Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Background

One of the most prevalent sexually transmitted diseases (STDs) is infection with the human papillomavirus (HPV). The current treatment methods comprise employing chemotherapeutic medications or doing surgery to remove the developed tumors. A more affordable option for treating HPV-related diseases has emerged with the advent of medication-based therapy. The interaction between E6 protein and E6AP generates a p53 degradation complex in HPV-infected cells, which facilitates carcinogenesis.

Objective

The purpose of this work is to use a virtual screening technique to find possible small molecule inhibitors against the HPV16 E6 protein.

Methods

Compounds , , and are three new HPV 16 E6 inhibitors that were created utilizing a fragment-based methodology. The trials subset in the ZINC database was screened virtually using the structural information of these three novel chemicals, yielding 9800 hits. Using the GLIDE module of the Schrodinger software, three virtual screening phases were applied to the molecules that were collected from the database. MD simulations and DFT (Density Function Theory) were also carried out.

Results

The findings indicated that when compared to the reference molecule, luteolin, the five-hit compounds (ZINC000034853956, ZINC000001534965, ZINC000095617673, ZINC000005764481, and ZINC000071606215) demonstrated superior glide scores. Important interactions between these compounds and the HPV 16 E6 protein were seen. Using the QikProp tool, the pharmacokinetic characteristics of these hit compounds were examined. The findings demonstrated that the pharmacokinetic characteristics and oral absorption by humans of all five compounds were found to be satisfactory. Except for ZINC000005764481, all five hit compounds were predicted to be toxic; the remaining four displayed drug-like characteristics.

Conclusion

To create HPV 16 E6 inhibitors for the treatment of HPV-related disorders, the four hit compounds (ZINC000034853956, ZINC000001534965, ZINC000095617673, and ZINC00007160-6215) can be employed as lead molecules.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638336294250109052352
2025-02-11
2025-11-05
Loading full text...

Full text loading...

References

  1. AllisonD.B. MalekiZ. HPV-related head and neck squamous cell carcinoma: An update and review.J. Am. Soc. Cytopathol.20165420321510.1016/j.jasc.2015.12.001 31042510
    [Google Scholar]
  2. FormanD. de MartelC. LaceyC.J. Global burden of human papillomavirus and related diseases.Vaccine2012305Suppl. 5F12F2310.1016/j.vaccine.2012.07.055 23199955
    [Google Scholar]
  3. MonieA. HungC.F. RodenR. WuT.C. Cervarix: A vaccine for the prevention of HPV 16, 18-associated cervical cancer.Biologics20082197105 19707432
    [Google Scholar]
  4. ShiL. SingsH.L. BryanJ.T. GARDASIL: Prophylactic human papillomavirus vaccine development--from bench top to bed-side.Clin. Pharmacol. Ther.200781225926410.1038/sj.clpt.6100055 17259949
    [Google Scholar]
  5. HampsonL. Martin-HirschP. HampsonI.N. An overview of early investigational drugs for the treatment of human papilloma virus infection and associated dysplasia.Expert Opin. Investig. Drugs201524121529153710.1517/13543784.2015.1099628 26457651
    [Google Scholar]
  6. MittalS. BanksL. Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation.Mutat. Res. Rev. Mutat. Res.2017772233510.1016/j.mrrev.2016.08.001 28528687
    [Google Scholar]
  7. SatapathyP. KhatibM.N. NeyaziA. Prevalence of human papilloma virus among cervical cancer patients in India: A systematic review and meta-analysis.Medicine (Baltimore)202410331e3882710.1097/MD.0000000000038827 39093777
    [Google Scholar]
  8. MukerjeeN. MaitraS. GhoshA. Exosome‐based therapy and targeted PROTAC delivery: A new nanomedicine frontier for HPV‐mediated cervical cancer treatment.Clin. Transl. Discov.202444e32810.1002/ctd2.328
    [Google Scholar]
  9. MukerjeeN. MaitraS. GoraiS. GhoshA. AlexiouA. ThoratN.D. Revolutionizing Human papillomavirus (HPV)‐related cancer therapies: Unveiling the promise of Proteolysis Targeting Chimeras (PROTACs) and Proteolysis Targeting Antibodies (PROTABs) in cancer nano‐vaccines.J. Med. Virol.20239510e2913510.1002/jmv.29135 37792364
    [Google Scholar]
  10. McLaughlin-DrubinM.E. MüngerK. The human papillomavirus E7 oncoprotein.Virology2009384233534410.1016/j.virol.2008.10.006 19007963
    [Google Scholar]
  11. HowieH.L. KatzenellenbogenR.A. GallowayD.A. Papillomavirus E6 proteins.Virology2009384232433410.1016/j.virol.2008.11.017 19081593
    [Google Scholar]
  12. Martinez-ZapienD. RuizF.X. PoirsonJ. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53.Nature2016529758754154510.1038/nature16481 26789255
    [Google Scholar]
  13. ScheffnerM. MüngerK. ByrneJ.C. HowleyP.M. The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines.Proc. Natl. Acad. Sci. USA199188135523552710.1073/pnas.88.13.5523 1648218
    [Google Scholar]
  14. Ricci-LópezJ. Vidal-LimonA. ZunñigaM. Molecular modeling simulation studies reveal new potential inhibitors against HPV E6 protein.PLoS One2019143e021302810.1371/journal.pone.0213028 30875378
    [Google Scholar]
  15. LiuY. LiuZ. AndrophyE. ChenJ. BalejaJ.D. Design and characterization of helical peptides that inhibit the E6 protein of papillomavirus.Biochemistry200443237421743110.1021/bi049552a 15182185
    [Google Scholar]
  16. ZanierK. StutzC. KintscherS. The E6AP binding pocket of the HPV16 E6 oncoprotein provides a docking site for a small inhibitory peptide unrelated to E6AP, indicating druggability of E6.PLoS One2014911e11251410.1371/journal.pone.0112514 25383876
    [Google Scholar]
  17. GriffinH. ElstonR. JacksonD. Inhibition of papillomavirus protein function in cervical cancer cells by intrabody targeting.J. Mol. Biol.2006355336037810.1016/j.jmb.2005.10.077 16324714
    [Google Scholar]
  18. BalejaJ.D. CherryJ.J. LiuZ. Identification of inhibitors to papillomavirus type 16 E6 protein based on three-dimensional structures of interacting proteins.Antiviral Res.2006721495910.1016/j.antiviral.2006.03.014 16690141
    [Google Scholar]
  19. CherryJ.J. RietzA. MalinkevichA. Structure based identification and characterization of flavonoids that disrupt human papillomavirus-16 E6 function.PLoS One2013812e8450610.1371/journal.pone.0084506 24376816
    [Google Scholar]
  20. MaleckaK.A. FeraD. SchultzD.C. Identification and characterization of small molecule human papillomavirus E6 inhibitors.ACS Chem. Biol.2014971603161210.1021/cb500229d 24854633
    [Google Scholar]
  21. DiMasiJ.A. GrabowskiH.G. HansenR.W. Innovation in the pharmaceutical industry: New estimates of R&D costs.J. Health Econ.201647203310.1016/j.jhealeco.2016.01.012 26928437
    [Google Scholar]
  22. MurgueitioM.S. BermudezM. MortierJ. WolberG. In silico virtual screening approaches for anti-viral drug discovery.Drug Discov. Today. Technol.201293e219e22510.1016/j.ddtec.2012.07.009 24990575
    [Google Scholar]
  23. AroojM. KimS. SakkiahS. CaoG.P. LeeY. LeeK.W. Molecular modeling study for inhibition mechanism of human chymase and its application in inhibitor design.PLoS One201384e6274010.1371/journal.pone.0062740 23638140
    [Google Scholar]
  24. NassabC.N. AroojM. ShehadiI.A. ParambathJ.B.M. KananS.M. MohamedA.A. Lysozyme and human serum albumin proteins as potential nitric oxide cardiovascular drug carriers: Theoretical and experimental investigation.J. Phys. Chem. B2021125287750776210.1021/acs.jpcb.1c04614 34232651
    [Google Scholar]
  25. TangellaL.P. AroojM. DeplazesE. GrayE.S. ManceraR.L. Identification and characterisation of putative drug binding sites in human ATP-binding cassette B5 (ABCB5) transporter.Comput. Struct. Biotechnol. J.20211969170410.1016/j.csbj.2020.12.042 33510870
    [Google Scholar]
  26. LiontaE. SpyrouG. VassilatisD. CourniaZ. Structure-based virtual screening for drug discovery: Principles, applications and recent advances.Curr. Top. Med. Chem.201414161923193810.2174/1568026614666140929124445 25262799
    [Google Scholar]
  27. ZanierK. CharbonnierS. SidiA.O.M.O. Structural basis for hijacking of cellular LxxLL motifs by papillomavirus E6 oncoproteins.Science2013339612069469810.1126/science.1229934 23393263
    [Google Scholar]
  28. VemulaV. MarudamuthuA.S. PrasadS. Fragment-based design and MD simulations of human papilloma virus-16 E6 protein inhibitors.J. Biomol. Struct. Dyn.202442128829710.1080/07391102.2023.2203775 37098806
    [Google Scholar]
  29. IrwinJ.J. ShoichetB.K. ZINC--a free database of commercially available compounds for virtual screening.J. Chem. Inf. Model.200545117718210.1021/ci049714+ 15667143
    [Google Scholar]
  30. ZhuK. DayT. WarshaviakD. MurrettC. FriesnerR. PearlmanD. Antibody structure determination using a combination of homology modeling, energy‐based refinement, and loop prediction.Proteins20148281646165510.1002/prot.24551 24619874
    [Google Scholar]
  31. KalliokoskiT. SaloH.S. Lahtela-KakkonenM. PosoA. The effect of ligand-based tautomer and protomer prediction on structure-based virtual screening.J. Chem. Inf. Model.200949122742274810.1021/ci900364w 19928753
    [Google Scholar]
  32. SadowskiJ. RudolphC. GasteigerJ. The generation of 3D models of host-guest complexes.Anal. Chim. Acta1992265223324110.1016/0003‑2670(92)85029‑6
    [Google Scholar]
  33. MillettiF. VulpettiA. Tautomer preference in PDB complexes and its impact on structure-based drug discovery.J. Chem. Inf. Model.20105061062107410.1021/ci900501c 20515065
    [Google Scholar]
  34. MuralidharanA.R. SelvarajC. SinghS.K. Nelson JesudasanC.A. GeraldineP. ThomasP.A. Virtual screening based on pharmacophoric features of known calpain inhibitors to identify potent inhibitors of calpain.Med. Chem. Res.20142352445245510.1007/s00044‑013‑0842‑7
    [Google Scholar]
  35. HalgrenT.A. MurphyR.B. FriesnerR.A. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening.J. Med. Chem.20044771750175910.1021/jm030644s 15027866
    [Google Scholar]
  36. CappelD. HallM.L. LenselinkE.B. Relative binding free energy calculations applied to protein homology models.J. Chem. Inf. Model.201656122388240010.1021/acs.jcim.6b00362 28024402
    [Google Scholar]
  37. Di CapuaA. SticozziC. BrogiS. Synthesis and biological evaluation of fluorinated 1,5-diarylpyrrole-3-alkoxyethyl ether derivatives as selective COX-2 inhibitors endowed with anti-inflammatory activity.Eur. J. Med. Chem.20161099910610.1016/j.ejmech.2015.12.044 26774035
    [Google Scholar]
  38. RajputV.S. MehraR. KumarS. NargotraA. SinghP.P. KhanI.A. Screening of antitubercular compound library identifies novel shikimate kinase inhibitors of Mycobacterium tuberculosis.Appl. Microbiol. Biotechnol.2016100125415542610.1007/s00253‑015‑7268‑8 26887318
    [Google Scholar]
  39. BanerjeeP. EckertA.O. SchreyA.K. PreissnerR. ProTox-II: A webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.201846W1W257-6310.1093/nar/gky318 29718510
    [Google Scholar]
  40. OostenbrinkC. VillaA. MarkA.E. Van GunsterenW.F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6.J. Comput. Chem.200425131656167610.1002/jcc.20090 15264259
    [Google Scholar]
  41. RajpootS. AlagumuthuM. BaigM.S. Dual targeting of 3CLpro and PLpro of SARS-CoV-2: A novel structure-based design approach to treat COVID-19.Curr. Res. Struct. Biol.2021391810.1016/j.crstbi.2020.12.001 33319212
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638336294250109052352
Loading
/content/journals/cddt/10.2174/0115701638336294250109052352
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ADME; anti-cervical cancer; HPV16 E6; molecular docking; virtual screening; ZINC database
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test