Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Introduction

Our research highlights the synthesis of newer antimalarial compounds using molecular modeling studies.

Objective

The study investigates a series of isocryptolepine derivatives from previous literature, focusing on their biological activities as antimalarial agents.

Methods

Computational methods such as molecular docking and QSAR were employed to gain insights into the interaction between the synthesized compounds and the target enzyme PfDHFR-TS.

Results

Molecular docking studies helped to identify key binding interactions, supporting the design of more effective compounds. Using CoMFA and CoMSIA, the study explored steric, electrostatic, and hydrogen-bonding fields, providing a quantitative structure-activity relationship (QSAR) for 49 compounds.

Conclusion

The CoMFA model yielded strong predictive r2 values of 0.971, while the CoMSIA model highlighted the significance of hydrophobic and hydrogen bond interactions. These findings inform the design of novel isocryptolepine derivatives with improved antimalarial activity.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638333384250117165601
2025-01-27
2025-10-29
Loading full text...

Full text loading...

References

  1. TalapkoJ. ŠkrlecI. AlebićT. JukićM. VčevA. Malaria: The past and the present.Microorganisms20197617910.3390/microorganisms7060179 31234443
    [Google Scholar]
  2. CoxF.E.G. History of the discovery of the malaria parasites and their vectors.Parasit. Vectors201031510.1186/1756‑3305‑3‑5 20205846
    [Google Scholar]
  3. MaceK.E. ArguinP.M. TanK.R. Malaria Surveillance — United States, 2015.MMWR Surveill. Summ.201867712810.15585/mmwr.ss6707a1 29723168
    [Google Scholar]
  4. IslamM.R. DharP.S. RahmanM.M. Recently outbreak of malaria in current world: species, etiology, life cycle, transmission, symptoms, vaccination, diagnostic tests, treatment, and complications.Int. J. Surg.2023109217517710.1097/JS9.0000000000000165 36799842
    [Google Scholar]
  5. SatoS. Plasmodium—a brief introduction to the parasites causing human malaria and their basic biology.J. Physiol. Anthropol.2021401110.1186/s40101‑020‑00251‑9 33413683
    [Google Scholar]
  6. LeeW.C. CheongF.W. AmirA. Plasmodium knowlesi: the game changer for malaria eradication.Malar. J.202221114010.1186/s12936‑022‑04131‑8 35505339
    [Google Scholar]
  7. PhillipsM.A. BurrowsJ.N. ManyandoC. van HuijsduijnenR.H. Van VoorhisW.C. WellsT.N.C. Malaria.Nat. Rev. Dis. Primers2017311705010.1038/nrdp.2017.50 28770814
    [Google Scholar]
  8. WambaniJ. OkothP. Impact of malaria diagnostic technologies on the disease burden in the Sub-Saharan Africa.J. Trop. Med.202220221810.1155/2022/7324281 35360189
    [Google Scholar]
  9. VaroR. ChaccourC. BassatQ. Update on malaria.Med. Clín. (Barc.)2020155939540210.1016/j.medcli.2020.05.010 32620355
    [Google Scholar]
  10. ZekarL. SharmanT. Plasmodium falciparum Malaria.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  11. Schantz-DunnJ. NourN.M. Malaria and pregnancy: A global health perspective.Rev. Obstet. Gynecol.200923186192 19826576
    [Google Scholar]
  12. AndradeM.V. NoronhaK. DinizB.P.C. The economic burden of malaria: a systematic review.Malar. J.202221128310.1186/s12936‑022‑04303‑6 36199078
    [Google Scholar]
  13. OladipoH.J. TajudeenY.A. OladunjoyeI.O. Increasing challenges of malaria control in sub-Saharan Africa: Priorities for public health research and policymakers.Ann. Med. Surg. (Lond.)20228110436610.1016/j.amsu.2022.104366 36046715
    [Google Scholar]
  14. MillerL.H. SuX. Artemisinin: discovery from the Chinese herbal garden.Cell2011146685585810.1016/j.cell.2011.08.024 21907397
    [Google Scholar]
  15. GrazioseR. Ann LilaM. RaskinI. Merging traditional Chinese medicine with modern drug discovery technologies to find novel drugs and functional foods.Curr. Drug Discov. Technol.20107121210.2174/157016310791162767 20156139
    [Google Scholar]
  16. WangJ. XuC. WongY.K. Artemisinin, the magic drug discovered from Traditional Chinese Medicine.Engineering201951323910.1016/j.eng.2018.11.011
    [Google Scholar]
  17. OmariA.A.A. GambleC.L. GarnerP. Artemether-lumefantrine (four-dose regimen) for treating uncomplicated falciparum malaria.Cochrane Libr.200620062CD00596510.1002/14651858.CD005965 16625646
    [Google Scholar]
  18. PetoT.J. TripuraR. CalleryJ.J. Triple therapy with artemether–lumefantrine plus amodiaquine versus artemether–lumefantrine alone for artemisinin-resistant, uncomplicated falciparum malaria: an open-label, randomised, multicentre trial.Lancet Infect. Dis.202222686787810.1016/S1473‑3099(21)00692‑7 35276064
    [Google Scholar]
  19. FaurantC. From bark to weed: The history of artemisinin.Parasite201118321521810.1051/parasite/2011183215 21894261
    [Google Scholar]
  20. WellsT.N.C. Natural products as starting points for future anti-malarial therapies: going back to our roots?Malar. J.201110S110.1186/1475‑2875‑10‑S1‑S3 21411014
    [Google Scholar]
  21. PerminH. NornS. KruseE. KruseP.R. On the history of Cinchona bark in the treatment of Malaria.Dan. Medicinhist. Arbog201644930 29737660
    [Google Scholar]
  22. GachelinG. GarnerP. FerroniE. TröhlerU. ChalmersI. Evaluating Cinchona bark and quinine for treating and preventing malaria.J. R. Soc. Med.20171101314010.1177/0141076816681421 28106483
    [Google Scholar]
  23. SáJ.M. ChongJ.L. WellemsT.E. Malaria drug resistance: new observations and developments.Essays Biochem.20115113716010.1042/bse0510137 22023447
    [Google Scholar]
  24. EckerA. LehaneA.M. ClainJ. FidockD.A. PfCRT and its role in antimalarial drug resistance.Trends Parasitol.2012281150451410.1016/j.pt.2012.08.002 23020971
    [Google Scholar]
  25. SinhaS. MedhiB. SehgalR. Challenges of drug-resistant malaria.Parasite2014216110.1051/parasite/2014059 25402734
    [Google Scholar]
  26. PloweC.V. Malaria chemoprevention and drug resistance: a review of the literature and policy implications.Malar. J.202221110410.1186/s12936‑022‑04115‑8 35331231
    [Google Scholar]
  27. HydeJ.E. Exploring the folate pathway in Plasmodium falciparum.Acta Trop.200594319120610.1016/j.actatropica.2005.04.002 15845349
    [Google Scholar]
  28. WangP. LeeC.S. BayoumiR. Resistance to antifolates in Plasmodium falciparum monitored by sequence analysis of dihydropteroate synthetase and dihydrofolate reductase alleles in a large number of field samples of diverse origins.Mol. Biochem. Parasitol.199789216117710.1016/S0166‑6851(97)00114‑X 9364963
    [Google Scholar]
  29. NzilaA. The past, present and future of antifolates in the treatment of Plasmodium falciparum infection.J. Antimicrob. Chemother.20065761043105410.1093/jac/dkl104 16617066
    [Google Scholar]
  30. NduatiE. DiriyeA. OmmehS. Effect of folate derivatives on the activity of antifolate drugs used against malaria and cancer.Parasitol. Res.200810261227123410.1007/s00436‑008‑0897‑4 18259776
    [Google Scholar]
  31. PathakM. OjhaH. TiwariA.K. SharmaD. SainiM. KakkarR. Design, synthesis and biological evaluation of antimalarial activity of new derivatives of 2,4,6-s-triazine.Chem. Cent. J.201711113210.1186/s13065‑017‑0362‑5 29256159
    [Google Scholar]
  32. YuvaniyamaJ. ChitnumsubP. KamchonwongpaisanS. Insights into antifolate resistance from malarial DHFR-TS structures.Nat. Struct. Mol. Biol.200310535736510.1038/nsb921 12704428
    [Google Scholar]
  33. HollingsworthS.A. DrorR.O. Molecular dynamics simulation for all.Neuron20189961129114310.1016/j.neuron.2018.08.011 30236283
    [Google Scholar]
  34. TvaroškaI. KozmonS. KóňaJ. Molecular modeling insights into the structure and behavior of integrins: A review.Cells202312232410.3390/cells12020324 36672259
    [Google Scholar]
  35. YuanitaE. Sudirman, Dharmayani NKT, Ulfa M, Syahri J. Quantitative structure–activity relationship (QSAR) and molecular docking of xanthone derivatives as anti-tuberculosis agents.J. Clin. Tuberc. Other Mycobact. Dis.20202110020310.1016/j.jctube.2020.100203 33294629
    [Google Scholar]
  36. MattaC.F. ArabiA.A. Electron-density descriptors as predictors in quantitative structure-activity/property relationships and drug design.Future Med. Chem.20113896999410.4155/fmc.11.65 21707400
    [Google Scholar]
  37. WangF. YangW. ZhouB. Studies on the antibacterial activities and molecular mechanism of GyrB inhibitors by 3D-QSAR, molecular docking and molecular dynamics simulation.Arab. J. Chem.202215610387210.1016/j.arabjc.2022.103872
    [Google Scholar]
  38. AbdizadehR. HadizadehF. AbdizadehT. QSAR analysis of coumarin-based benzamides as histone deacetylase inhibitors using CoMFA, CoMSIA and HQSAR methods.J. Mol. Struct.2020119912696110.1016/j.molstruc.2019.126961
    [Google Scholar]
  39. VeríssimoG.C. Menezes DutraE.F. Teotonio DiasA.L. HQSAR and random forest-based QSAR models for anti-T. vaginalis activities of nitroimidazoles derivatives.J. Mol. Graph. Model.20199018019110.1016/j.jmgm.2019.04.007 31100677
    [Google Scholar]
  40. BastikarV. BastikarA. GuptaP. Quantitative structure–activity relationship-based computational approaches.Infection2022202219120510.1016/B978‑0‑323‑91172‑6.00001‑7
    [Google Scholar]
  41. KimJ.H. JeongJ.H. Structure-activity relationship studies based on 3D-QSAR CoMFA/CoMSIA for thieno-pyrimidine derivatives as triple negative breast cancer inhibitors.Molecules20222722797410.3390/molecules27227974 36432075
    [Google Scholar]
  42. MurumkarP.R. GuptaS.D. ZambreV.P. GiridharR. YadavM.R. Development of predictive 3D-QSAR CoMFA and CoMSIA models for β-aminohydroxamic acid-derived tumor necrosis factor-α converting enzyme inhibitors.Chem. Biol. Drug Des.20097319710710.1111/j.1747‑0285.2008.00737.x 19152638
    [Google Scholar]
  43. YangX.L. ZhouY. LiuX.L. Fragment-based hologram QSAR studies on a series of 2,4-dioxopyrimidine-1-carboxamides as highly potent inhibitors of acid ceramidase.Iran. J. Pharm. Res.201615139148 28058055
    [Google Scholar]
  44. SouzaA. MagalhaesU. AlbuquerqueM. Hologram quantitative structure–activity relationship and comparative molecular field analysis studies within a series of tricyclic phthalimide HIV-1 integrase inhibitors.Drug Des. Devel. Ther.2013795396110.2147/DDDT.S47057 24039405
    [Google Scholar]
  45. WangJ. ZhangC.J. ChiaW.N. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum.Nat. Commun.2015611011110.1038/ncomms10111 26694030
    [Google Scholar]
  46. ZhaoY.Q. LiX. GuoH.Y. ShenQ.K. QuanZ.S. LuanT. Application of quinoline ring in structural modification of natural products.Molecules20232818647810.3390/molecules28186478 37764254
    [Google Scholar]
  47. HerraizT. GuillénH. González-PeñaD. AránV.J. Antimalarial quinoline drugs inhibit β-hematin and increase free hemin catalyzing peroxidative reactions and inhibition of cysteine proteases.Sci. Rep.2019911539810.1038/s41598‑019‑51604‑z 31659177
    [Google Scholar]
  48. ParvatkarP.T. DiagneK. ZhaoY. ManetschR. Indoloquinoline alkaloids as antimalarials: Advances, challenges, and opportunities.ChemMedChem20241918e20240025410.1002/cmdc.202400254 38840271
    [Google Scholar]
  49. WangN. WichtK.J. ImaiK. Synthesis, β-haematin inhibition, and in vitro antimalarial testing of isocryptolepine analogues: SAR study of indolo[3, 2-c]quinolines with various substituents at C2, C6, and N11.Bioorg. Med. Chem.20142292629264210.1016/j.bmc.2014.03.030 24721829
    [Google Scholar]
  50. HonarparvarB. GovenderT. MaguireG.E.M. SolimanM.E.S. KrugerH.G. Integrated approach to structure-based enzymatic drug design: molecular modeling, spectroscopy, and experimental bioactivity.Chem. Rev.2014114149353710.1021/cr300314q 24024775
    [Google Scholar]
  51. CramerR.D. PattersonD.E. BunceJ.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins.J. Am. Chem. Soc.1988110185959596710.1021/ja00226a005 22148765
    [Google Scholar]
  52. KlebeG. AbrahamU. MietznerT. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity.J. Med. Chem.199437244130414610.1021/jm00050a010 7990113
    [Google Scholar]
  53. ChoS.J. KimJ.H. Hologram QSAR: three-dimensional quantitative structure-activity relationships with molecule hologram.J. Chem. Inf. Comput. Sci.199939589990610.1021/ci9903239
    [Google Scholar]
  54. ] SYBYL X 2.0, Molecular Modeling Software. Tripos International, St. Louis, MO, USA. SYBYL X 2.0 Accessed from Tripos, L.P. (now part of Certara).1999
    [Google Scholar]
  55. VilarS. CostanziS. Predicting the biological activities through QSAR analysis and docking-based scoring.Methods Mol. Biol.201291427128410.1007/978‑1‑62703‑023‑6_16 22976034
    [Google Scholar]
  56. ShiriF. PirhadiS. GhasemiJ.B. Alignment independent 3D-QSAR, quantum calculations and molecular docking of Mer specific tyrosine kinase inhibitors as anticancer drugs.Saudi Pharm. J.201624219721210.1016/j.jsps.2015.03.012 27013913
    [Google Scholar]
  57. SharmaR. DhingraN. PatilS. CoMFA, CoMSIA, HQSAR and molecular docking analysis of ionone-based chalcone derivatives as antiprostate cancer activity.Indian J. Pharm. Sci.2016781546410.4103/0250‑474X.180251 27168682
    [Google Scholar]
  58. AshrafN. AsariA. YousafN. Combined 3D-QSAR, molecular docking and dynamics simulations studies to model and design TTK inhibitors.Front Chem.202210100381610.3389/fchem.2022.1003816
    [Google Scholar]
  59. BabuS. SohnH. MadhavanT. Computational Analysis of CRTh2 receptor antagonist: A Ligand-based CoMFA and CoMSIA approach.Comput. Biol. Chem.20155610912110.1016/j.compbiolchem.2015.04.007 25935115
    [Google Scholar]
  60. RasulevB. Recent developments in 3D QSAR and molecular docking studies of organic and nanostructures. Handbook of Computational Chemistry201710.1007/978‑3‑319‑27282‑5_54
    [Google Scholar]
  61. QinJ. XiL. DuJ. LiuH. YaoX. QSAR studies on aminothiazole derivatives as aurora a kinase inhibitors.Chem. Biol. Drug Des.201076652753710.1111/j.1747‑0285.2010.01030.x 21040493
    [Google Scholar]
  62. ZhaoX. ChenM. HuangB. JiH. YuanM. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) studies on α(1A)-adrenergic receptor antagonists based on pharmacophore molecular alignment.Int. J. Mol. Sci.201112107022703710.3390/ijms12107022 22072933
    [Google Scholar]
  63. GajjarK.A. GajjarA.K. CoMFA, CoMSIA and HQSAR analysis of 3-aryl-3-ethoxypropanoic acid derivatives as GPR40 modulators.Curr. Drug Discov. Technol.202017110011810.2174/1570163815666180829144431 30160214
    [Google Scholar]
  64. AshekA. San JuanA.A. ChoS.J. HQSAR study of β-ketoacyl‐acyl carrier protein synthase III (FabH) inhibitors.J. Enzyme Inhib. Med. Chem.200722171410.1080/14756360600920149 17373541
    [Google Scholar]
  65. SalumL.B. AndricopuloA.D. Fragment-based QSAR: perspectives in drug design.Mol. Divers.200913327728510.1007/s11030‑009‑9112‑5 19184499
    [Google Scholar]
  66. KumarR. LångströmB. Darreh-ShoriT. Novel ligands of Choline Acetyltransferase designed by in silico molecular docking, hologram QSAR and lead optimization.Sci. Rep.2016613124710.1038/srep31247 27507101
    [Google Scholar]
  67. ChhatbarD.M. ChaubeU.J. VyasV.K. BhattH.G. CoMFA, CoMSIA, Topomer CoMFA, HQSAR, molecular docking and molecular dynamics simulations study of triazine morpholino derivatives as mTOR inhibitors for the treatment of breast cancer.Comput. Biol. Chem.20198035136310.1016/j.compbiolchem.2019.04.017 31085426
    [Google Scholar]
  68. GadheC. BalupuriA. BalasubramanianP. ChoS. Modeling study of phenylsulfonylfuroxan derivatives as P-gp inhibitors: a combined approach of CoMFA, CoMSIA and HQSAR.Anticancer. Agents Med. Chem.20131471019103010.2174/18715206113136660335 24066798
    [Google Scholar]
  69. LuoD. TongJ.B. ZhangX. XiaoX.C. BianS. Computational strategies towards developing novel SARS-CoV-2 Mpro inhibitors against COVID-19.J. Mol. Struct.2022124713137810.1016/j.molstruc.2021.131378 34483363
    [Google Scholar]
  70. QianH. ChenJ. PanY. ChenJ. Molecular modeling studies of 11β-hydroxysteroid dehydrogenase type 1 inhibitors through receptor-based 3D-QSAR and molecular dynamics simulations.Molecules2016219122210.3390/molecules21091222 27657020
    [Google Scholar]
  71. BuabeidM.A. ArafaE.S.A. HassanW. MurtazaG. In silico prediction of the mode of action of Viola odorata in diabetes.BioMed Res. Int.2020202011310.1155/2020/2768403 33490239
    [Google Scholar]
  72. RenY. LongS. CaoS. Molecular docking and virtual screening of an influenza virus inhibitor that disrupts protein–protein interactions.Viruses20211311222910.3390/v13112229 34835035
    [Google Scholar]
  73. LiX. ChuZ. DuX. QiuY. LiY. Combined molecular docking, homology modelling and density functional theory studies to modify dioxygenase to efficiently degrade aromatic hydrocarbons.RSC Advances2019920114651147510.1039/C8RA10663K 35520246
    [Google Scholar]
  74. BermanH.M. WestbrookJ. FengZ. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.235 10592235
    [Google Scholar]
  75. ReadR.J. AdamsP.D. ArendallW.B.III A new generation of crystallographic validation tools for the protein data bank.Structure201119101395141210.1016/j.str.2011.08.006 22000512
    [Google Scholar]
  76. SinghR. LemireJ. MaillouxR.J. AppannaV.D. A novel strategy involved in [corrected] anti-oxidative defense: the conversion of NADH into NADPH by a metabolic network.PLoS One200837e268210.1371/journal.pone.0002682 18628998
    [Google Scholar]
  77. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: a powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/157340911795677602 21534921
    [Google Scholar]
  78. LiH. RobertsonA.D. JensenJ.H. Very fast empirical prediction and rationalization of protein pKa values.Proteins200561470472110.1002/prot.20660 16231289
    [Google Scholar]
  79. OlssonM.H.M. SøndergaardC.R. RostkowskiM. JensenJ.H. PROPKA3: Consistent treatment of internal and surface residues in empirical p Ka predictions.J. Chem. Theory Comput.20117252553710.1021/ct100578z 26596171
    [Google Scholar]
  80. GaoX. HanL. RenY. In silico exploration of 1,7-diazacarbazole analogs as checkpoint kinase 1 inhibitors by using 3D QSAR, molecular docking study, and molecular dynamics simulations.Molecules201621559110.3390/molecules21050591 27164065
    [Google Scholar]
  81. BaammiS. DaoudR. El AllaliA. In silico protein engineering shows that novel mutations affecting NAD+ binding sites may improve phosphite dehydrogenase stability and activity.Sci. Rep.2023131187810.1038/s41598‑023‑28246‑3 36725973
    [Google Scholar]
  82. XueQ. LiuX. RussellP. Evaluation of the binding performance of flavonoids to estrogen receptor alpha by Autodock, Autodock Vina and Surflex-Dock.Ecotoxicol. Environ. Saf.202223311332310.1016/j.ecoenv.2022.113323 35183811
    [Google Scholar]
  83. MorrisG.M. HueyR. LindstromW. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  84. LimaM.N.N. Melo-FilhoC.C. CassianoG.C. QSAR-driven design and discovery of novel compounds with antiplasmodial and transmission blocking activities.Front. Pharmacol.2018914610.3389/fphar.2018.00146 29559909
    [Google Scholar]
  85. SainyJ. SharmaR. QSAR analysis of thiolactone derivatives using HQSAR, CoMFA and CoMSIA.SAR QSAR Environ. Res.2015261087389210.1080/1062936X.2015.1095238 26524489
    [Google Scholar]
  86. BergmanJ. EngqvistR. StålhandskeC. WallbergH. Studies of the reactions between indole-2,3-diones (isatins) and 2-aminobenzylamine.Tetrahedron20035971033104810.1016/S0040‑4020(02)01647‑2
    [Google Scholar]
  87. MajiA. Drug susceptibility testing methods of antimalarial agents.Trop. Parasitol.201882707610.4103/2229‑5070.248695 30693210
    [Google Scholar]
  88. TouganT. EdulaJ.R. MoritaM. The malaria parasite Plasmodium falciparum in red blood cells selectively takes up serum proteins that affect host pathogenicity.Malar. J.202019115510.1186/s12936‑020‑03229‑1 32295584
    [Google Scholar]
  89. SchusterF.L. Cultivation of Plasmodium spp.Clin. Microbiol. Rev.200215335536410.1128/CMR.15.3.355‑364.2002 12097244
    [Google Scholar]
  90. BascoL.K. Cultivation of Asexual Intraerythrocytic Stages of Plasmodium falciparum.Pathogens202312790010.3390/pathogens12070900 37513747
    [Google Scholar]
  91. AlshawshM.A. MothanaR.A. Al-shamahyH.A. AlsllamiS.F. LindequistU. Assessment of antimalarial activity against Plasmodium falciparum and phytochemical screening of some Yemeni medicinal plants.Evid. Based Complement. Alternat. Med.20096445345610.1093/ecam/nem148 18955251
    [Google Scholar]
  92. DiasB.K.M. NakabashiM. AlvesM.R.R. The Plasmodium falciparum eIK1 kinase (PfeIK1) is central for melatonin synchronization in the human malaria parasite. Melatotosil blocks melatonin action on parasite cell cycle.J. Pineal Res.2020693e1268510.1111/jpi.12685 32702775
    [Google Scholar]
  93. TomarV. BhattacharjeeG. Kamaluddin, Rajakumar S, Srivastava K, Puri SK. Synthesis of new chalcone derivatives containing acridinyl moiety with potential antimalarial activity.Eur. J. Med. Chem.201045274575110.1016/j.ejmech.2009.11.022 20022412
    [Google Scholar]
  94. DentA.E. ChelimoK. SumbaP.O. Temporal stability of naturally acquired immunity to Merozoite Surface Protein-1 in Kenyan Adults.Malar. J.20098116210.1186/1475‑2875‑8‑162 19607717
    [Google Scholar]
  95. NqoroX. TobekaN. AderibigbeB. Quinoline-based hybrid compounds with antimalarial activity.Molecules20172212226810.3390/molecules22122268 29257067
    [Google Scholar]
  96. CortopassiW.A. GundersonE. AnnunciatoY. Fighting Plasmodium chloroquine resistance with acetylenic chloroquine analogues.Int. J. Parasitol. Drugs Drug Resist.20222012112810.1016/j.ijpddr.2022.10.003 36375339
    [Google Scholar]
  97. FaizanM. KumarR. MazumderA. The medicinal chemistry of piperazines: A review.Chem. Biol. Drug Des.20241036e1453710.1111/cbdd.14537 38888058
    [Google Scholar]
  98. CalicP.P.S. MansouriM. ScammellsP.J. McGowanS. Driving antimalarial design through understanding of target mechanism.Biochem. Soc. Trans.20204852067207810.1042/BST20200224 32869828
    [Google Scholar]
  99. UpadhyayC. ChaudharyM. De OliveiraR.N. Fluorinated scaffolds for antimalarial drug discovery.Expert Opin. Drug Discov.202015670571810.1080/17460441.2020.1740203 32202162
    [Google Scholar]
  100. Al-HarthyT. ZoghaibW. Abdel-JalilR. Importance of fluorine in benzazole compounds.Molecules20202520467710.3390/molecules25204677 33066333
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638333384250117165601
Loading
/content/journals/cddt/10.2174/0115701638333384250117165601
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): antimalarial; CoMFA; CoMSIA; HQSAR; isocryptolepine derivatives; molecular docking
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test