Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Introduction

Methicillin-resistant (MRSA), known for its resistance to multiple antibiotics, has emerged as a major global health concern. It facilitates biofilm formation under stressful conditions by catalyzing the synthesis of alarmones (p)ppGpp and ppGpp. These alarmones on accumulation lead to biofilm formation and cause resistance towards antibiotics.

Methods

This condition has prompted the exploration of various novel approaches and methodologies to combat MRSA infections. Among these, peptide therapeutics stand out as a promising next-generation treatment option. In this study, ninety antimicrobial peptides were sourced from the antimicrobial peptide database and the other sixty-one peptide sequences were designed using the Pepdraw server. These peptide sequences were screened out using different tools. The protein-peptide molecular interaction was studied using a molecular docking and molecular dynamic simulation technique.

Results and Discussion

Out of 151 peptide sequences, Pantocin wh-1 emerged as the most promising drug candidate. Both molecular interaction studies and molecular dynamics simulations demonstrated positive results.

Conclusion

Peptide therapeutics is a novel approach researchers are presently exploring as it provides prompt significant results and promotes a new insight towards dealing with conditions like MDR. Pantocin wh-1 is a peptide drug currently listed as an accessible anti-tuberculosis peptide, and this study suggests the repurposing of this drug as a viable treatment option for MRSA infections.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638337060250121154347
2025-02-13
2025-11-05
Loading full text...

Full text loading...

References

  1. TurnerN.A. Sharma-KuinkelB.K. MaskarinecS.A. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research.Nat. Rev. Microbiol.201917420321810.1038/s41579‑018‑0147‑4 30737488
    [Google Scholar]
  2. HassounA. LindenP.K. FriedmanB. Incidence, prevalence, and management of MRSA bacteremia across patient populations—a review of recent developments in MRSA management and treatment.Crit. Care201721121110.1186/s13054‑017‑1801‑3 28807042
    [Google Scholar]
  3. McGuinnessW.A. MalachowaN. DeLeoF.R. Vancomycin resistance in Staphylococcus aureus.Yale J. Biol. Med.2017902269281 28656013
    [Google Scholar]
  4. CardosoP. GlossopH. MeikleT.G. Molecular engineering of antimicrobial peptides: Microbial targets, peptide motifs and translation opportunities.Biophys. Rev.2021131356910.1007/s12551‑021‑00784‑y 33495702
    [Google Scholar]
  5. ManavM.C. BeljantsevaJ. BojerM.S. Structural basis for (p)ppGpp synthesis by the Staphylococcus aureus small alarmone synthetase RelP.J. Biol. Chem.201829393254326410.1074/jbc.RA117.001374 29326162
    [Google Scholar]
  6. SalzerA. KeinhörsterD. KästleC. KästleB. WolzC. Small alarmone synthetases RelP and RelQ of Staphylococcus aureus are involved in biofilm formation and maintenance under cell wall stress conditions.Front. Microbiol.20201157588210.3389/fmicb.2020.575882 33072039
    [Google Scholar]
  7. PushpakomS. IorioF. EyersP.A. Drug repurposing: Progress, challenges and recommendations.Nat. Rev. Drug Discov.2019181415810.1038/nrd.2018.168 30310233
    [Google Scholar]
  8. RoesslerH.I. KnoersN.V.A.M. van HaelstM.M. van HaaftenG. Drug repurposing for rare diseases.Trends Pharmacol. Sci.202142425526710.1016/j.tips.2021.01.003 33563480
    [Google Scholar]
  9. AroojM. ShehadiI. NassabC.N. MohamedA.A. Computational insights into binding mechanism of drugs as potential inhibitors against SARS-CoV-2 targets.Chem. Zvesti202276111112110.1007/s11696‑021‑01843‑0 34483461
    [Google Scholar]
  10. AroojM. SakkiahS. CaoG.P. KimS. ArulalapperumalV. LeeK.W. Finding off‐targets, biological pathways, and target diseases for chymase inhibitors via structure‐based systems biology approach.Proteins20158371209122410.1002/prot.24677 25143259
    [Google Scholar]
  11. AroojM. KimS. SakkiahS. CaoG.P. LeeY. LeeK.W. Molecular modeling study for inhibition mechanism of human chymase and its application in inhibitor design.PLoS One201384e6274010.1371/journal.pone.0062740 23638140
    [Google Scholar]
  12. NassabC.N. AroojM. ShehadiI.A. ParambathJ.B.M. KananS.M. MohamedA.A. Lysozyme and human serum albumin proteins as potential nitric oxide cardiovascular drug carriers: Theoretical and experimental investigation.J. Phys. Chem. B2021125287750776210.1021/acs.jpcb.1c04614 34232651
    [Google Scholar]
  13. BinkowskiT.A. NaghibzadehS. LiangJ. CASTp: Computed atlas of surface topography of proteins.Nucleic Acids Res.200331133352335510.1093/nar/gkg512 12824325
    [Google Scholar]
  14. LaviA. NganC.H. Movshovitz-AttiasD. Detection of peptide‐binding sites on protein surfaces: The first step toward the modeling and targeting of peptide‐mediated interactions.Proteins201381122096210510.1002/prot.24422 24123488
    [Google Scholar]
  15. WangZ. APD: The antimicrobial peptide database.Nucleic Acids Res.2004329000159059210.1093/nar/gkh025
    [Google Scholar]
  16. WangG. LiX. WangZ. APD3: The antimicrobial peptide database as a tool for research and education.Nucleic Acids Res.201644D1D1087D109310.1093/nar/gkv1278 26602694
    [Google Scholar]
  17. GuptaS. KapoorP. ChaudharyK. GautamA. KumarR. RaghavaG.P.S. In silico approach for predicting toxicity of peptides and proteins.PLoS One201389e7395710.1371/journal.pone.0073957 24058508
    [Google Scholar]
  18. DimitrovI. NanevaL. DoytchinovaI. BangovI. AllergenF.P. AllergenF.P. Allergenicity prediction by descriptor fingerprints.Bioinformatics201430684685110.1093/bioinformatics/btt619 24167156
    [Google Scholar]
  19. Tsaban t. Harnessing protein folding neural networks for peptide-protein docking.Nat. Commun.202213117610.1038/s41467‑021‑27838‑9
    [Google Scholar]
  20. SkolnickJ. GaoM. ZhouH. SinghS. AlphaFold 2: Why it works and its implications for understanding the relationships of protein sequence, structure, and function.J. Chem. Inf. Model.202161104827483110.1021/acs.jcim.1c01114 34586808
    [Google Scholar]
  21. YanY. ZhangD. ZhouP. LiB. HuangS.Y. HDOCK: A web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy.Nucleic Acids Res.201745W1W365-7310.1093/nar/gkx407 28521030
    [Google Scholar]
  22. YanY. TaoH. HeJ. HuangS.Y. The HDOCK server for integrated protein–protein docking.Nat. Protoc.20201551829185210.1038/s41596‑020‑0312‑x 32269383
    [Google Scholar]
  23. HuangJ. MacKerellA.D.Jr CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data.J. Comput. Chem.201334252135214510.1002/jcc.23354 23832629
    [Google Scholar]
  24. BauerP. HessB. LindahlE. GROMACS 2022.4 Manual.Available from2022[https://manual.gromacs.org/2022.4/user-guide/index.html
    [Google Scholar]
  25. DardenT. YorkD. PedersenL. Particle mesh Ewald: An N ⋅log(N) method for Ewald sums in large systems.J. Chem. Phys.19939812100891009210.1063/1.464397
    [Google Scholar]
  26. HarrachM.F. DrosselB. Structure and dynamics of TIP3P, TIP4P, and TIP5P water near smooth and atomistic walls of different hydroaffinity.J. Chem. Phys.20141401717450110.1063/1.4872239 24811640
    [Google Scholar]
  27. HessB. BekkerH. BerendsenH.J.C. FraaijeJ.G.E.M. LINCS: A linear constraint solver for molecular simulations.J. Comput. Chem.199718121463147210.1002/(SICI)1096‑987X(199709)18:12<1463:AID‑JCC4>3.0.CO;2‑H
    [Google Scholar]
  28. BussiG. DonadioD. ParrinelloM. Canonical sampling through velocity rescaling.J. Chem. Phys.2007126101410110.1063/1.2408420 17212484
    [Google Scholar]
  29. MartoňákR. LaioA. ParrinelloM. Predicting crystal structures: The Parrinello-Rahman method revisited.Phys. Rev. Lett.200390707550310.1103/PhysRevLett.90.075503 12633242
    [Google Scholar]
  30. Valdés-TresancoM.S. Valdés-TresancoM.E. ValienteP.A. MorenoE. gmx_MMPBSA: A new tool to perform end-state free energy calculations with gromacs.J. Chem. Theory Comput.202117106281629110.1021/acs.jctc.1c00645 34586825
    [Google Scholar]
  31. MillerB.R.III McGeeT.D.Jr SwailsJ.M. HomeyerN. GohlkeH. RoitbergA.E. MMPBSA.py: An efficient program for end-state free energy calculations.J. Chem. Theory Comput.2012893314332110.1021/ct300418h 26605738
    [Google Scholar]
  32. HosseiniM. Shapouri MoghaddamA. DerakhshanS. Correlation between biofilm formation and antibiotic resistance in MRSA and MSSA isolated from clinical samples in Iran: A systematic review and meta-analysis.Microb. Drug Resist.20202691071108010.1089/mdr.2020.0001
    [Google Scholar]
  33. LeshemT. SchnallB.S. AzradM. BaumM. RokneyA. PeretzA. Incidence of biofilm formation among MRSA and MSSA clinical isolates from hospitalized patients in Israel.J. Appl. Microbiol.2022133292292910.1111/jam.15612 35503533
    [Google Scholar]
  34. SilvaV. AlmeidaL. GaioV. Biofilm formation of multidrug-resistant mrsa strains isolated from different types of human infections.Pathogens202110897010.3390/pathogens10080970 34451434
    [Google Scholar]
  35. Hernández-CuellarE. TsuchiyaK. Valle-RíosR. Medina-ContrerasO. Differences in biofilm formation by methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains.Diseases202311416010.3390/diseases11040160 37987271
    [Google Scholar]
  36. DruckerD.J. Advances in oral peptide therapeutics.Nat. Rev. Drug Discov.20191927728910.1038/s41573‑019‑0053‑0 31848464
    [Google Scholar]
  37. PlumetL. Ahmad-MansourN. Dunyach-RemyC. Bacteriophage therapy for Staphylococcus Aureus infections: A review of animal models, treatments, and clinical trials.Front. Cell. Infect. Microbiol.20221290731410.3389/fcimb.2022.907314 35782148
    [Google Scholar]
  38. RoseW. FantlM. GeriakM. NizetV. SakoulasG. Current paradigms of combination therapy in methicillin-resistant Staphylococcus aureus (MRSA) bacteremia: Does it work, which combination, and for which patients?Clin. Infect. Dis.202173122353236010.1093/cid/ciab452 33993226
    [Google Scholar]
  39. JampilekJ. Drug repurposing to overcome microbial resistance.Drug Discov. Today20222772028204110.1016/j.drudis.2022.05.006 35561965
    [Google Scholar]
  40. MullinsJ.G.L. Drug repurposing in silico screening platforms.Biochem. Soc. Trans.202250274775810.1042/BST20200967 35285479
    [Google Scholar]
  41. TanG.S.Q. SloanE.K. LambertP. KirkpatrickC.M.J. IlomäkiJ. Drug repurposing using real-world data.Drug Discov. Today202328110342210.1016/j.drudis.2022.103422 36341896
    [Google Scholar]
  42. TimurS.S. GürsoyR.N. The role of peptide-based therapeutics in oncotherapy.J. Drug Target.202129101048106210.1080/1061186X.2021.1906884 33775190
    [Google Scholar]
  43. TengT. LiX. ZhangL. LiY. Identification and Characterization of pantocin wh-1, a Novel Cyclic Polypeptide Produced by Pantoea dispersa W18.Molecules202025348510.3390/molecules25030485 31979296
    [Google Scholar]
  44. SuyashS. JhaA. MaitraP. PuniaP. MishraA. Differentiating stable and unstable protein using convolution neural network and molecular dynamics simulations.Comput. Biol. Chem.202411010808110.1016/j.compbiolchem.2024.108081 38677012
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638337060250121154347
Loading
/content/journals/cddt/10.2174/0115701638337060250121154347
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test