Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Non-coding RNA (ncRNA) has been recognized to be an essential regulator of cellular processes and gene expression in cancer. The present study covers the various roles of ncRNAs, including circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs), that affect cancer properties. Oncogenesis, metastasis, and treatment resistance are all processes involving ncRNAs, which have tremendous potential as new therapeutic agents and targets. The review covers the broad spectrum of ncRNAs in cancer biology, including their types and activities, epigenetic control, function in metastasis and angiogenesis, detection and profiling approaches, potential as biomarkers, and therapeutic possibilities. Recent advancements in next-generation sequencing and other molecular methods have helped us better understand how ncRNAs work and their potential therapeutic uses. However, there are still challenges to standardizing detection technologies and producing effective RNA-based therapeutics. Therefore, further studies are needed to solve important issues in this sector. Standardization efforts are also essential to developing identical methods for ncRNA collection, quantification, and analysis throughout multiple laboratories and ensuring the findings are reliable and comparable. Large-scale, multi-recentre studies are required to verify the diagnostic usefulness of ncRNA biomarkers across a wide range of patient groups. Also, more detailed mechanistic knowledge is necessary for understanding the particular molecular mechanisms by which ncRNAs affect cancer growth, metastasis, and treatment response. This review highlights the complex relationships between ncRNAs and cancer biology and also focuses on their potential effect on cancer diagnosis and treatment. It also highlights the necessity for more studies to fully understand the therapeutic potential of ncRNAs in cancer. As studies advance, using ncRNA results in clinical practice might change cancer treatment by novel opportunities for specific therapy and personalized medicine.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638333005250128075758
2025-02-26
2025-10-29
Loading full text...

Full text loading...

References

  1. LaurentS.G. WahlestedtC. KapranovP. The Landscape of long noncoding RNA classification.Trends Genet.201531523925110.1016/j.tig.2015.03.007 25869999
    [Google Scholar]
  2. HombachS. KretzM. Non-coding RNAs: Classification, biology and functioning.Adv. Exp. Med. Biol.201693731710.1007/978‑3‑319‑42059‑2_1
    [Google Scholar]
  3. SealR.L. ChenL.L. JonesG.S. A guide to naming human non‐coding RNA genes.EMBO J.2020396e10377710.15252/embj.2019103777 32090359
    [Google Scholar]
  4. DahmR. Friedrich miescher and the discovery of DNA.Dev. Biol.2005278227428810.1016/j.ydbio.2004.11.028 15680349
    [Google Scholar]
  5. CrickF. Central dogma of molecular biology.Nature1970227525856156310.1038/227561a0 4913914
    [Google Scholar]
  6. WatsonJ.D. CrickF.H.C. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid.Nature1953171435673773810.1038/171737a0 13054692
    [Google Scholar]
  7. LandiD. GemignaniF. NaccaratiA. Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer.Carcinogenesis200729357958410.1093/carcin/bgm304 18192692
    [Google Scholar]
  8. LiW. WangY.Y. XiaoL. Mysterious long noncoding RNAs and their relationships to human disease.Front. Mol. Biosci.2022995040810.3389/fmolb.2022.950408 36406273
    [Google Scholar]
  9. WangX. FanH. WangB. YuanF. Research progress on the roles of lncRNAs in plant development and stress responses.Front Plant Sci202314113890110.3389/fpls.2023.1138901 36959944
    [Google Scholar]
  10. GaoN. LiY. LiJ. Long non-coding RNAs: The regulatory mechanisms, research strategies, and future directions in cancers.Front. Oncol.20201059881710.3389/fonc.2020.598817 33392092
    [Google Scholar]
  11. JarrouxJ. MorillonA. PinskayaM. History, discovery, and classification of lncRNAs. Long non coding.RNA Biol.20171008146
    [Google Scholar]
  12. LiC. HashimiS.M. GoodD.A. Apoptosis and micro RNA aberrations in cancer.Clin. Exp. Pharmacol. Physiol.201239873974610.1111/j.1440‑1681.2012.05700.x 22409455
    [Google Scholar]
  13. SalmenaL. PolisenoL. TayY. KatsL. PandolfiP.P. A ceRNA hypothesis: The rosetta stone of a hidden rna language?Cell20111463353358
    [Google Scholar]
  14. WuY.Y. KuoH.C. Functional roles and networks of non-coding RNAs in the pathogenesis of neurodegenerative diseases.J. Biomed. Sci.20202714910.1186/s12929‑020‑00636‑z 32264890
    [Google Scholar]
  15. AlonsoD. MondragónA. Mechanisms of catalytic RNA molecules.Biochem. Soc. Trans.20214941529153510.1042/BST20200465 34415304
    [Google Scholar]
  16. KimD.H. SungS. Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs.Dev. Cell2017403302312.e410.1016/j.devcel.2016.12.021 28132848
    [Google Scholar]
  17. KaikkonenM.U. LamM.T.Y. GlassC.K. Non-coding RNAs as regulators of gene expression and epigenetics.Cardiovasc. Res.201190343044010.1093/cvr/cvr097 21558279
    [Google Scholar]
  18. WuZ. LiuX. LiuL. Regulation of lncRNA expression.Cell. Mol. Biol. Lett.201419456157510.2478/s11658‑014‑0212‑6 25311814
    [Google Scholar]
  19. MarcheseF.P. RaimondiI. HuarteM. The multidimensional mechanisms of long noncoding RNA function.Genome Biol.201718120610.1186/s13059‑017‑1348‑2 29084573
    [Google Scholar]
  20. EppardM. PassosJ.F. VictorelliS. Telomeres, cellular senescence, and aging: Past and future.Biogerontology202425232933910.1007/s10522‑023‑10085‑4 38150087
    [Google Scholar]
  21. ZhangY. YangM. YangS. HongF. Role of noncoding RNAs and untranslated regions in cancer.A review. Medicine202210133e3004510.1097/MD.0000000000030045 35984196
    [Google Scholar]
  22. DengG. SuiG. Noncoding RNA in oncogenesis: A new era of identifying key players.Int. J. Mol. Sci.2013149183191834910.3390/ijms140918319 24013378
    [Google Scholar]
  23. GuzelE. OkyayT.M. YalcinkayaB. KaracaogluS. GocmenM. AkcakuyuM.H. Tumor suppressor and oncogenic role of long non-coding RNAs in cancer.North. Clin. Istanb.201971818610.14744/nci.2019.46873 32232211
    [Google Scholar]
  24. ZhangL. XuX. SuX. Noncoding RNAs in cancer immunity: Functions, regulatory mechanisms, and clinical application.Mol. Cancer20201914810.1186/s12943‑020‑01154‑0 32122338
    [Google Scholar]
  25. WangZ. JiN. ChenZ. Next generation sequencing for long non-coding RNAs profile for CD4+ T cells in the mouse model of acute asthma.Front. Genet.20191054510.3389/fgene.2019.00545 31231429
    [Google Scholar]
  26. HonK.W. MutalibA.N.S. AbdullahN.M.A. JamalR. AbuN. Extracellular Vesicle-derived circular RNAs confers chemoresistance in Colorectal cancer.Sci. Rep.2019911649710.1038/s41598‑019‑53063‑y 31712601
    [Google Scholar]
  27. PanwarB. AroraA. RaghavaG.P.S. Prediction and classification of ncRNAs using structural information.BMC Genomics201415112710.1186/1471‑2164‑15‑127 24521294
    [Google Scholar]
  28. LiJ.W. WanR. YuC.S. CoN.N. WongN. ChanT.F. ViralFusionSeq: Accurately discover viral integration events and reconstruct fusion transcripts at single-base resolution.Bioinformatics201329564965110.1093/bioinformatics/btt011 23314323
    [Google Scholar]
  29. AnF. MengX. YuanL. Network regulatory mechanism of ncRNA on the Wnt signaling pathway in osteoporosis.Cell Div.2023181310.1186/s13008‑023‑00086‑7 36879309
    [Google Scholar]
  30. GuanP. YinZ. LiX. WuW. ZhouB. Meta-analysis of human lung cancer microRNA expression profiling studies comparing cancer tissues with normal tissues.J. Exp. Clin. Cancer Res.20123115410.1186/1756‑9966‑31‑54 22672859
    [Google Scholar]
  31. BunkerA. RógT. Mechanistic understanding from molecular dynamics simulation in pharmaceutical research 1: Drug delivery.Front. Mol. Biosci.2020760477010.3389/fmolb.2020.604770 33330633
    [Google Scholar]
  32. WangK.C. ChangH.Y. Molecular mechanisms of long noncoding RNAs.Mol. Cell201143690491410.1016/j.molcel.2011.08.018 21925379
    [Google Scholar]
  33. CaoX. YeoG. MuotriA.R. KuwabaraT. GageF.H. Noncoding RNAs in the mammalian central nervous system.Annu. Rev. Neurosci.20062917710310.1146/annurev.neuro.29.051605.112839 16776580
    [Google Scholar]
  34. KolendaT. RyśM. GuglasK. Quantification of long non-coding RNAs using qRT-PCR: Comparison of different cDNA synthesis methods and RNA stability.Arch. Med. Sci.20211741006101510.5114/aoms.2019.82639 34336028
    [Google Scholar]
  35. YarmishynA.A. KurochkinI.V. Long noncoding RNAs: A potential novel class of cancer biomarkers.Front. Genet.2015614510.3389/fgene.2015.00145 25954300
    [Google Scholar]
  36. EissaS. MatboliM. EssawyN.O.E. ShehtaM. KotbY.M. Rapid detection of urinary long non-coding RNA urothelial carcinoma associated one using a PCR-free nanoparticle-based assay.Biomarkers201520321221710.3109/1354750X.2015.1062918 26161701
    [Google Scholar]
  37. ZhangH. ZhaoL. WangY.X. XiM. LiuS.L. LuoL.L. Long non-coding RNA HOTTIP is correlated with progression and prognosis in tongue squamous cell carcinoma.Tumour Biol.201536118805880910.1007/s13277‑015‑3645‑2 26058875
    [Google Scholar]
  38. KusendaB. MrazM. MayerJ. PospisilovaS. MicroRNA biogenesis, functionality and cancer relevance.Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub.2006150220521510.5507/bp.2006.029 17426780
    [Google Scholar]
  39. FaydaM. IsinM. TambasM. Do circulating long non-coding RNAs (lncRNAs) (LincRNA-p21, GAS 5, HOTAIR) predict the treatment response in patients with head and neck cancer treated with chemoradiotherapy?Tumour Biol.20163733969397810.1007/s13277‑015‑4189‑1 26482616
    [Google Scholar]
  40. ZhouX. YinC. DangY. YeF. ZhangG. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer.Sci. Rep.2015511151610.1038/srep11516 26096073
    [Google Scholar]
  41. GezerU. ÖzgürE. CetinkayaM. IsinM. DalayN. Long non‐coding RNAs with low expression levels in cells are enriched in secreted exosomes.Cell Biol. Int.20143891076107910.1002/cbin.10301 24798520
    [Google Scholar]
  42. FengY. HuX. ZhangY. ZhangD. LiC. ZhangL. Methods for the study of long noncoding RNA in cancer cell signaling.Methods Mol. Biol.2014116511514310.1007/978‑1‑4939‑0856‑1_10
    [Google Scholar]
  43. WojdaczT.K. DobrovicA. AlgarE.M. Rapid detection of methylation change at H19 in human imprinting disorders using methylation-sensitive high-resolution melting.Hum. Mutat.200829101255126010.1002/humu.20779 18473334
    [Google Scholar]
  44. DoddD.W. GagnonK.T. CoreyD.R. Digital quantitation of potential therapeutic target RNAs.Nucleic Acid Ther.201323318819410.1089/nat.2013.0427 23656494
    [Google Scholar]
  45. ShiT. GaoG. CaoY. Long noncoding RNAs as novel biomarkers have a promising future in cancer diagnostics.Dis. Markers20162016908519510.1155/2016/9085195
    [Google Scholar]
  46. WongM.L. MedranoJ.F. Real-Time PCR for mRNA Quantitation.Biotechniques2005391758510.2144/05391RV01 16060372
    [Google Scholar]
  47. BustinS.A. NolanT. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction.J. Biomol. Tech.2004153155166 15331581
    [Google Scholar]
  48. GeeH.E. BuffaF.M. CampsC. The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis.Br. J. Cancer201110471168117710.1038/sj.bjc.6606076 21407217
    [Google Scholar]
  49. OleksiewiczU. TomczakK. WoropajJ. MarkowskaM. StępniakP. ShahP.K. Review computational characterisation of cancer molecular profiles derived using next generation sequencing.Contemp. Oncol.2015191AA78A9110.5114/wo.2014.47137
    [Google Scholar]
  50. TomczakK. CzerwińskaP. WiznerowiczM. Review The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge.Contemp. Oncol.2015201516877
    [Google Scholar]
  51. de Gonzalo-CalvoD. KennewegF. BangC. Circulating long noncoding RNAs in personalized medicine: Response to pioglitazone therapy in type 2 diabetes.J. Am. Coll. Cardiol.201668252914291610.1016/j.jacc.2016.10.014 28007154
    [Google Scholar]
  52. VanhaverbekeM. AttardR. BartekovaM. Peripheral blood RNA biomarkers for cardiovascular disease from bench to bedside: A position paper from the EU-CardioRNA COST action CA17129.Cardiovasc. Res.2022118163183319710.1093/cvr/cvab327 34648023
    [Google Scholar]
  53. OnódiZ. PelyheC. NagyT.C. Isolation of high-purity extracellular vesicles by the combination of iodixanol density gradient ultracentrifugation and bind-elute chromatography from blood plasma.Front. Physiol.20189147910.3389/fphys.2018.01479 30405435
    [Google Scholar]
  54. WangK. YuanY. ChoJ.H. McClartyS. BaxterD. GalasD.J. Comparing the MicroRNA spectrum between serum and plasma.PLoS One77e4156110.1371/journal.pone.0041561
    [Google Scholar]
  55. SunY. LiuR. XiaX. Large-scale profiling of lncrnas in human non-nucleated cells: Implications in cell function and disease.SSRN3295649201810.2139/ssrn.3295649
    [Google Scholar]
  56. IemprideeT. WiwithaphonS. PiboonpraiK. Identification of reference genes for circulating long noncoding RNA analysis in serum of cervical cancer patients.FEBS Open Bio20188111844185410.1002/2211‑5463.12523 30410863
    [Google Scholar]
  57. ChoH. LiY. ArchackiS. Splice variants of lncRNA RNA ANRIL exert opposing effects on endothelial cell activities associated with coronary artery disease.RNA Biol.202017101391140110.1080/15476286.2020.1771519 32602777
    [Google Scholar]
  58. FangJ. PanZ. WangD. Multiple non-coding ANRIL transcripts are associated with risk of coronary artery disease: A promising circulating biomarker.J. Cardiovasc. Transl. Res.202114222923710.1007/s12265‑020‑10053‑0 32572690
    [Google Scholar]
  59. SchlosserK. HansonJ. VilleneuveP.J. Assessment of circulating LncRNAs under physiologic and pathologic conditions in humans reveals potential limitations as biomarkers.Sci. Rep.2016613659610.1038/srep36596 27857151
    [Google Scholar]
  60. JinC. ShiW. WangF. Long non-coding RNA HULC as a novel serum biomarker for diagnosis and prognosis prediction of gastric cancer.Oncotarget2016732517635177210.18632/oncotarget.10107 27322075
    [Google Scholar]
  61. JelenaM. SopićM. JoksićI. Placenta-specific plasma miR518b is a potential biomarker for preeclampsia.Clin. Biochem.202079283310.1016/j.clinbiochem.2020.02.012 32092293
    [Google Scholar]
  62. de Gonzalo-CalvoD. SopićM. DevauxY. Methodological considerations for circulating long noncoding RNA quantification.Trends Mol. Med.202228861661810.1016/j.molmed.2022.05.011 35701316
    [Google Scholar]
  63. TongA.W. FulghamP. JayC. MicroRNA profile analysis of human prostate cancers.Cancer Gene Ther.200916320621610.1038/cgt.2008.77 18949015
    [Google Scholar]
  64. RanzaniV. ArrigoniA. RossettiG. Next-generation sequencing analysis of long noncoding rnas in cd4+ t cell differentiation. t-cell differentiation.Methods Protoc.20171514173185
    [Google Scholar]
  65. MageeC. GrieveD.J. WatsonC.J. BrazilD.P. Diabetic nephropathy: A tangled web to unweave.Cardiovasc. Drugs Ther.2017315-657959210.1007/s10557‑017‑6755‑9 28956186
    [Google Scholar]
  66. GuoJ. LiuZ. GongR. Long noncoding RNA: An emerging player in diabetes and diabetic kidney disease.Clin. Sci. (Lond)2019133121321133910.1042/CS20190372 31221822
    [Google Scholar]
  67. ZhaoY. YinZ. LiH. MiR-30c protects diabetic nephropathy by suppressing epithelial-to-mesenchymal transition in db/db mice.Aging Cell201716238740010.1111/acel.12563 28127848
    [Google Scholar]
  68. WangM. WangS. YaoD. YanQ. LuW. A novel long non-coding RNA CYP4B1-PS1-001 regulates proliferation and fibrosis in diabetic nephropathy.Mol. Cell. Endocrinol.201642613614510.1016/j.mce.2016.02.020 26923441
    [Google Scholar]
  69. ZhangL. ZhaoS. ZhuY. Long noncoding RNA growth arrest‐specific transcript 5 alleviates renal fibrosis in diabetic nephropathy by downregulating matrix metalloproteinase 9 through recruitment of enhancer of zeste homolog 2.FASEB J.20203422703271410.1096/fj.201901380RR 31916627
    [Google Scholar]
  70. NascimentoL.R. DominguetiC.P. MicroRNAs: Novos biomarcadores e alvos terapêuticos promissores da doença renal do diabetes.Brazilian Journal of Nephrology20194141242210.1590/2175‑8239‑jbn‑2018‑0165 30742700
    [Google Scholar]
  71. TayelS.I. SalehA.A. HefnawyE.S.M. ElzorkanyK.M.A. ElgarawanyG.E. NoreldinR.I. Simultaneous assessment of MicroRNAs 126 and 192 in diabetic nephropathy patients and the relation of these MicroRNAs with urinary albumin.Curr. Mol. Med.202020536137110.2174/1566524019666191019103918 31629394
    [Google Scholar]
  72. KimH. BaeY.U. JeonJ.S. The circulating exosomal microRNAs related to albuminuria in patients with diabetic nephropathy.J. Transl. Med.201917123610.1186/s12967‑019‑1983‑3 31331349
    [Google Scholar]
  73. WangL. LiH. MiR-770-5p facilitates podocyte apoptosis and inflammation in diabetic nephropathy by targeting TIMP3.Biosci. Rep.2020404BSR2019365310.1042/BSR20193653 32309847
    [Google Scholar]
  74. MarcaL.V. FierabracciA. Insights into the diagnostic potential of extracellular vesicles and their miRNA signature from liquid biopsy as early biomarkers of diabetic micro/macrovascular complications.Int. J. Mol. Sci.2017189197410.3390/ijms18091974 28906481
    [Google Scholar]
  75. BlondalT. NielsenJ.S. BakerA. Assessing sample and miRNA profile quality in serum and plasma or other biofluids.Methods2013591S1S610.1016/j.ymeth.2012.09.015 23036329
    [Google Scholar]
  76. SeokH. LeeH. JangE.S. ChiS.W. Evaluation and control of miRNA-like off-target repression for RNA interference.Cell. Mol. Life Sci.201875579781410.1007/s00018‑017‑2656‑0 28905147
    [Google Scholar]
  77. MuJ. PangQ. GuoY.H. Functional implications of microRNA-215 in TGF-β1-induced phenotypic transition of mesangial cells by targeting CTNNBIP1.PLoS One201383e5862210.1371/journal.pone.0058622 23554908
    [Google Scholar]
  78. YangL. FrobergJ.E. LeeJ.T. Long noncoding RNAs: Fresh perspectives into the RNA world.Trends Biochem. Sci.2014391354310.1016/j.tibs.2013.10.002 24290031
    [Google Scholar]
  79. MianoJ.M. LongX. LyuQ. CRISPR links to long noncoding RNA function in mice: A practical approach.Vascul. Pharmacol.201911411210.1016/j.vph.2019.02.004 30822570
    [Google Scholar]
  80. KawataO.H. IzumiyaM. KuriokaD. Circulating exosomal microRNAs as biomarkers of colon cancer.PLoS One201494e9292110.1371/journal.pone.0092921 24705249
    [Google Scholar]
  81. DokhanchiM. PakravanK. ZareianS. Colorectal cancer cell-derived extracellular vesicles transfer miR-221-3p to promote endothelial cell angiogenesis via targeting suppressor of cytokine signaling 3.Life Sci.202128511993710.1016/j.lfs.2021.119937 34508764
    [Google Scholar]
  82. HandaT. KurohaM. NagaiH. Liquid biopsy for colorectal adenoma: Is the exosomal miRNA derived from organoid a potential diagnostic biomarker?Clin. Transl. Gastroenterol.2021125e0035610.14309/ctg.0000000000000356 33979310
    [Google Scholar]
  83. WangL. DuanW. YanS. XieY. WangC. Circulating long non-coding RNA colon cancer-associated transcript 2 protected by exosome as a potential biomarker for colorectal cancer.Biomed. Pharmacother.201911310875810.1016/j.biopha.2019.108758 30877883
    [Google Scholar]
  84. ChenH.L. LiJ.J. JiangF. ShiW.J. ChangG.Y. MicroRNA-4461 derived from bone marrow mesenchymal stem cell exosomes inhibits tumorigenesis by downregulating COPB2 expression in colorectal cancer.Biosci. Biotechnol. Biochem.202084233834610.1080/09168451.2019.1677452 31631786
    [Google Scholar]
  85. ZouS.L. ChenY.L. GeZ.Z. QuY.Y. CaoY. KangZ.X. Downregulation of serum exosomal miR-150-5p is associated with poor prognosis in patients with colorectal cancer.Cancer Biomark.2019261697710.3233/CBM‑190156 31306108
    [Google Scholar]
  86. LiN. LiJ. MiQ. Long non‐coding RNA ADAMTS9‐AS1 suppresses colorectal cancer by inhibiting the Wnt/β‐catenin signalling pathway and is a potential diagnostic biomarker.J. Cell. Mol. Med.20202419113181132910.1111/jcmm.15713 32889785
    [Google Scholar]
  87. LiuT. ZhangX. GaoS. Exosomal long noncoding RNA CRNDE-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer.Oncotarget2016751855518556310.18632/oncotarget.13465 27888803
    [Google Scholar]
  88. ZengZ. LiY. PanY. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis.Nat. Commun.201891539510.1038/s41467‑018‑07810‑w 30568162
    [Google Scholar]
  89. TianF. WangP. LinD. Exosome‐delivered miR‐221/222 exacerbates tumor liver metastasis by targeting SPINT1 in colorectal cancer.Cancer Sci.202111293744375510.1111/cas.15028 34125460
    [Google Scholar]
  90. LiuH. LiuY. SunP. Colorectal cancer-derived exosomal miR-106b-3p promotes metastasis by down-regulating DLC-1 expression.Clin. Sci.2020134441943410.1042/CS20191087 32065214
    [Google Scholar]
  91. WangX. ZhangH. YangH. Exosome‐delivered circRNA promotes glycolysis to induce chemoresistance through the miR‐122‐PKM2 axis in colorectal cancer.Mol. Oncol.202014353955510.1002/1878‑0261.12629 31901148
    [Google Scholar]
  92. FatemiP.R. UddinS.S. ModarresiF. KhouryN. WahlestedtC. FaghihiM.A. Screening for small-molecule modulators of long noncoding RNA-protein interactions using AlphaScreen.SLAS Discov.20152091132114110.1177/1087057115594187 26173710
    [Google Scholar]
  93. SimonM.D. WangC.I. KharchenkoP.V. The genomic binding sites of a noncoding RNA.Proc. Natl. Acad. Sci. USA201110851204972050210.1073/pnas.1113536108 22143764
    [Google Scholar]
  94. WestJ.A. DavisC.P. SunwooH. The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites.Mol. Cell201455579180210.1016/j.molcel.2014.07.012 25155612
    [Google Scholar]
  95. Audenhove vI, Gettemans J. Nanobodies as versatile tools to understand, diagnose, visualize and treat cancer.EBioMedicine20168404810.1016/j.ebiom.2016.04.028 27428417
    [Google Scholar]
  96. CawezF. DurayE. HuY. Combinatorial design of a nanobody that specifically targets structured RNAs.J. Mol. Biol.2018430111652167010.1016/j.jmb.2018.03.032 29654796
    [Google Scholar]
  97. WatrinM. PelchrzimV.F. DausseE. SchroederR. ToulméJ.J. In vitro selection of RNA aptamers derived from a genomic human library against the TAR RNA element of HIV-1.Biochemistry200948266278628410.1021/bi802373d 19496624
    [Google Scholar]
  98. LiM.J. KimJ. LiS. Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy.Mol. Ther.200512590090910.1016/j.ymthe.2005.07.524 16115802
    [Google Scholar]
  99. NanjwadeB.K. BechraH.M. DerkarG.K. ManviF.V. NanjwadeV.K. Dendrimers: Emerging polymers for drug-delivery systems.Eur. J. Pharm. Sci.200938318519610.1016/j.ejps.2009.07.008 19646528
    [Google Scholar]
  100. DuaK. BebawyM. AwasthiR. Application of chitosan and its derivatives in nanocarrier based pulmonary drug delivery systems.Pharm. Nanotechnol.201754243249 28786352
    [Google Scholar]
  101. HowardK.A. RahbekU.L. LiuX. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system.Mol. Ther.200614447648410.1016/j.ymthe.2006.04.010 16829204
    [Google Scholar]
  102. YangX. LiangY. TongS. Advancing cancer treatment: in vivo delivery of therapeutic small noncoding RNAs.Front. Mol. Biosci.202410129741310.3389/fmolb.2023.1297413 38234581
    [Google Scholar]
  103. AwasthiR. MadanJ.R. MalipeddiH. DuaK. KulkarniG.T. Therapeutic strategies for targeting non-coding RNAs with special emphasis on novel delivery systems.Non-coding RNA Investig.201931110.21037/ncri.2019.02.02
    [Google Scholar]
  104. ShahbaziR. AsikE. KahramanN. TurkM. OzpolatB. UlubayramK. Modified gold-based siRNA nanotherapeutics for targeted therapy of triple-negative breast cancer.Nanomedicine (Lond)201712161961197310.2217/nnm‑2017‑0081 28745127
    [Google Scholar]
  105. GaoS. HansenD.F. NielsenE.J.B. The effect of chemical modification and nanoparticle formulation on stability and biodistribution of siRNA in mice.Mol. Ther.20091771225123310.1038/mt.2009.91 19401674
    [Google Scholar]
  106. BlancoE. ShenH. FerrariM. Principles of nanoparticle design for overcoming biological barriers to drug delivery.Nat. Biotechnol.201533994195110.1038/nbt.3330 26348965
    [Google Scholar]
  107. CordeiroR. KhanS. TajirH. BagwanA. ShaikhA.M. GuptaA. ADMET Prediction of synthesized Heterocyclic derivatives to treat renal cancer.German J Pharm Biomater202213144310.5530/gjpb.2022.3.12
    [Google Scholar]
  108. ChandraP. AliZ. FatimaN. Shankhpushpi (convolvulus pluricaulis): Exploring its cognitive enhancing mechanisms and therapeutic potential in neurodegenerative disorders.Curr. Bioact. Compd.2024202010.2174/0115734072292339240416095600
    [Google Scholar]
  109. KumarP. SharmaH. SinghA. Targeting the interplay of proteins through protacs for management cancer and associated disorders.Curr. Cancer Ther. Rev.2024202010.2174/0115733947304806240417092449
    [Google Scholar]
  110. SharmaH. ChandraP. Effects of natural remedies on memory loss and Alzheimer’s disease.AfrJBioSc202467187211
    [Google Scholar]
  111. HalagaliP. InamdarA. SinghJ. Phytochemicals, herbal extracts, and dietary supplements for metabolic disease management.Endocr. Metab. Immune Disord. Drug Targets202424 38676520
    [Google Scholar]
  112. DasS. MukherjeeT. MohantyS. Impact of NF-κB signaling and sirtuin-1 protein for targeted inflammatory intervention.Curr. Pharm. Biotechnol.202425 38638042
    [Google Scholar]
  113. SharmaH. KaushikM. GoswamiP. Role of miRNAs in brain development.MicroRNA20241329610910.2174/0122115366287127240322054519 38571343
    [Google Scholar]
  114. AshiqueS. BhowmickM. PalR. Multi drug resistance in colorectal cancer- approaches to overcome, advancements and future success.Adv. Cancer Biol. Metastasis20241010011410.1016/j.adcanc.2024.100114
    [Google Scholar]
  115. AshiqueS. PalR. SharmaH. MishraN. GargA. Unraveling the emerging niche role of extracellular vesicles (evs) in traumatic brain injury (tbi).CNS Neurol. Disord. Drug Targets202423111357137010.2174/0118715273288155240201065041 38351688
    [Google Scholar]
  116. BoeriM. PastorinoU. SozziG. Role of microRNAs in lung cancer: MicroRNA signatures in cancer prognosis.Cancer J.201218326827410.1097/PPO.0b013e318258b743 22647364
    [Google Scholar]
  117. SharmaH. ChandraP. VermaA. PandeyS.N. KumarP. SighA. Therapeutic approaches of nutraceuticals in the prevention of neurological disorders.Eur. Chem. Bull.202312515751596
    [Google Scholar]
  118. SharmaH. ChandraP. Challenges and future prospects: A benefaction of phytoconstituents on molecular targets pertaining to Alzheimer’s disease.Int. J. Pharm. Investig.202314111712610.5530/ijpi.14.1.15
    [Google Scholar]
  119. SharmaH. PathakR. JainS. Ficus racemosa L: A review on its important medicinal uses, phytochemicals and biological activities.J. Popul. Ther. Clin. Pharmacol.20233017213227
    [Google Scholar]
  120. SinghL.P. GugulothuS. PerusomulaR. Synthesis of some tetrazole and thiazolidine-4-one derivatives of schiff base by using ionic liquids as catalyst and evaluation of their antifungal and antibacterial activity.Eur. Chem. Bull.2023128281297
    [Google Scholar]
  121. PathakRashmi SharmaHimanshu NogaiLipi A brief review on pathogenesis, transmission and management of monkeypox virus outbreaks.Bull Environ Pharmacol Life Sci2023124244256
    [Google Scholar]
  122. SharmaH. BhattacharyaV. BhattA. Optimization of formulation by box Behnken and in-vitro studies of emulsified gel containing zaltoprofen for the management of arthritis.Eur. Chem. Bull.20231241173411744
    [Google Scholar]
  123. KoliM. NogaiL. BhandariM. MishraR. PathakR. SharmaH. Formulation and evaluation of berberine hydrochloride film coated tablet.J. Pharm. Negat. Results20231423439344910.47750/pnr.2023.14.02.403
    [Google Scholar]
  124. DwivediM. JhaK.K. PandeyS. SachanA. SharmaH. DwivediS.K. Formulation and evaluation of herbal medicated chocolate in treatment of intestinal worms and related problems.IJFANS202211214261439
    [Google Scholar]
  125. SharmaH. PathakR. KumarN. Endocannabinoid system: Role in depression, recompense, and pain control.J Surv Fish Sci2023104S27432751
    [Google Scholar]
  126. SharmaH. PathakR. SaxenaD. KumarN. Emerging role of non-coding RNA’S: Human health and diseases.GIS20229720222050
    [Google Scholar]
  127. SharmaH. RaniT. KhanS. An insight into neuropathic pain: A systemic and up-to-date review.IJPSR2023142607621
    [Google Scholar]
  128. PandeyP. KumarN. KaurT. SainiS. SharmaH. Antidiabetic activity of Caesalpinia bonducella leaves of hydro alcoholic extracts in albino rats.YMER Digital202221784084610.37896/YMER21.07/67
    [Google Scholar]
  129. PathakR. SharmaH. KumarN. A brief review on Anthocephalus cadamba.Acta Sci Pharmacol202235
    [Google Scholar]
  130. SharmaS DindaSC SharmaH Matrix types drug delivery system for sustained release: A review.ASIO J Drug Del202261018
    [Google Scholar]
  131. SharmaH. PathakR. A review on prelimenary phytochemical screening of Curcuma longa linn.J Pharma Herbal Med Res2021722427
    [Google Scholar]
  132. PathakR. SharmaH. A review on medicinal uses of Cinnamomum verum (Cinnamon).J. Drug Deliv. Ther.2021116-S16116610.22270/jddt.v11i6‑S.5145
    [Google Scholar]
  133. SharmaH PandeM JhaKK Hyperuricemia: A risk factor beyond gout ASIO J Pharma Herbal Med Res202061429
    [Google Scholar]
  134. SharmaH. SinghS. JhaK.K. Treatment and recommendations for homeless patients with hypertension, hyperlipidemia & heart failure-a review ASIO J Exper Pharma.Clin Res2020612432
    [Google Scholar]
  135. ZhangX. XieK. ZhouH. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance.Mol. Cancer20201914710.1186/s12943‑020‑01171‑z 32122355
    [Google Scholar]
  136. LiC.H. ChenY. Targeting long non-coding RNAs in cancers: Progress and prospects.Int. J. Biochem. Cell Biol.20134581895191010.1016/j.biocel.2013.05.030 23748105
    [Google Scholar]
  137. MarimaR. BaseraA. MiyaT. Exosomal long non-coding RNAs in cancer: Interplay, modulation, and therapeutic avenues.Noncoding RNA Res.20249388790010.1016/j.ncrna.2024.03.014 38616862
    [Google Scholar]
  138. SlackF.J. ChinnaiyanA.M. The role of non-coding RNAs in oncology.Cell201917951033105510.1016/j.cell.2019.10.017 31730848
    [Google Scholar]
  139. RaoA.K.D.M. RajkumarT. ManiS. Perspectives of long non-coding RNAs in cancer.Mol. Biol. Rep.201744220321810.1007/s11033‑017‑4103‑6 28391434
    [Google Scholar]
  140. ChenB. DragomirM.P. YangC. LiQ. HorstD. CalinG.A. Targeting non-coding RNAs to overcome cancer therapy resistance.Signal Transduct. Target. Ther.20227112110.1038/s41392‑022‑00975‑3 35418578
    [Google Scholar]
  141. VishnubalajiR. ShaathH. ElangoR. AlajezN.M. Noncoding RNAs as potential mediators of resistance to cancer immunotherapy.Semin. Cancer Biol.202065657910.1016/j.semcancer.2019.11.006
    [Google Scholar]
  142. DingL. WangR. ShenD. Role of noncoding RNA in drug resistance of prostate cancer.Cell Death Dis.202112659010.1038/s41419‑021‑03854‑x 34103477
    [Google Scholar]
  143. ShriwasO. MohapatraP. MohantyS. DashR. The impact of m6A RNA modification in therapy resistance of cancer: Implication in chemotherapy, radiotherapy, and immunotherapy.Front. Oncol.20211061233710.3389/fonc.2020.612337 33718113
    [Google Scholar]
  144. SteinbichlerT.B. DudásJ. SkvortsovS. GanswindtU. RiechelmannH. SkvortsovaI.I. Therapy resistance mediated by exosomes.Mol. Cancer20191815810.1186/s12943‑019‑0970‑x 30925921
    [Google Scholar]
  145. RobertsonN.M. YigitM.V. The role of microRNA in resistance to breast cancer therapy.Wiley Interdiscip. Rev. RNA20145682383310.1002/wrna.1248 25044299
    [Google Scholar]
  146. WangZ. RaoD.D. SenzerN. NemunaitisJ. RNA interference and cancer therapy.Pharm. Res.201128122983299510.1007/s11095‑011‑0604‑5 22009588
    [Google Scholar]
  147. ChenQ. WeiC. WangZ. SunM. Long non-coding RNAs in anti-cancer drug resistance.Oncotarget2017811925193610.18632/oncotarget.12461 27713133
    [Google Scholar]
  148. PanJ.J. XieX.J. LiX. ChenW. Long non-coding RNAs and drug resistance.Asian Pac. J. Cancer Prev.201616188067807310.7314/APJCP.2015.16.18.8067 26745040
    [Google Scholar]
  149. SongH. LiuD. DongS. Epitranscriptomics and epiproteomics in cancer drug resistance: Therapeutic implications.Signal Transduct. Target. Ther.20205119310.1038/s41392‑020‑00300‑w 32900991
    [Google Scholar]
  150. RattiM. LampisA. GhidiniM. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: First steps from bench to bedside.Target. Oncol.202015326127810.1007/s11523‑020‑00717‑x 32451752
    [Google Scholar]
  151. MleczekFM KowalczykA HeidenreichR VogtGU KlinkhardtU FiedlerK Inventors; Curevac AG, assignee. Rna for cancer therapy. US 16/326,281,2019
    [Google Scholar]
  152. KovarikKR KovarikJE Method and system for treating cancer cachexia. US 9,730,9672017
    [Google Scholar]
  153. GriffeyRH VickersT PereraR Ionis Pharmaceuticals Inc, assignee.Regulation of epigenetic control of gene expression. US 9,550,990,2017
    [Google Scholar]
  154. GiordanoT KoenigR KuickR HanishS NikiforovY ThomasDG Expression profile of thyroid cancer..US 7,598,0522009
    [Google Scholar]
  155. KirnD. Sillajen biotherapeutics inc, assignee. systemic treatment of metastatic and/or systemically-disseminated cancers using gm-csfexpressing poxviruses. US 9,180,149.2015
    [Google Scholar]
  156. SharmaH. PathakR. SaxenaD. KumarN. Emerging role of non-coding RNA’S: Human health and diseases.GIS20229720222050
    [Google Scholar]
  157. IchimiT. EnokidaH. OkunoY. Identification of novel microRNA targets based on microRNA signatures in bladder cancer.Int. J. Cancer2009125234535210.1002/ijc.24390 19378336
    [Google Scholar]
  158. SharmaH. HalagaliP. MajumderA. SharmaV. PathakR. Natural compounds targeting signaling pathways in breast cancer therapy.African J Biol Sci202461054305479
    [Google Scholar]
  159. PathakR. KaurV. SharmaS. Pazopanib: Effective monotherapy for precise cancer treatment, targeting specific mutations and tumors.AfrJBioSc20246913111330
    [Google Scholar]
  160. VescovoV.D. DentiM.A. microRNA and lung cancer. microRNA.Cancer: Mol Biol Clin Prac20152015153177
    [Google Scholar]
  161. SharmaH. TyagiS.J. VarshneyP. PathakN. PathakR. A review on mpox: Diagnosis, prevention and treatments.Coronaviruses2024511710.2174/0126667975301557240604113752
    [Google Scholar]
  162. CattoJ.W.F. MiahS. OwenH.C. Distinct microRNA alterations characterize high- and low-grade bladder cancer.Cancer Res.200969218472848110.1158/0008‑5472.CAN‑09‑0744 19843843
    [Google Scholar]
  163. KumarP. PandeyS. AhmadF. Carbon nanotubes: A targeted drug delivery against cancer cell.Curr. Nanosci.20239131
    [Google Scholar]
  164. SharmaH. PathakR. SachanN. ChandraP. Role of tumor antigens for cancer vaccine development.In: Cancer Vaccination and Challenges. New York: Apple Academic Press20245794Internet10.1201/9781003501718‑3
    [Google Scholar]
  165. KaushikM. KumarS. SinghM. Bio-inspired Nanomaterials in Cancer Theranostics.In: Nanotheranostics for Diagnosis and Therapy.SingaporeSpringer Nature Singapore20249512310.1007/978‑981‑97‑3115‑2_5
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638333005250128075758
Loading
/content/journals/cddt/10.2174/0115701638333005250128075758
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomarkers; cancer theraphy; microRNAs; molecular biology; Non-coding RNAs; prognosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test