Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Diabetes is a chronic metabolic disease of high levels of glucose in the blood and affecting 536.6 million people in the world between the age group of 20-79 with management spent of 11% of the total worldwide. Wound healing in diabetics is impaired due to many factors like high blood sugar, poor blood circulation, damaged blood vessels, diabetic neuropathy, decreased immune responses . The presently used synthetic drugs have high costs, a toxic nature, and are full of adverse effects drawing attention to the need to identify new and successful treatment approaches for diabetic wounds. drug screening methods of drug development made it easy to screen thousands of active constituents against a target specifically responsible for diabetes and wound healing. Thus the current review compiled the naturally available active compounds screened by docking from natural resources and has the potential to treat diabetic wound healing with their specificity and target-based mechanism. This information will be helpful for further screening of non-reported natural compounds having antidiabetic as well as wound healing potential.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638336128250122223221
2025-02-11
2025-09-08
Loading full text...

Full text loading...

References

  1. KhuntiK. PratoD.S. MathieuC. KahnS.E. GabbayR.A. BuseJ.B. COVID-19, Hyperglycemia, and New-Onset Diabetes.Diabetes Care202144122645265510.2337/dc21‑1318 34625431
    [Google Scholar]
  2. JeonH.Y. LeeA.J. HaK.S. Polymer-based delivery of peptide drugs to treat diabetes: Normalizing hyperglycemia and preventing diabetic complications.Biochip J.202216211112710.1007/s13206‑022‑00057‑0
    [Google Scholar]
  3. L’HevederR. NolanT. International diabetes federation.Diabetes Res. Clin. Pract.2013101334935110.1016/j.diabres.2013.08.003 24119591
    [Google Scholar]
  4. SunH. SaeediP. KarurangaS. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  5. GuanG. ZhangQ. JiangZ. Multifunctional silk fibroin methacryloyl microneedle for diabetic wound healing.Small20221851220306410.1002/smll.202203064 36333115
    [Google Scholar]
  6. GuanL. OuX. WangZ. Electrical stimulation-based conductive hydrogel for immunoregulation, neuroregeneration and rapid angiogenesis in diabetic wound repair.Sci. China Mater.20236631237124810.1007/s40843‑022‑2242‑y
    [Google Scholar]
  7. DunlopM. Aldose reductase and the role of the polyol pathway in diabetic nephropathy.Kidney Int. Suppl.200077S3S1210.1046/j.1523‑1755.2000.07702.x 10997684
    [Google Scholar]
  8. KoshikawaM. MukoyamaM. MoriK. Role of p38 mitogen-activated protein kinase activation in podocyte injury and proteinuria in experimental nephrotic syndrome.J. Am. Soc. Nephrol.20051692690270110.1681/ASN.2004121084 15987752
    [Google Scholar]
  9. MeierM. MenneJ. ParkJ.K. HallerH. Nailing down PKC isoform specificity in diabetic nephropathy two’s company, three’s a crowd.Nephrol. Dial. Transplant.20072292421242510.1093/ndt/gfm320 17724056
    [Google Scholar]
  10. BrownleeM. Biochemistry and molecular cell biology of diabetic complications.Nature2001414686581382010.1038/414813a 11742414
    [Google Scholar]
  11. WolfI. SadetzkiS. CataneR. KarasikA. KaufmanB. Diabetes mellitus and breast cancer.Lancet Oncol.20056210311110.1016/S1470‑2045(05)01736‑5 15683819
    [Google Scholar]
  12. LeeM.J. FeliersD. MariappanM.M. A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy.Am. J. Physiol. Renal Physiol.20072922F617F62710.1152/ajprenal.00278.2006 17018841
    [Google Scholar]
  13. KimJ. The pathophysiology of diabetic foot: A narrative review.J. Yeungnam Med. Sci.202340432833410.12701/jyms.2023.00731 37797951
    [Google Scholar]
  14. LiM. YuH. PanH. Nrf2 suppression delays diabetic wound healing through sustained oxidative stress and inflammation.Front. Pharmacol.201910109910.3389/fphar.2019.01099 31616304
    [Google Scholar]
  15. HuM. WuY. YangC. Novel long noncoding RNA lnc-URIDS delays diabetic wound healing by targeting Plod1.Diabetes202069102144215610.2337/db20‑0147 32801140
    [Google Scholar]
  16. Ben-Yehuda GreenwaldM. TacconiC. JukicM. A dual-acting nitric oxide donor and phosphodiesterase 5 inhibitor promotes wound healing in normal mice and mice with diabetes.J. Invest. Dermatol.2021141241542610.1016/j.jid.2020.05.111 32598925
    [Google Scholar]
  17. RibeiroM.C. CorreaV.L.R. SilvaF.K.L. Wound healing treatment using insulin within polymeric nanoparticles in the diabetes animal model.Eur. J. Pharm. Sci.202015010533010.1016/j.ejps.2020.105330 32268198
    [Google Scholar]
  18. NabaviSF BraidyN GortziO Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res Bull2015119Pt A11110.1016/j.brainresbull.2015.09.002 26361743
    [Google Scholar]
  19. DubeyR. PrabhakarP.K. GuptaJ. Identification of structurally similar phytochemicals to quercetin with high SIRT1 binding affinity and improving diabetic wound healing by using in silico approaches.Biointerface Res. Appl. Chem.20211267621763210.33263/BRIAC126.76217632
    [Google Scholar]
  20. KhursheedR. SinghS.K. WadhwaS. GulatiM. AwasthiA. Enhancing the potential preclinical and clinical benefits of quercetin through novel drug delivery systems.Drug Discov. Today202025120922210.1016/j.drudis.2019.11.001 31707120
    [Google Scholar]
  21. SunC. ZhangF. GeX. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B.Cell Metab.20076430731910.1016/j.cmet.2007.08.014 17908559
    [Google Scholar]
  22. BoS. TogliattoG. GambinoR. Impact of sirtuin-1 expression on H3K56 acetylation and oxidative stress: A double-blind randomized controlled trial with resveratrol supplementation.Acta Diabetol.201855433134010.1007/s00592‑017‑1097‑4 29330620
    [Google Scholar]
  23. PengJ. ZhouY. DengZ. miR‐221 negatively regulates inflammation and insulin sensitivity in white adipose tissue by repression of sirtuin‐1 (SIRT1).J. Cell. Biochem.201811986418642810.1002/jcb.26589 29236311
    [Google Scholar]
  24. AyukS.M. AbrahamseH. HoureldN.N. The role of matrix metalloproteinases in diabetic wound healing in relation to photobiomodulation.J. Diabetes Res.201620161910.1155/2016/2897656 27314046
    [Google Scholar]
  25. MukherjeeP.K. MaityN. NemaN.K. SarkarB.K. Natural matrix metalloproteinase inhibitors: Leads from herbal resources.Stud Nat Prod Chem2013399111310.1016/B978‑0‑444‑62615‑8.00003‑5
    [Google Scholar]
  26. BalachandranA. ChoiS.B. BeataM.M. Antioxidant, wound healing potential and in silico assessment of naringin, eicosane and octacosane.Molecules2023283104310.3390/molecules28031043 36770709
    [Google Scholar]
  27. MariadossA.V.A. ParkS. SaravanakumarK. SathiyaseelanA. WangM.H. Ethyl acetate fraction of Helianthus tuberosus L. induces anti-diabetic, and wound-healing activities in insulin-resistant human liver cancer and mouse fibroblast cells.Antioxidants20211019910.3390/antiox10010099 33445702
    [Google Scholar]
  28. HsingH.Y. RathnasamyS. DianitaR. WahabH.A. Docking-based virtual screening in search for natural PTP1B inhibitors in treating type-2 diabetes mellitus and obesity.Biomed. Res. Ther.2020713579359210.15419/bmrat.v7i1.585
    [Google Scholar]
  29. LiB. JiY. YiC. Rutin Inhibits Ox-LDL-mediated macrophage inflammation and foam cell formation by inducing autophagy and modulating PI3K/ATK signaling.Molecules20222713420110.3390/molecules27134201 35807447
    [Google Scholar]
  30. NaseebM AlbajriE AlmasaudiA Rutin promotes wound healing by inhibiting oxidative stress and inflammation in metformin-controlled diabetes in rats. ACS Omega2024930acsomega.3c0559510.1021/acsomega.3c0559539100330
    [Google Scholar]
  31. YueniwatiY SyabanMF ErwanNE PutraGF KrisnayanaAD Molecular docking analysis of ficus religiosa active compound with anti-inflammatory activity by targeting tumour necrosis factor alpha and vascular endothelial growth factor receptor in diabetic wound healing. Maced J Med Sci20219A1031610.3889/oamjms.2021.7068
    [Google Scholar]
  32. NakhateV.P. AkojwarN.S. SinhaS.K. Wound healing potential of Acacia catechu in streptozotocin-induced diabetic mice using in vivo and in silico approach.J. Tradit. Complement. Med.202313548949910.1016/j.jtcme.2023.05.001 37693096
    [Google Scholar]
  33. HenleyZ.A. BaxB.D. InglesbyL.M. From PIM1 to PI3Kδ via GSK3β: Target hopping through the kinome.ACS Med. Chem. Lett.20178101093109810.1021/acsmedchemlett.7b00296 29057057
    [Google Scholar]
  34. GrahamT.A. FerkeyD.M. MaoF. KimelmanD. XuW. Tcf4 can specifically recognize β-catenin using alternative conformations.Nat. Struct. Biol.20018121048105210.1038/nsb718 11713475
    [Google Scholar]
  35. NairS.K. BurleyS.K. X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors.Cell2003112219320510.1016/S0092‑8674(02)01284‑9 12553908
    [Google Scholar]
  36. SaleemU. KhalidS. ZaibS. Wound healing potential and in silico appraisal of Convolvulus arvensis L. methanolic extract.BioMed Res. Int.2022202211610.1155/2022/1373160 36467883
    [Google Scholar]
  37. NayakaS.S. KrishnaV. NarayanaJ. RaviK.S. SantoshK.S.R. Diabetic wound healing activity of Elaeagnus conferta Roxb. leaf ethanol extract.Res. J. Biotechnol.2023181115416410.25303/1811rjbt01540164
    [Google Scholar]
  38. KumarR.S. KaavyaG. Binding efficiency of molecules from medicinal plants with fidgetin like protein 2-A novel target for diabetic foot ulcer.Res J Pharm Technol201710113757376010.5958/0974‑360X.2017.00682.5
    [Google Scholar]
  39. BaidyaR. SarkarB. An in silico approach to evaluate the diabetic wound healing potential of phenylethanoid glycoside in inhibiting the receptor for advanced glycation end products (RAGE).J Med Sci20232112410.3390/ECB2023‑14137
    [Google Scholar]
  40. JiniD. SharmilaS. AnithaA. PandianM. RajapakshaR.M.H. In vitro and in silico studies of silver nanoparticles (AgNPs) from Allium sativum against diabetes.Sci. Rep.20221212210910.1038/s41598‑022‑24818‑x 36543812
    [Google Scholar]
  41. KhatibS MahdiI DrissiB FahsiN BouissaneL SobehM. Tetraclinis articulata (Vahl) Mast.: Volatile constituents, antioxidant, antidiabetic and wound healing activities of its essential oil. Heliyon2024103e2456310.1016/j.heliyon.2024.e2456338317922
    [Google Scholar]
  42. AnithaV.T. AntonisamyJ.M. JeevaS. Anti-bacterial studies on Hemigraphis colorata (Blume) H.G. Hallier and Elephantopus scaber L.Asian Pac. J. Trop. Med.201251525710.1016/S1995‑7645(11)60245‑9 22182644
    [Google Scholar]
  43. PriyaM.D. Review on pharmacological activity of Hemigraphis colorata (Blume) HG Hallier.Int. J. Herb. Med.201313120121
    [Google Scholar]
  44. SiljaV.P. VarmaK.S. MohananK.V. Ethnomedicinal plant knowledge of the Mullu kuruma tribe of Wayanad district, Kerala.Indian J. Tradit. Knowl.200874604612
    [Google Scholar]
  45. DevasahayamA.B.R. PalollathilA. KumarS.T.A. Role of Hemigraphis alternata in wound healing: Metabolomic profiling and molecular insights into mechanisms.Sci. Rep.2024141387210.1038/s41598‑024‑54352‑x 38365839
    [Google Scholar]
  46. BakriM.M. AlghonaimM.I. AlsalamahS.A. YahyaR.O. IsmailK.S. AbdelghanyT.M. Impact of moist heat on phytochemical constituents, anti-helicobacter pylori, antioxidant, anti-diabetic, hemolytic and healing properties of rosemary plant extract in vitro.Waste Biomass Valoriz.20241584965497910.1007/s12649‑024‑02490‑8
    [Google Scholar]
  47. ElhawaryE.S.S. ElmotayamA.E. AlsayedD. Cytotoxic and anti-diabetic potential, metabolic profiling and insilico studies of Syzygium cumini (L.) Skeels belonging to family Myrtaceae.Nat. Prod. Res.20223641026103010.1080/14786419.2020.1843032 33146032
    [Google Scholar]
  48. KazmiS.A.J. RiazA. AkhterN. KhanR.A. Evaluation of wound healing effects of Syzygium cumini and laser treatment in diabetic rats.Pak. J. Pharm. Sci.2020332Suppl.77978610.36721/PJPS.2020.33.2.SUP.779‑786 32863252
    [Google Scholar]
  49. DattaS. SealT. Anti-diabetic, anti-inflammatory and antioxidant properties of four underutilized ethnomedicinal plants: An in vitro approach.S. Afr. J. Bot.20221491010.21203/rs.3.rs‑93293/v1
    [Google Scholar]
  50. DhamodiranM. ChinnaperumalK.J.D. VenkatesanG. AlshiekheidA.M. SuseemS.R. Isolation, structural elucidation of bioactive compounds and their wound-healing ability, antibacterial and In silico molecular docking applications.Environ. Res.2024252Pt 311902310.1016/j.envres.2024.119023 38685295
    [Google Scholar]
  51. OguntibejuO.O. Medicinal plants and their effects on diabetic wound healing.Vet. World201912565366310.14202/vetworld.2019.653‑663 31327900
    [Google Scholar]
  52. AccipeL. AbadieA. NeviereR. BercionS. Antioxidant activities of natural compounds from Caribbean plants to enhance diabetic wound healing.Antioxidants2023125107910.3390/antiox12051079 37237945
    [Google Scholar]
  53. AmbikaA.P. NairS.N. Wound healing activity of plants from the convolvulaceae family.Adv. Wound Care 201981283710.1089/wound.2017.0781 30705787
    [Google Scholar]
  54. ChangY. HawkinsB.A. DuJ.J. GroundwaterP.W. HibbsD.E. LaiF. A guide to in silico drug design.Pharmaceutics20221514910.3390/pharmaceutics15010049 36678678
    [Google Scholar]
  55. EkinsS. MestresJ. TestaB. In silico pharmacology for drug discovery: Methods for virtual ligand screening and profiling.Br. J. Pharmacol.2007152192010.1038/sj.bjp.0707305 17549047
    [Google Scholar]
  56. SadybekovA.V. KatritchV. Computational approaches streamlining drug discovery.Nature2023616795867368510.1038/s41586‑023‑05905‑z 37100941
    [Google Scholar]
  57. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms20184331 31487867
    [Google Scholar]
  58. KitchenD.B. DecornezH. FurrJ.R. BajorathJ. Docking and scoring in virtual screening for drug discovery: Methods and applications.Nat. Rev. Drug Discov.200431193594910.1038/nrd1549 15520816
    [Google Scholar]
  59. DesJarlaisR.L. SheridanR.P. DixonJ.S. KuntzI.D. VenkataraghavanR. Docking flexible ligands to macromolecular receptors by molecular shape.J. Med. Chem.198629112149215310.1021/jm00161a004 3783576
    [Google Scholar]
  60. LevinthalC. WodakS.J. KahnP. DadivanianA.K. Hemoglobin interaction in sickle cell fibers. I: Theoretical approaches to the molecular contacts.Proc. Natl. Acad. Sci. USA19757241330133410.1073/pnas.72.4.1330 1055409
    [Google Scholar]
  61. GoodsellD.S. OlsonA.J. Automated docking of substrates to proteins by simulated annealing.Proteins19908319520210.1002/prot.340080302 2281083
    [Google Scholar]
  62. SalemmeF.R. An hypothetical structure for an intermolecular electron transfer complex of cytochromes c and b5.J. Mol. Biol.1976102356356810.1016/0022‑2836(76)90334‑X 178879
    [Google Scholar]
  63. WodakS.J. JaninJ. Computer analysis of protein-protein interaction.J. Mol. Biol.1978124232334210.1016/0022‑2836(78)90302‑9 712840
    [Google Scholar]
  64. KuntzI.D. BlaneyJ.M. OatleyS.J. LangridgeR. FerrinT.E. A geometric approach to macromolecule-ligand interactions.J. Mol. Biol.1982161226928810.1016/0022‑2836(82)90153‑X 7154081
    [Google Scholar]
  65. KuhlF.S. CrippenG.M. FriesenD.K. A combinatorial algorithm for calculating ligand binding.J. Comput. Chem.198451243410.1002/jcc.540050105
    [Google Scholar]
  66. DesJarlaisR.L. SheridanR.P. SeibelG.L. DixonJ.S. KuntzI.D. VenkataraghavanR. Using shape complementarity as an initial screen in designing ligands for a receptor binding site of known three-dimensional structure.J. Med. Chem.198831472272910.1021/jm00399a006 3127588
    [Google Scholar]
  67. WarwickerJ. Investigating protein-protein interaction surfaces using a reduced stereochemical and electrostatic model.J. Mol. Biol.1989206238139510.1016/0022‑2836(89)90487‑7 2541255
    [Google Scholar]
  68. JiangF. KimS.H. “Soft docking”: Matching of molecular surface cubes.J. Mol. Biol.199121917910210.1016/0022‑2836(91)90859‑5 2023263
    [Google Scholar]
  69. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: A powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/157340911795677602 21534921
    [Google Scholar]
  70. AmaroR.E. BaudryJ. ChoderaJ. Ensemble docking in drug discovery.Biophys. J.2018114102271227810.1016/j.bpj.2018.02.038 29606412
    [Google Scholar]
  71. AbagyanR. TotrovM. High-throughput docking for lead generation.Curr. Opin. Chem. Biol.20015437538210.1016/S1367‑5931(00)00217‑9 11470599
    [Google Scholar]
  72. CarlsonH.A. Protein flexibility and drug design: How to hit a moving target.Curr. Opin. Chem. Biol.20026444745210.1016/S1367‑5931(02)00341‑1 12133719
    [Google Scholar]
  73. AsiamahI. ObiriS.A. TamekloeW. ArmahF.A. BorquayeL.S. Applications of molecular docking in natural products-based drug discovery.Sci. Am.202320e0159310.1016/j.sciaf.2023.e01593
    [Google Scholar]
  74. GrahlM.V.C. AlcaráA.M. PerinA.P.A. Evaluation of drug repositioning by molecular docking of pharmaceutical resources available in the Brazilian healthcare system against SARS-CoV-2.Infor Med Unlo20212310053910.1016/j.imu.2021.100539 33623816
    [Google Scholar]
  75. WuC. LiuY. YangY. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods.Acta Pharm. Sin. B202010576678810.1016/j.apsb.2020.02.008 32292689
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638336128250122223221
Loading
/content/journals/cddt/10.2174/0115701638336128250122223221
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): chronic metabolic disease; Diabetes; diabetic neuropathy; docking studies; insulin; ROS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test