Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

An imbalance between reactive oxygen species (ROS) and antioxidants in the circulatory system leads to oxidative stress, which has been linked to several pathological conditions, including cancer, aging, and neurological and cardiovascular diseases. Antioxidants play a crucial role in reducing oxidative damage by neutralizing harmful free radicals and preventing cellular injury. The processes generating cellular oxidative stress and the curative effects of antioxidants, the origins and effects of reactive oxygen species (ROS), the role that oxidative stress plays in the pathogenesis of disease, and the several kinds of antioxidants-including enzymatic and non-enzymatic antioxidants are thoroughly explored in this review. We also emphasized the medicinal uses of antioxidants, both natural and synthetic, in the prevention and treatment of disorders associated with oxidative stress. Furthermore, we discussed the challenges and potential paths ahead for antioxidant research, such as developing new antioxidant molecules with higher efficacy and improving antioxidant delivery systems. This study provides information regarding the complicated dynamics of oxidative stress and the potential benefits of antioxidants for preserving cellular homeostasis and advancing human health.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638349511250121114323
2025-03-03
2025-09-07
Loading full text...

Full text loading...

References

  1. MukherjeeK. ChioT.I. SackettD.L. BaneS.L. Detection of oxidative stress-induced carbonylation in live mammalian cells.Free Radic. Biol. Med.2015841121 25801292
    [Google Scholar]
  2. PisoschiA.M. PopA. The role of antioxidants in the chemistry of oxidative stress: A review.Eur. J. Med. Chem.201597557410.1016/j.ejmech.2015.04.040 25942353
    [Google Scholar]
  3. AndradeL.A. BarbosaJ.M. BarrozoM.A.S. VieiraL.G.M. A comparative study of the behavior of Chlamydomonas reinhardtii and Spirulina platensis in solar catalytic pyrolysis.Int. J. Energy Res.20204475397541110.1002/er.5289
    [Google Scholar]
  4. FormanH.J. ZhangH. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy.Nat. Rev. Drug Discov.202120968970910.1038/s41573‑021‑00233‑1 34194012
    [Google Scholar]
  5. HsiehH.S. ZeppR.G. Reactivity of graphene oxide with reactive oxygen species (hydroxyl radical, singlet oxygen, and superoxide anion).Environ. Sci. Nano20196123734374410.1039/C9EN00693A 32218919
    [Google Scholar]
  6. Chibuike OzougwuJ. The role of reactive oxygen species and antioxidants in oxidative stress.Inter J Res20161818[Available from
    [Google Scholar]
  7. MadkourL.H. Function of reactive oxygen species (ROS) inside the living organisms and sources of oxidants.Pharma Sci Anal Res J201922180023
    [Google Scholar]
  8. KothaR.R. TareqF.S. YildizE. LuthriaD.L. Oxidative stress and antioxidants-A critical review on in vitro antioxidant assays.Antioxidants20221112238810.3390/antiox11122388 36552596
    [Google Scholar]
  9. PoljsakB. ŠuputD. MilisavI. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants.Oxidative Medicine and Cellular.Longevity201310.1155/2013/956792
    [Google Scholar]
  10. SinghR P SharadS KapurS Free radicals and oxidative stress in neurodegenerative diseases: Relevance of dietary antioxidants. J Indian Acad Clin Med 5; 3: 218-25.
    [Google Scholar]
  11. SiesH. BerndtC. JonesD.P. Oxidative stress.Annu. Rev. Biochem.20178671574810.1146/annurev‑biochem‑061516‑045037 28441057
    [Google Scholar]
  12. VranováE. InzéD. Van BreusegemF. Signal transduction during oxidative stress.J. Exp. Bot.2002533721227123610.1093/jexbot/53.372.1227
    [Google Scholar]
  13. Andrés JuanC. Manuel Pérez de la LastraJ. PlouF.J. Pérez-LebeñaE. ReinbotheS. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, Lipids and Proteins) and induced pathologies.Int. J. Mol. Sci.2021229464210.3390/ijms22094642 33924958
    [Google Scholar]
  14. SharmaP. JhaA.B. DubeyR.S. PessarakliM. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions.J. Bot.2012201212610.1155/2012/217037
    [Google Scholar]
  15. HasanuzzamanM. BhuyanM.H.M. ZulfiqarF. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator.Antioxidants20209868110.3390/antiox9080681 32751256
    [Google Scholar]
  16. YoonS.O. YunC.H. ChungA.S. Dose effect of oxidative stress on signal transduction in aging.Mech. Ageing Dev.2002123121597160410.1016/s0047‑6374(02)00095‑7 12470897
    [Google Scholar]
  17. KumarS. PandeyA.K. Free radicals: Health implications and their mitigation by herbals.J. Adv. Med. Med. Res.20157643845710.9734/BJMMR/2015/16284
    [Google Scholar]
  18. HussainT. TanB. YinY. BlachierF. TossouM.C.B. RahuN. Oxidative stress and inflammation: What polyphenols can do for us?Oxid. Med. Cell. Longev.201620161743279710.1155/2016/7432797 27738491
    [Google Scholar]
  19. MatésJ.M. Sánchez-JiménezF.M. Role of reactive oxygen species in apoptosis: Implications for cancer therapy.Int. J. Biochem. Cell Biol.200032215717010.1016/S1357‑2725(99)00088‑6 10687951
    [Google Scholar]
  20. FujiiJ. IuchiY. OkadaF. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system.Reprod. Biol. Endocrinol.2005314310.1186/1477‑7827‑3‑43 16137335
    [Google Scholar]
  21. VolpeC.M.O. Villar-DelfinoP.H. dos AnjosP.M.F. Nogueira-MachadoJ.A. Cellular death, reactive oxygen species (ROS) and diabetic complications.Cell Death Dis.20189211910.1038/s41419‑017‑0135‑z 29371661
    [Google Scholar]
  22. JaiswalA.K. Nrf2 signaling in coordinated activation of antioxidant gene expression.Free Radic. Biol. Med.200436101199120710.1016/j.freeradbiomed.2004.02.074 15110384
    [Google Scholar]
  23. ĎuračkováZ. Some current insights into oxidative stress.Physiol. Res.201059445946910.33549/physiolres.931844 19929132
    [Google Scholar]
  24. StevenS. DaiberA. DopheideJ.F. MünzelT. Espinola-KleinC. Peripheral artery disease, redox signaling, oxidative stress – Basic and clinical aspects.Redox Biol.20171278779710.1016/j.redox.2017.04.017 28437655
    [Google Scholar]
  25. GriendlingK.K. FitzGeraldG.A. Oxidative stress and cardiovascular injury: Part I: Basic mechanisms and in vivo monitoring of ROS.Circulation2003108161912191610.1161/01.CIR.0000093660.86242.BB 14568884
    [Google Scholar]
  26. LennickeC. CocheméH.M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function.Mol. Cell202181183691370710.1016/j.molcel.2021.08.018 34547234
    [Google Scholar]
  27. SchieberM. ChandelN.S. ROS function in redox signaling and oxidative stress.Curr. Biol.20142410R453R462 24845678
    [Google Scholar]
  28. SiesH. Oxidative Stress: Oxidants and Antioxidants.London, UKAcademic Press1991
    [Google Scholar]
  29. BystrovaM.F. BudanovaE.N. Hydrogen peroxide and peroxiredoxins in redox regulation of intracellular signaling.Biochem. Suppl. Ser. A Membr. Cell Biol.2007129910710.1134/S1990747807020018
    [Google Scholar]
  30. TripathiB.N. BhattI. DietzK.J. Peroxiredoxins: A less studied component of hydrogen peroxide detoxification in photosynthetic organisms.Protoplasma20092351-431510.1007/s00709‑009‑0032‑0 19219525
    [Google Scholar]
  31. BelaK. RiyazuddinR. CsiszárJ. Plant glutathione peroxidases: Non-heme peroxidases with large functional flexibility as a core component of ROS-processing mechanisms and signalling.Antioxidants2022118162410.3390/antiox11081624 36009343
    [Google Scholar]
  32. Brigelius-FlohéR. FlohéL. Regulatory phenomena in the glutathione peroxidase superfamily.Antioxid. Redox Signal.202033749851610.1089/ars.2019.7905 31822117
    [Google Scholar]
  33. RigouletM. YoboueE.D. DevinA. Mitochondrial ROS generation and its regulation: Mechanisms involved in H2O2 signaling.Antioxid. Redox Signal.2011143459468 20649461
    [Google Scholar]
  34. DaltonT.P. ShertzerH.G. PugaA. Regulation of gene expression by reactive oxygen.Annu. Rev. Pharmacol. Toxicol.19993916710110.1146/annurev.pharmtox.39.1.67 10331077
    [Google Scholar]
  35. ScandaliosJ.G. Genomic responses to oxidative stress.In: Encyclopaedia of Molecular Cell Biology and Molecular Medicine. Germany: Wiley20045489512
    [Google Scholar]
  36. MariettaC. GulamH. BrooksP.J. A single 8,5′-cyclo-2′-deoxyadenosine lesion in a TATA box prevents binding of the TATA binding protein and strongly reduces transcription in vivo.DNA Repair2002111967975 12531024
    [Google Scholar]
  37. MartinsS.G. ZilhãoR. ThorsteinsdóttirS. CarlosA.R. Linking oxidative stress and dna damage to changes in the expression of extracellular matrix components.Front. Genet.202112673002 34394183
    [Google Scholar]
  38. GirottiA.W. Mechanisms of lipid peroxidation.J. Free Radic. Biol. Med.198512879510.1016/0748‑5514(85)90011‑X 3915303
    [Google Scholar]
  39. EmamiN.K. JungU. VoyB. DridiS. Radical response: Effects of heat stress‐induced oxidative stress on lipid metabolism in the avian liver.Antioxidants2020101115 33396952
    [Google Scholar]
  40. LiuH. ZhuH. XiaH. Different effects of high-fat diets rich in different oils on lipids metabolism, oxidative stress and gut microbiota.Food Res. Int.202114111007810.1016/j.foodres.2020.110078 33641963
    [Google Scholar]
  41. DaiY. QuanJ. XiongL. LuoY. YiB. Probiotics improve renal function, glucose, lipids, inflammation and oxidative stress in diabetic kidney disease: A systematic review and meta-analysis.Ren. Fail.202244186288010.1080/0886022X.2022.2079522 35611435
    [Google Scholar]
  42. KellyF.J. MudwayI.S. Protein oxidation at the air-lung interface.Amino Acids2003253-437539610.1007/s00726‑003‑0024‑x 14661098
    [Google Scholar]
  43. WeiS.J. BoteroA. HirotaK. Thioredoxin nuclear translocation and interaction with redox factor-1 activates the activator protein-1 transcription factor in response to ionizing radiation.Cancer Res.2000602366886695 11118054
    [Google Scholar]
  44. YokoyaA. CunniffeS.M.T. O’NeillP. Effect of hydration on the induction of strand breaks and base lesions in plasmid DNA films by gamma-radiation.J. Am. Chem. Soc.2002124308859886610.1021/ja025744m 12137539
    [Google Scholar]
  45. CadetJ. DoukiT. GasparuttoD. RavanatJ.L. Oxidative damage to DNA: Formation, measurement and biochemical features.Mutat. Res.20035311-252310.1016/j.mrfmmm.2003.09.001 14637244
    [Google Scholar]
  46. JanssenY.M. Van HoutenB. BormP.J. MossmanB.T. Cell and tissue responses to oxidative damage.Lab. Invest.1993693261274 8377469
    [Google Scholar]
  47. SayreL. SmithM. PerryG. Chemistry and biochemistry of oxidative stress in neurodegenerative disease.Curr. Med. Chem.20018772173810.2174/0929867013372922 11375746
    [Google Scholar]
  48. TanveerM.A. RashidH. TasduqS.A. Molecular basis of skin photoaging and therapeutic interventions by plant-derived natural product ingredients: A comprehensive review.Heliyon202393e13580 36895391
    [Google Scholar]
  49. TruongV.L. BaeY.J. BangJ.H. JeongW.S. Combination of red ginseng and velvet antler extracts prevents skin damage by enhancing the antioxidant defense system and inhibiting MAPK/AP-1/NF-κB and caspase signaling pathways in UVB-irradiated HaCaT keratinocytes and SKH-1 hairless mice.J. Ginseng Res.202448332333210.1016/j.jgr.2024.01.003 38707646
    [Google Scholar]
  50. LiuJ. HanX. ZhangT. Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: From mechanism to therapy.J. Hematol. Oncol.202316111610.1186/s13045‑023‑01512‑7 38037103
    [Google Scholar]
  51. JaramilloM.C. ZhangD.D. The emerging role of the Nrf2-Keap1 signaling pathway in cancer.Genes Dev.201327202179219110.1101/gad.225680.113 24142871
    [Google Scholar]
  52. PatelR. MaruG. Polymeric black tea polyphenols induce phase II enzymes via Nrf2 in mouse liver and lungs.Free Radic. Biol. Med.200844111897191110.1016/j.freeradbiomed.2008.02.006 18358244
    [Google Scholar]
  53. YanZ. ZhongY. DuanY. ChenQ. LiF. Antioxidant mechanism of tea polyphenols and its impact on health benefits.Anim. Nutr.202062115123 32542190
    [Google Scholar]
  54. KäsmannL. DietrichA. Staab-WeijnitzC.A. Radiation-induced lung toxicity – Cellular and molecular mechanisms of pathogenesis, management, and literature review.Radiat. Oncol.202015121410.1186/s13014‑020‑01654‑9 32912295
    [Google Scholar]
  55. Arroyo-HernándezM. MaldonadoF. Lozano-RuizF. Muñoz-MontañoW. Nuñez-BaezM. ArrietaO. Radiation-induced lung injury: Current evidence.BMC Pulm. Med.2021211910.1186/s12890‑020‑01376‑4 33407290
    [Google Scholar]
  56. ZhangY-J. Antioxidant phytochemicals for the prevention and treatment of chronic diseases.Molecules201520122113810.3390/molecules201219753
    [Google Scholar]
  57. WangX. WangW. LiL. PerryG. LeeH.G. ZhuX. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease.Biochim. Biophys. Acta20141842812401247 24189435
    [Google Scholar]
  58. ZhaoY. ZhaoB. Oxidative stress and the pathogenesis of Alzheimer’s disease.Oxid. Med. Cell. Longev.20132013316523 23983897
    [Google Scholar]
  59. MoonH.E. PaekS.H. Mitochondrial dysfunction in Parkinson’s disease.Exp. Neurobiol.2015242103116 26113789
    [Google Scholar]
  60. IarkovA. BarretoG.E. GrizzellJ.A. EcheverriaV. Strategies for the treatment of Parkinson’s disease: Beyond dopamine.Front. Aging Neurosci.2020124 32076403
    [Google Scholar]
  61. DionísioP.A. AmaralJ.D. RodriguesC.M.P. Oxidative stress and regulated cell death in Parkinson’s disease.Ageing Res. Rev.20216710126310.1016/j.arr.2021.101263 33540042
    [Google Scholar]
  62. MishraA.K. DixitA. Dopaminergic axons: Key recitalists in Parkinson’s disease.Neurochem. Res.202247223424810.1007/s11064‑021‑03464‑1 34637100
    [Google Scholar]
  63. BlesaJ. Trigo-DamasI. Quiroga-VarelaA. Jackson-LewisV.R. Oxidative stress and Parkinson’s disease.Front. Neuroanat.201599110.3389/fnana.2015.00091 26217195
    [Google Scholar]
  64. SchapiraA.H. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease.Lancet Neurol.20087197109 18093566
    [Google Scholar]
  65. AminiM.A. KarimiJ. TalebiS.S. PiriH. The association of COVID-19 and reactive oxygen species modulator 1 (ROMO1) with oxidative stress.Chonnam Med. J.20225811510.4068/cmj.2022.58.1.1 35169552
    [Google Scholar]
  66. GainC. The role of oxidative stress in the pathogenesis of infections with coronaviruses.Front. Microbiol.202313111193010.3389/fmicb.2022.1111930 36713204
    [Google Scholar]
  67. ValkoM. LeibfritzD. MoncolJ. CroninM.T. MazurM. TelserJ. Free radicals and antioxidants in normal physiological functions and human disease.Int. J. Biochem. Cell Biol.20073914484 16978905
    [Google Scholar]
  68. RahmanK. Studies on free radicals, antioxidants, and co-factors.Clin. Interv. Aging200722219236 18044138
    [Google Scholar]
  69. Mirończuk-ChodakowskaI. WitkowskaA.M. ZujkoM.E. Endogenous non-enzymatic antioxidants in the human body.Adv. Med. Sci.2018631687810.1016/j.advms.2017.05.005 28822266
    [Google Scholar]
  70. Gulcinİ. Antioxidants and antioxidant methods: An updated overview.Arch. Toxicol.202094365171510.1007/s00204‑020‑02689‑3 32180036
    [Google Scholar]
  71. DumanovićJ. NepovimovaE. NatićM. KučaK. JaćevićV. The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview.Front Plant Sci202111552969 33488637
    [Google Scholar]
  72. BensidA. El AbedN. HouicherA. RegensteinJ.M. ÖzogulF. Antioxidant and antimicrobial preservatives: Properties, mechanism of action and applications in food - A review.Crit. Rev. Food Sci. Nutr.2022621129853001 33337242
    [Google Scholar]
  73. CömertE.D. GökmenV. Evolution of food antioxidants as a core topic of food science for a century.Food Res. Int.2018105769310.1016/j.foodres.2017.10.056 29433271
    [Google Scholar]
  74. FierascuR.C. OrtanA. FierascuI.C. FierascuI. In vitro and in vivo evaluation of antioxidant properties of wild-growing plants. A short review.Curr. Opin. Food Sci.20182418
    [Google Scholar]
  75. FernandesP.A.R. CoimbraM.A. The antioxidant activity of polysaccharides: A structure-function relationship overview.Carbohydr. Polym.202331412096510.1016/j.carbpol.2023.120965 37173007
    [Google Scholar]
  76. KuaiL. LiuF. ChiouB.S. Avena-BustillosR.J. McHughT.H. ZhongF. Controlled release of antioxidants from active food packaging: A review.Food Hydrocoll.202112010699210.1016/j.foodhyd.2021.106992
    [Google Scholar]
  77. NoguchiN. WatanabeA. ShiH. Diverse functions of antioxidants.Free Radic. Res.2000336809817 11237103
    [Google Scholar]
  78. IghodaroO.M. AkinloyeO.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid.Alex. J. Med.201854287293
    [Google Scholar]
  79. LiK. ZhongW. LiP. RenJ. JiangK. WuW. Recent advances in lignin antioxidant: Antioxidant mechanism, evaluation methods, influence factors and various applications.Int. J. Biol. Macromol.202325112599210.1016/j.ijbiomac.2023.125992 37544567
    [Google Scholar]
  80. IvanovaA. GerasimovaE. GazizullinaE. Study of antioxidant properties of agents from the perspective of their action mechanisms.Molecules202025184251 32947948
    [Google Scholar]
  81. KakkarR. BadhaniB. BhandariM. Density functional theory study of the antioxidant activity of glutathione: Reaction with alloxan and its derivatives.Comput. Theor. Chem.2023123011437410.1016/j.comptc.2023.114374
    [Google Scholar]
  82. MazzaraF. PatellaB. AielloG. Electrochemical detection of uric acid and ascorbic acid using r-GO/NPs based sensors.Electrochim. Acta202138813865210.1016/j.electacta.2021.138652
    [Google Scholar]
  83. ChenY. YangX. LiuZ. LiuG. GuoZ. NH2-MIL-101(Fe) anchored onto nanoporous gold microelectrode: Highly sensitive electrochemical platform for simultaneously sensing of ascorbic acid and uric acid.Microchem. J.202419811015210.1016/j.microc.2024.110152
    [Google Scholar]
  84. NikiE. Antioxidant defense in eukaryotic cells. In: Poli G, Albano E, Dianzani MU, Eds. Free radicals: From basic science to medicine. PoliG. AlbanoE. DianzaniM.U. Birkhauser Verlag Basel1993365373
    [Google Scholar]
  85. MarroccoI. AltieriF. PelusoI. Measurement and clinical significance of biomarkers of oxidative stress in humans.Oxid. Med. Cell. Longev.201720176501046 28698768
    [Google Scholar]
  86. FlohéL. ToppoS. OrianL. The glutathione peroxidase family: Discoveries and mechanism.Free Radic. Biol. Med.202218711312210.1016/j.freeradbiomed.2022.05.003 35580774
    [Google Scholar]
  87. ChangC. WorleyB.L. PhaëtonR. HempelN. Extracellular glutathione peroxidase GPx3 and its role in cancer.Cancers202012812010.3390/cancers12082197 32781581
    [Google Scholar]
  88. PowersS.K. JacksonM.J. Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production.Physiol. Rev.20088841243127610.1152/physrev.00031.2007 18923182
    [Google Scholar]
  89. ZelkoI.N. MarianiT.J. FolzR.J. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression.Free Radic. Biol. Med.200233333734910.1016/s0891‑5849(02)00905‑x 12126755
    [Google Scholar]
  90. BunkerV.W. Free radicals, antioxidants and ageing.Med. Lab. Sci.1992494299312 1339934
    [Google Scholar]
  91. MezzettiA. LapennaD. RomanoF. Systemic oxidative stress and its relationship with age and illness. Associazione Medica “Sabin”.J. Am. Geriatr. Soc.1996447823827 8675932
    [Google Scholar]
  92. SantosK.L.B. BragançaV.A.N. PachecoL.V. OtaS.S.B. AguiarC.P.O. BorgesR.S. Essential features for antioxidant capacity of ascorbic acid (vitamin C).J. Mol. Model.2022281110.1007/s00894‑021‑04994‑9 34862566
    [Google Scholar]
  93. TohJ.W.T. WilsonR.B. Pathways of gastric carcinogenesis, helicobacter pylori virulence and interactions with antioxidant systems, vitamin C and phytochemicals.Int. J. Mol. Sci.20202117645110.3390/ijms21176451 32899442
    [Google Scholar]
  94. WhiteE. ShannonJ.S. PattersonR.E. Relationship between vitamin and calcium supplement use and colon cancer.Cancer Epidemiol. Biomarkers Prev.1997610769774 9332757
    [Google Scholar]
  95. UngurianuA. ZanfirescuA. NițulescuG. MarginăD. Vitamin E beyond its antioxidant label.Antioxidants2021105634 33919211
    [Google Scholar]
  96. MasellaR. Di BenedettoR. VarìR. FilesiC. GiovanniniC. Novel mechanisms of natural antioxidant compounds in biological systems: Involvement of glutathione and glutathione-related enzymes.J. Nutr. Biochem.20051610577586 16111877
    [Google Scholar]
  97. CurelloS. CeconiC. BigoliC. FerrariR. AlbertiniA. GuarnieriC. Changes in the cardiac glutathione status after ischemia and reperfusion.Experientia19854114243 3967736
    [Google Scholar]
  98. BonettaR. Potential therapeutic applications of MnSODs and SOD- mimetics.Chemistry2018242050325041 29131419
    [Google Scholar]
  99. JaramilloM.C. BriehlM.M. Batinic-HaberleI. TomeM.E. Manganese (III) meso-tetrakis N-ethylpyridinium-2-yl porphyrin acts as a pro-oxidant to inhibit electron transport chain proteins, modulate bioenergetics, and enhance the response to chemotherapy in lymphoma cells.Free Radic. Biol. Med.20158389100 25725417
    [Google Scholar]
  100. Batinić-HaberleI. RebouçasJ.S. SpasojevićI. Superoxide dismutase mimics: Chemistry, pharmacology, and therapeutic potential.Antioxid. Redox Signal.201013687791810.1089/ars.2009.2876 20095865
    [Google Scholar]
  101. OgawaA. YoshimotoT. KikuchiH. Ebselen in acute middle cerebral artery occlusion: A placebo-controlled, double-blind clinical trial.Cerebrovasc. Dis.19999211211810.1159/000015908 9973655
    [Google Scholar]
  102. ChenT.S. RichieJ.P. NagasawaH.T. LangC.A. Glutathione monoethyl ester protects against glutathione deficiencies due to aging and acetaminophen in mice.Mech. Ageing Dev.20001201-312713910.1016/S0047‑6374(00)00214‑1 11087910
    [Google Scholar]
  103. SaitoI. AsanoT. SanoK. Neuroprotective effect of an antioxidant, ebselen, in patients with delayed neurological deficits after aneurysmal subarachnoid hemorrhage.Neurosurgery199842226927710.1097/00006123‑199802000‑00038 9482177
    [Google Scholar]
  104. LevyE.J. AndersonM.E. MeisterA. Transport of glutathione diethyl ester into human cells.Proc. Natl. Acad. Sci. USA199390199171917510.1073/pnas.90.19.9171 8415673
    [Google Scholar]
  105. Perez OrtizJ.M. SwerdlowR.H. Mitochondrial dysfunction in Alzheimer’s disease: Role in pathogenesis and novel therapeutic opportunities.Br. J. Pharmacol.2019176183489350710.1111/bph.14585 30675901
    [Google Scholar]
  106. CanevariL. ClarkJ.B. BatesT.E. beta-Amyloid fragment 25-35 selectively decreases complex IV activity in isolated mitochondria.FEBS Lett.19994571131134 10486579
    [Google Scholar]
  107. KaliaL.V. LangA.E. Parkinson’s disease.Lancet2015386999689691210.1016/S0140‑6736(14)61393‑3 25904081
    [Google Scholar]
  108. Flint BealM. ShultsC.W. Effects of Coenzyme Q10 in Huntington’s disease and early Parkinson’s disease.Biofactors2003181-415316110.1002/biof.5520180218 14695931
    [Google Scholar]
  109. Fernández-GajardoR. MatamalaJ.M. CarrascoR. GutiérrezR. MeloR. RodrigoR. Novel therapeutic strategies for traumatic brain injury: Acute antioxidant reinforcement.CNS Drugs201428322924810.1007/s40263‑013‑0138‑y 24532027
    [Google Scholar]
  110. HakiminiaB. AlikiaiiB. KhorvashF. MousaviS. Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities.Fundam. Clin. Pharmacol.202236461266210.1111/fcp.12767 35118714
    [Google Scholar]
  111. MorénC. deSouzaR.M. GiraldoD.M. UffC. Antioxidant therapeutic strategies in neurodegenerative diseases.Int. J. Mol. Sci.20222316932810.3390/ijms23169328 36012599
    [Google Scholar]
  112. RotariuD. BabesE.E. TitD.M. Oxidative stress – Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders.Biomed. Pharmacother.202215211323810.1016/j.biopha.2022.113238 35687909
    [Google Scholar]
  113. RatnamD.V. AnkolaD.D. BhardwajV. SahanaD.K. KumarM.N.V.R. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective.J. Control. Release2006113318920710.1016/j.jconrel.2006.04.015 16790290
    [Google Scholar]
  114. de RoosB. DuthieG.G. Role of dietary pro‐oxidants in the maintenance of health and resilience to oxidative stress.Mol. Nutr. Food Res.20155971229124810.1002/mnfr.201400568 25546122
    [Google Scholar]
  115. YeZ.W. ZhangJ. TownsendD.M. TewK.D. Oxidative stress, redox regulation and diseases of cellular differentiation.Biochim. Biophys. Acta2015185081607162110.1016/j.bbagen.2014.11.010 25445706
    [Google Scholar]
  116. JungertA. FrankJ. Intra–individual variation and reliability of biomarkers of the antioxidant defense system by considering dietary and lifestyle factors in premenopausal women.Antioxidants202110344810.3390/antiox10030448 33805781
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638349511250121114323
Loading
/content/journals/cddt/10.2174/0115701638349511250121114323
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test