Brazil nuts intake improves lipid profile, oxidative stress and microvascular function in obese adolescents: A randomized controlled trial.Nutr. Metab.2011813210.1186/1743‑7075‑8‑3221619692
    [Google Scholar]
  74. CarvalhoR.F. HugueninG.V.B. LuizR.R. MoreiraA.S.B. OliveiraG.M.M. RosaG. Intake of partially defatted Brazil nut flour reduces serum cholesterol in hypercholesterolemic patients- A randomized controlled trial.Nutr. J.20151415910.1186/s12937‑015‑0036‑x26077768
    [Google Scholar]
  75. HuY. McIntoshG.H. Le LeuR.K. Supplementation with Brazil nuts and green tea extract regulates targeted biomarkers related to colorectal cancer risk in humans.Br. J. Nutr.2016116111901191110.1017/S000711451600393727923410
    [Google Scholar]
  76. HermannM. Andean roots and tubers: Ahipa, arracacha, maca and yacon.International Potato Center1997
    [Google Scholar]
  77. da SilvaL.P.N. CabreraP.B.L. Medeiros MarquesL.L. Medicinal effects of Peruvian maca (Lepidium meyenii): A review.Food Funct.2020111839210.1039/C9FO02732G31951246
    [Google Scholar]
  78. ValerioL.G.Jr GonzalesG.F. Toxicological aspects of the South American herbs cat’s claw (Uncaria tomentosa) and Maca (Lepidium meyenii): A critical synopsis.Toxicol. Rev.2005241113510.2165/00139709‑200524010‑0000216042502
    [Google Scholar]
  79. DiniA. MigliuoloG. RastrelliL. SaturninoP. SchettinoO. Chemical composition of Lepidium meyenii.Food Chem.199449434734910.1016/0308‑8146(94)90003‑5
    [Google Scholar]
  80. ZhengB.L. HeK. KimC.H. Effect of a lipidic extract from Lepidium meyenii on sexual behavior in mice and rats.Urology200055459860210.1016/S0090‑4295(99)00549‑X10736519
    [Google Scholar]
  81. NguyenD. Pino-FigueroaA. MaherT.J. In vitro evaluation of the neuroprotective effects of Lepidium meyenii (maca) in crayfish neuronal and rat neuroblastoma cell lines.FASEB J.200923S1947410.1096/fasebj.23.1_supplement.947.4
    [Google Scholar]
  82. RendeiroC. GuerreiroJ.D.T. WilliamsC.M. SpencerJ.P.E. Flavonoids as modulators of memory and learning: Molecular interactions resulting in behavioural effects.Proc. Nutr. Soc.201271224626210.1017/S002966511200014622414320
    [Google Scholar]
  83. WuH. KelleyC.J. Pino-FigueroaA. VuH.D. MaherT.J. Macamides and their synthetic analogs: Evaluation of in vitro FAAH inhibition.Bioorg. Med. Chem.201321175188519710.1016/j.bmc.2013.06.03423891163
    [Google Scholar]
  84. Cohen-YeshurunA. WillnerD. TrembovlerV. N-arachidonoyl-L-serine (AraS) possesses proneurogenic properties in vitro and in vivo after traumatic brain injury.J. Cereb. Blood Flow Metab.20133381242125010.1038/jcbfm.2013.7523695434
    [Google Scholar]
  85. CisnerosR. OréR. ArnaoI. SuárezS. Reduced/oxidized glutathione (GSH/GSSG) ratio in diabetic rats treated with maca (Lepidium meyenii Walp).AFM2011722107111
    [Google Scholar]
  86. RodrigoME ValdiviesoR SuárezS OriondoR OréR Decreased oxidative damage and hypoglycemic effect of maca (Lepidium meyenii Walp) in rats with streptozotocin-induced diabetes.AFM 20117217112011
    [Google Scholar]
  87. RubioJ. CaldasM. DávilaS. GascoM. GonzalesG.F. Effect of three different cultivars of Lepidium meyenii (Maca) on learning and depression in ovariectomized mice.BMC Complement. Altern. Med.2006612310.1186/1472‑6882‑6‑2316796734
    [Google Scholar]
  88. GonzalesG.F. NietoJ. RubioJ. GascoM. Effect of Black maca (Lepidium meyenii) on one spermatogenic cycle in rats.Andrologia200638516617210.1111/j.1439‑0272.2006.00733.x16961569
    [Google Scholar]
  89. HermannM. Andean roots and tubers: Ahipa, arracacha, maca and yacon.International Potato Center1997
    [Google Scholar]
  90. RoncerosG. RamosW. GarmendiaF. ArroyoJ. GutiérrezJ. Efficacy of fresh maca (Lepidium meyenii walp) in increasing physical performance of athletes at altitude.AFM2005664269273
    [Google Scholar]
  91. SimM.Y. AhmadM.N. AzizZ.A. JuC.P. CheenC.C. Classification of artocatpus beteropbykus l. (jackfruit) maturity using disposable screen-printed strips based on chernometric analysis.Asian Conference on Sensors2003135142
    [Google Scholar]
  92. SwamiS.B. ThakorN.J. HaldankarP.M. KalseS.B. Jackfruit and its many functional components as related to human health: A review.Compr. Rev. Food Sci. Food Saf.201211656557610.1111/j.1541‑4337.2012.00210.x
    [Google Scholar]
  93. RanasingheR.A.S.N. MaduwanthiS.D.T. MarapanaR.A.U.J. Nutritional and health benefits of jackfruit (Artocarpus heterophyllus Lam.): A review.Int. J. Food Sci.2019201911210.1155/2019/432718330723733
    [Google Scholar]
  94. MukprasirtA. SajjaanantakulK. Physico‐chemical properties of flour and starch from jackfruit seeds (Artocarpus heterophyllus Lam.) compared with modified starches.Int. J. Food Sci. Technol.200439327127610.1111/j.1365‑2621.2004.00781.x
    [Google Scholar]
  95. PavanasasivamG. UvaisM. SultanbawaS. Cycloartenyl acetate, cycloartenol and cycloartenone in the bark of Artocarpus species.Phytochemistry197312112725272610.1016/0031‑9422(73)85088‑5
    [Google Scholar]
  96. ChripsN.R. BalasinghR.G. KingstonC. Nutrient constituents of neglected varieties of Artocarpus heterophyllus Lam. from Kanyakumari district, South India.JBAB2008213637
    [Google Scholar]
  97. KaurJ. SinghZ. ShahH.M.S. MazharM.S. HasanM.U. WoodwardA. Insights into phytonutrient profile and postharvest quality management of jackfruit: A review.Crit. Rev. Food Sci. Nutr.202464196756678210.1080/10408398.2023.217494736789587
    [Google Scholar]
  98. MushumbusiD.G. Production and characterization of jackfruit jam.Master of Science in Food Science Thesis: Sokoine University of Agriculture, Morogoro2015
    [Google Scholar]
  99. TiwariA.K. VidyarthiA.S. Nutritional evaluation of various edible fruit parts of jackfruit (Artocarpus heterophyllus) at different maturity stages.IJCPRR2015112126
    [Google Scholar]
  100. JagtapU.B. PanaskarS.N. BapatV.A. Evaluation of antioxidant capacity and phenol content in jackfruit (Artocarpus heterophyllus Lam.) fruit pulp.Plant Foods Hum. Nutr.20106529910410.1007/s11130‑010‑0155‑720198442
    [Google Scholar]
  101. de FariaA.F. de RossoV.V. MercadanteA.Z. Carotenoid composition of jackfruit (Artocarpus heterophyllus), determined by HPLC-PDA-MS/MS.Plant Foods Hum. Nutr.200964210811510.1007/s11130‑009‑0111‑619437120
    [Google Scholar]
  102. TripathiK. KumarP. KumarR. Efficacy of jackfruit components in prevention and control of human disease: A scoping review.J. Educ. Health Promot.202312136110.4103/jehp.jehp_1683_2238144022
    [Google Scholar]
  103. FernandoM.R. WickramasingheS.M.D.N. ThabrewM.I. AriyanandaP.L. KarunanayakeE.H. Effect of Artocarpus heterophyllus and Asteracanthus longifolia on glucose tolerance in normal human subjects and in maturity-onset diabetic patients.J. Ethnopharmacol.199131327728210.1016/0378‑8741(91)90012‑32056756
    [Google Scholar]
  104. LavkerR.M. Cutaneous aging: Chronic versus photoaging Photoaging.Blackwell Science1995
    [Google Scholar]
  105. BabithaS. SandhyaC. PandeyA. Natural food colorants.Appl. Bot. Abstr.200423258266
    [Google Scholar]
  106. FangS.C. HsuC.L. YenG.C. Anti-inflammatory effects of phenolic compounds isolated from the fruits of Artocarpus heterophyllus.J. Agric. Food Chem.200856124463446810.1021/jf800444g18500810
    [Google Scholar]
  107. WeiB.L. WengJ.R. ChiuP.H. HungC.F. WangJ.P. LinC.N. Antiinflammatory flavonoids from Artocarpus heterophyllus and Artocarpus communis.J. Agric. Food Chem.200553103867387110.1021/jf047873n15884809
    [Google Scholar]
  108. BaligaM.S. ShivashankaraA.R. HaniadkaR. DsouzaJ. BhatH.P. Phytochemistry, nutritional and pharmacological properties of Artocarpus heterophyllus Lam (jackfruit): A review.Food Res. Int.20114471800181110.1016/j.foodres.2011.02.035
    [Google Scholar]
  109. TeixeiraS. LuísI.M. OliveiraM.M. AbreuI.A. BatistaR. Goji berries superfood – Contributions for the characterisation of proteome and IgE-binding proteins.Food Agric. Immunol.201930126228010.1080/09540105.2019.1577364
    [Google Scholar]
  110. DonnoD. BeccaroG.L. MellanoM.G. CeruttiA.K. BounousG. Goji berry fruit (Lycium spp.): Antioxidant compound fingerprint and bioactivity evaluation.J. Funct. Foods2015181070108510.1016/j.jff.2014.05.020
    [Google Scholar]
  111. KulczyńskiB. Gramza-MichałowskaA. Goji berry (Lycium barbarum): Composition and health effects–a review.Pol. J. Food Nutr. Sci.2016662677510.1515/pjfns‑2015‑0040
    [Google Scholar]
  112. MaZ.F. ZhangH. TehS.S. Goji berries as a potential natural antioxidant medicine: An insight into their molecular mechanisms of action.Oxid. Med. Cell. Longev.201920191910.1155/2019/243739730728882
    [Google Scholar]
  113. YaoR. HeinrichM. ZhaoX. WangQ. WeiJ. XiaoP. What’s the choice for goji: Lycium barbarum L. or L. chinense Mill.?J. Ethnopharmacol.202127611418510.1016/j.jep.2021.11418533964363
    [Google Scholar]
  114. AmagaseH. FarnsworthN.R. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji).Food Res. Int.20114471702171710.1016/j.foodres.2011.03.027
    [Google Scholar]
  115. VidovićB.B. MilinčićD.D. MarčetićM.D. Health benefits and applications of goji berries in functional food products development: A review.Antioxidants202211224810.3390/antiox1102024835204130
    [Google Scholar]
  116. LuoQ. CaiY. YanJ. SunM. CorkeH. Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum.Life Sci.200476213714910.1016/j.lfs.2004.04.05615519360
    [Google Scholar]
  117. BlasiF. MontesanoD. SimonettiM.S. CossignaniL. A simple and rapid extraction method to evaluate the fatty acid composition and nutritional value of goji berry lipid.Food Anal. Methods201710497097910.1007/s12161‑016‑0652‑x
    [Google Scholar]
  118. NiroS. FratianniA. PanfiliG. FalascaL. CinquantaL. AlamM.R. Nutritional evaluation of fresh and dried goji berries cultivated in Italy.Ital. J. Food Sci.2017293
    [Google Scholar]
  119. ZhaoD. LiS. HanX. LiC. NiY. HaoJ. Physico-chemical properties and free amino acids profiles of six wolfberry cultivars in Zhongning.J. Food Compos. Anal.20208810346010.1016/j.jfca.2020.103460
    [Google Scholar]
  120. LuY. GuoS. ZhangF. Nutritional components characterization of Goji berries from different regions in China.J. Pharm. Biomed. Anal.202119511385910.1016/j.jpba.2020.11385933373825
    [Google Scholar]
  121. ChangS.K. AlasalvarC. ShahidiF. Superfruits: Phytochemicals, antioxidant efficacies, and health effects – A comprehensive review.Crit. Rev. Food Sci. Nutr.201959101580160410.1080/10408398.2017.142211129360387
    [Google Scholar]
  122. JiangC. ChenZ. LiaoW. The medicinal species of the lycium genus (Goji Berries) in East Asia: A review of its effect on cell signal transduction pathways.Plants20241311153110.3390/plants1311153138891336
    [Google Scholar]
  123. WangC.C. ChangS.C. InbarajB.S. ChenB.H. Isolation of carotenoids, flavonoids and polysaccharides from Lycium barbarum L. and evaluation of antioxidant activity.Food Chem.2010120118419210.1016/j.foodchem.2009.10.005
    [Google Scholar]
  124. Llorent-MartínezE.J. Fernández-de CórdovaM.L. Ortega-BarralesP. Ruiz-MedinaA. Characterization and comparison of the chemical composition of exotic superfoods.Microchem. J.201311044445110.1016/j.microc.2013.05.016
    [Google Scholar]
  125. Mikulic-PetkovsekM. SchmitzerV. SlatnarA. StamparF. VebericR. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species.J. Food Sci.20127710C1064C107010.1111/j.1750‑3841.2012.02896.x22924969
    [Google Scholar]
  126. ShiX. WangX. ZhengY. FuL. Advances in the study of bioactive compounds and nutraceutical properties of goji berry (Lycium barbarum L.).Appl. Sci.202415126210.3390/app15010262
    [Google Scholar]
  127. NikiE. NoguchiN. Evaluation of antioxidant capacity. What capacity is being measured by which method?IUBMB Life2000504-532332910.1080/71380373611327327
    [Google Scholar]
  128. XinG. ZhuF. DuB. XuB. Antioxidants distribution in pulp and seeds of black and red goji berries as affected by boiling processing.J. Food Qual.201720171810.1155/2017/3145946
    [Google Scholar]
  129. PotteratO. Goji (Lycium barbarum and L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity.Planta Med.201076171910.1055/s‑0029‑118621819844860
    [Google Scholar]
  130. YuD.H. WuJ.M. NiuA.J. Health-promoting effect of LBP and healthy Qigong exercise on physiological functions in old subjects.Carbohydr. Polym.200975231231610.1016/j.carbpol.2008.07.030
    [Google Scholar]
  131. CaiH. LiuF. ZuoP. Practical application of antidiabetic efficacy of Lycium barbarum polysaccharide in patients with type 2 diabetes.Med. Chem.201511438339010.2174/157340641066614111015385825381995
    [Google Scholar]
  132. de Souza ZanchetM.Z. NardiG.M. de Oliveira Souza BrattiL. Filippin-MonteiroF.B. LocatelliC. Lycium barbarum reduces abdominal fat and improves lipid profile and antioxidant status in patients with metabolic syndrome.Oxid. Med. Cell. Longev.20172017976321010.1155/2017/9763210
    [Google Scholar]
  133. LiX. HoltR.R. KeenC.L. MorseL.S. YiuG. HackmanR.M. Goji berry intake increases macular pigment optical density in healthy adults: A randomized pilot trial.Nutrients20211312440910.3390/nu1312440934959963
    [Google Scholar]
  134. BenzieI.F.F. ChungW.Y. WangJ. RichelleM. BucheliP. Enhanced bioavailability of zeaxanthin in a milk-based formulation of wolfberry (Gou Qi Zi; Fructus barbarum L.).Br. J. Nutr.200696115416010.1079/BJN2006179616870004
    [Google Scholar]
  135. BucheliP. VidalK. ShenL. Goji berry effects on macular characteristics and plasma antioxidant levels.Optom. Vis. Sci.201188225726210.1097/OPX.0b013e318205a18f21169874
    [Google Scholar]
  136. VidalK. BucheliP. GaoQ. Immunomodulatory effects of dietary supplementation with a milk-based wolfberry formulation in healthy elderly: A randomized, double-blind, placebo-controlled trial.Rejuvenation Res.2012151899710.1089/rej.2011.124122352435
    [Google Scholar]
  137. GaoY. WeiY. WangY. GaoF. ChenZ. Lycium barbarum: A traditional Chinese herb and a promising anti-aging agent.Aging Dis.20178677879110.14336/AD.2017.072529344416
    [Google Scholar]
  138. ShahbandehM. Global market value of superfoods.2021Available from: [https://www.statista.com/statistics/1078437/superfoods-market-value-worldwide/
    [Google Scholar]
  139. ArumugamT. SonaC.L. MaheswariM.U. Fruits and vegetables as Superfoods: Scope and demand.J. Pharm. Innov.202110119129
    [Google Scholar]
  140. NurgazinaJ. PakdeetrakulwongU. MoserT. ReinerG. Distributed ledger technology applications in food supply chains: A review of challenges and future research directions.Sustainability2021138420610.3390/su13084206
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638355532250408095114
Loading
/content/journals/cddt/10.2174/0115701638355532250408095114
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): amla; Brazil nuts; functional food; goji berries; jackfruit; maca; Superfoods
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test