Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

An efficient immune system in the host body plays a crucial role in the preservation of normal biological and immune reactions and processes, as well as the intrinsic environment. This is because the immune system is responsible for fighting off foreign invaders. A healthy immune system strengthens the body's defense against infections, illnesses, and other unwelcome pathogens, thereby reducing the risk of allergic reactions and autoimmune diseases. Innate immune cells and acquired immune system components interact in a corrective fashion to produce optimal immune responses. In recent years, researchers have begun to focus on the immune system as a potential primary target of toxicity from chemical, pharmacological, and environmental exposure. Sex, age, stress, malnutrition, alcohol, genetic variability, lifestyles, environmental pollutants, and chemotherapy are just a few of the many elements that might modify the host's immunological responses. The production, amplification, attenuation, or suppression of immunological responses are all examples of immunomodulation. There are a wide variety of synthetic and traditional treatments available, and many of them cause major side effects and develop pathogenic resistance very quickly. Natural substances called phytochemicals play a crucial role in regulating the body's immune system. Risk factors for immune response changes are discussed, as is the immunomodulatory action of phytochemicals like glycosides, alkaloids, phenolic acids, flavonoids, saponins, tannins, sterols, and steroids.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638326442241118053543
2024-12-02
2025-09-06
Loading full text...

Full text loading...

References

  1. CoussensL.M. WerbZ. Inflammation and cancer.Nature2002420691786086710.1038/nature01322 12490959
    [Google Scholar]
  2. DelvesP.J. RoittI.M. The immune system. First of two parts.N. Engl. J. Med.20003431374910.1056/NEJM200007063430107 10882768
    [Google Scholar]
  3. KisielowP. How does the immune system learn to distinguish between good and evil? The first definitive studies of T cell central tolerance and positive selection.Immunogenetics2019718-951351810.1007/s00251‑019‑01127‑8 31418051
    [Google Scholar]
  4. StephensL. EllsonC. HawkinsP. Roles of PI3Ks in leukocyte chemotaxis and phagocytosis.Curr. Opin. Cell Biol.200214220321310.1016/S0955‑0674(02)00311‑3 11891120
    [Google Scholar]
  5. GreenbergS. GrinsteinS. Phagocytosis and innate immunity.Curr. Opin. Immunol.200214113614510.1016/S0952‑7915(01)00309‑0 11790544
    [Google Scholar]
  6. NeteaM.G. QuintinJ. van der MeerJ.W.M. Trained immunity: A memory for innate host defense.Cell Host Microbe20119535536110.1016/j.chom.2011.04.006 21575907
    [Google Scholar]
  7. KawaiT. AkiraS. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors.Nat. Immunol.201011537338410.1038/ni.1863 20404851
    [Google Scholar]
  8. UetaM. KinoshitaS. Innate immunity of the ocular surface.Brain Res. Bull.2010812-321922810.1016/j.brainresbull.2009.10.001 19828129
    [Google Scholar]
  9. BrindhaP. Role of phytochemicals as immunomodulatory agents: A review.Int J Green Pharm201610118
    [Google Scholar]
  10. PancerZ. CooperM.D. The evolution of adaptive immunity.Annu. Rev. Immunol.200624149751810.1146/annurev.immunol.24.021605.090542 16551257
    [Google Scholar]
  11. DevappaR.K. RakshitS.K. DekkerR.F.H. Forest biorefinery: Potential of poplar phytochemicals as value-added co-products.Biotechnol. Adv.201533668171610.1016/j.biotechadv.2015.02.012 25733011
    [Google Scholar]
  12. KambohA.A. ArainM.A. MughalM.J. ZamanA. ArainZ.M. SoomroA.H. Flavonoids: health promoting phytochemicals for animal production-a review.J Animal Health Prod20153161310.14737/journal.jahp/2015/3.1.6.13
    [Google Scholar]
  13. MolyneuxR.J. LeeS.T. GardnerD.R. PanterK.E. JamesL.F. Phytochemicals: The good, the bad and the ugly?Phytochemistry20076822-242973298510.1016/j.phytochem.2007.09.004 17950388
    [Google Scholar]
  14. BarbieriR. CoppoE. MarcheseA. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity.Microbiol. Res.2017196446810.1016/j.micres.2016.12.003 28164790
    [Google Scholar]
  15. ClementF. PramodS.N. VenkateshY.P. Identity of the immunomodulatory proteins from garlic (Allium sativum) with the major garlic lectins or agglutinins.Int. Immunopharmacol.201010331632410.1016/j.intimp.2009.12.002 20004743
    [Google Scholar]
  16. LuY. FanJ. ZhaoY. Immunomodulatory activity of aqueous extract of Actinidia macrosperma.Asia Pac. J. Clin. Nutr.2007161261265 17392116
    [Google Scholar]
  17. BehlT. KumarK. BriscC. Exploring the multifocal role of phytochemicals as immunomodulators.Biomed. Pharmacother.202113311095910.1016/j.biopha.2020.110959 33197758
    [Google Scholar]
  18. PandeyR. MauryaR. SinghG. SathiamoorthyB. NaikS. Immunosuppressive properties of flavonoids isolated from Boerhaavia diffusa Linn.Int. Immunopharmacol.20055354155310.1016/j.intimp.2004.11.001 15683850
    [Google Scholar]
  19. ChiangL.C. NgL.T. ChiangW. ChangM.Y. LinC.C. Immunomodulatory activities of flavonoids, monoterpenoids, triterpenoids, iridoid glycosides and phenolic compounds of Plantago species.Planta Med.200369760060410.1055/s‑2003‑41113 12898413
    [Google Scholar]
  20. ZengZ. LinC. WangS. Suppressive activities of mangiferin on human epithelial ovarian cancer.Phytomedicine20207615326710.1016/j.phymed.2020.153267 32570111
    [Google Scholar]
  21. AkbayP. BasaranA.A. UndegerU. BasaranN. In vitro immunomodulatory activity of flavonoid glycosides from Urtica dioica L.Phytother. Res.2003171343710.1002/ptr.1068 12557244
    [Google Scholar]
  22. GuoH.W. YunC.X. HouG.H. Mangiferin attenuates TH1/TH2 cytokine imbalance in an ovalbumin-induced asthmatic mouse model.PLoS One201496e10039410.1371/journal.pone.0100394 24955743
    [Google Scholar]
  23. NaikS. HuleA. Evaluation of immunomodulatory activity of an extract of andrographolides from Andographis paniculata.Planta Med.200975878579110.1055/s‑0029‑1185398 19263340
    [Google Scholar]
  24. WagnerH. Search for plant derived natural products with immunostimulatory activity: recent advances.Pure Appl. Chem.19906271217122210.1351/pac199062071217
    [Google Scholar]
  25. SunilaE.S. KuttanG. Immunomodulatory and antitumor activity of Piper longum Linn. and piperine.J. Ethnopharmacol.2004902-333934610.1016/j.jep.2003.10.016 15013199
    [Google Scholar]
  26. SantosJ. BritoM. FerreiraR. Th1-biased immunomodulation and in vivo antitumor effect of a novel piperine analogue.Int. J. Mol. Sci.2018199259410.3390/ijms19092594 30200386
    [Google Scholar]
  27. XueY. WangY. FengD. XiaoB. XuL. Tetrandrine suppresses lipopolysaccharide-induced microglial activation by inhibiting NF-κB pathway.Acta Pharmacol. Sin.200829224525110.1111/j.1745‑7254.2008.00734.x 18215355
    [Google Scholar]
  28. LiF. WangH. LuD. Neutral sulfate berberine modulates cytokine secretion and increases survival in endotoxemic mice.Acta Pharmacol. Sin.20062791199120510.1111/j.1745‑7254.2006.00368.x 16923341
    [Google Scholar]
  29. MarkW. SchneebergerS. SeilerR. Sinomenine blocks tissue remodeling in a rat model of chronic cardiac allograft rejection.Transplantation200375794094510.1097/01.TP.0000056610.22062.03 12698077
    [Google Scholar]
  30. WangJ. LiuY.M. HuJ. ChenC. Potential of natural products in combination with arsenic trioxide: Investigating cardioprotective effects and mechanisms.Biomed. Pharmacother.202316211446410.1016/j.biopha.2023.114464 37060657
    [Google Scholar]
  31. NguyenT.T.H. QureshiD. LimS. Introduction to polysaccharides.Food, Medical, and Environmental Applications of Polysaccharides.Elsevier2021346
    [Google Scholar]
  32. GanL. Hua ZhangS. Liang YangX. Bi XuH. Immunomodulation and antitumor activity by a polysaccharide–protein complex from Lycium barbarum.Int. Immunopharmacol.20044456356910.1016/j.intimp.2004.01.023 15099534
    [Google Scholar]
  33. RazaliF.N. SinniahS.K. HussinH. Zainal AbidinN. ShuibA.S. Tumor suppression effect of Solanum nigrum polysaccharide fraction on Breast cancer via immunomodulation.Int. J. Biol. Macromol.20169218519310.1016/j.ijbiomac.2016.06.079 27365117
    [Google Scholar]
  34. SunS. LiK. LeiZ. XiaoL. GaoR. ZhangZ. Immunomodulatory activity of polysaccharide from Helicteres angustifolia L. on 4T1 tumor-bearing mice.Biomed. Pharmacother.201810188188810.1016/j.biopha.2018.03.029 29635897
    [Google Scholar]
  35. LiW. HuX. WangS. Characterization and anti-tumor bioactivity of astragalus polysaccharides by immunomodulation.Int. J. Biol. Macromol.202014598599710.1016/j.ijbiomac.2019.09.189 31669273
    [Google Scholar]
  36. ManuK.A. KuttanG. Immunomodulatory activities of Punarnavine, an alkaloid from Boerhaavia diffusa.Immunopharmacol. Immunotoxicol.200931337738710.1080/08923970802702036 19555203
    [Google Scholar]
  37. YatimK.M. LakkisF.G. A brief journey through the immune system.Clin. J. Am. Soc. Nephrol.20151071274128110.2215/CJN.10031014 25845377
    [Google Scholar]
  38. FlorindoH. LopesJ. SilvaL. CorvoM. MartinsM. GasparR. Regulatory development of nanotechnology-based vaccines.Micro Nanotechnol Vacc Dev201739341010.1016/B978‑0‑323‑39981‑4.00021‑X
    [Google Scholar]
  39. LutsiakM.E.C. KwonG.S. SamuelJ. Biodegradable nanoparticle delivery of a Th2-biased peptide for induction of Th1 immune responses.J. Pharm. Pharmacol.201058673974710.1211/jpp.58.6.0004 16734975
    [Google Scholar]
  40. PetrovskyN. Novel human polysaccharide adjuvants with dual Th1 and Th2 potentiating activity.Vaccine200624Suppl. 2S26S2910.1016/j.vaccine.2005.01.107 16823913
    [Google Scholar]
  41. Trujillo-VargasC.M. MayerK.D. BickertT. Vaccinations with T‐helper type 1 directing adjuvants have different suppressive effects on the development of allergen‐induced T‐helper type 2 responses.Clin. Exp. Allergy20053581003101310.1111/j.1365‑2222.2005.02287.x 16120081
    [Google Scholar]
  42. WeiskopfD. WeinbergerB. Grubeck-LoebensteinB. The aging of the immune system.Transpl. Int.200922111041105010.1111/j.1432‑2277.2009.00927.x 19624493
    [Google Scholar]
  43. DorshkindK. SwainS. Age-associated declines in immune system development and function: causes, consequences, and reversal.Curr. Opin. Immunol.200921440440710.1016/j.coi.2009.07.001 19632102
    [Google Scholar]
  44. YilmazE. AcarG. OnalU. ErdoganE. BaltaciA.K. MogulkocR. Effect of 2-week naringin supplementation on neurogenesis and BDNF levels in ischemia-reperfusion model of rat.Neuromol Med2024261410.1007/s12017‑023‑08771‑0
    [Google Scholar]
  45. SomuncuM. DasdelenD. BaltaciS.B. MogulkocR. BaltaciA.K. The effect of 2 weeks of naringenin on AQP4, IL-2 and DNA damage in brain ischemia reperfusion in rat.Arch. Ital. Biol.20211593-415115810.12871/000398292021344
    [Google Scholar]
  46. GrahamJ.E. ChristianL.M. Kiecolt-GlaserJ.K. Stress, age, and immune function: toward a lifespan approach.J. Behav. Med.200629438940010.1007/s10865‑006‑9057‑4 16715331
    [Google Scholar]
  47. KleinS.L. The effects of hormones on sex differences in infection: from genes to behavior.Neurosci. Biobehav. Rev.200024662763810.1016/S0149‑7634(00)00027‑0 10940438
    [Google Scholar]
  48. Giefing-KröllC. BergerP. LepperdingerG. Grubeck-LoebensteinB. How sex and age affect immune responses, susceptibility to infections, and response to vaccination.Aging Cell201514330932110.1111/acel.12326 25720438
    [Google Scholar]
  49. MeierA. ChangJ.J. ChanE.S. Sex differences in the Toll-like receptor–mediated response of plasmacytoid dendritic cells to HIV-1.Nat. Med.200915895595910.1038/nm.2004 19597505
    [Google Scholar]
  50. CookM.B. McGlynnK.A. DevesaS.S. FreedmanN.D. AndersonW.F. Sex disparities in cancer mortality and survival.Cancer Epidemiol. Biomarkers Prev.20112081629163710.1158/1055‑9965.EPI‑11‑0246 21750167
    [Google Scholar]
  51. Kiecolt-GlaserJ.K. GlaserR. GravensteinS. MalarkeyW.B. SheridanJ. Chronic stress alters the immune response to influenza virus vaccine in older adults.Proc. Natl. Acad. Sci. USA19969373043304710.1073/pnas.93.7.3043 8610165
    [Google Scholar]
  52. YatooM.I. DimriU. GopalakrishnanA. SaxenaA. WaniS.A. DhamaK. In vitro and in vivo immunomodulatory potential of Pedicularis longiflora and Allium carolinianum in alloxan-induced diabetes in rats.Biomed. Pharmacother.20189737538410.1016/j.biopha.2017.10.133 29091887
    [Google Scholar]
  53. ParkH.Y. OhM.J. KimY. ChoiI. Immunomodulatory activities of Corchorus olitorius leaf extract: Beneficial effects in macrophage and NK cell activation immunosuppressed mice.J. Funct. Foods20184622022610.1016/j.jff.2018.05.005
    [Google Scholar]
  54. AlvesM.M.M. BritoL.M. SouzaA.C. Gallic and ellagic acids: Two natural immunomodulator compounds solve infection of macrophages by Leishmania major.Naunyn Schmiedebergs Arch. Pharmacol.2017390989390310.1007/s00210‑017‑1387‑y 28643086
    [Google Scholar]
  55. GlaserR. PearsonG.R. BonneauR.H. EsterlingB.A. AtkinsonC. Kiecolt-GlaserJ.K. Stress and the memory T-cell response to the Epstein-Barr virus in healthy medical students.Health Psychol.199312643544210.1037/0278‑6133.12.6.435 8293726
    [Google Scholar]
  56. YangE.V. GlaserR. Stress-induced immunomodulation: Impact on immune defenses against infectious disease.Biomed. Pharmacother.200054524525010.1016/S0753‑3322(00)80066‑9 10917461
    [Google Scholar]
  57. ChangS.L. ChiangY.M. ChangC.L.T. Flavonoids, centaurein and centaureidin, from Bidens pilosa, stimulate IFN-gamma expression.J. Ethnopharmacol.2007112223223610.1016/j.jep.2007.03.001
    [Google Scholar]
  58. RomeoJ. WärnbergJ. NovaE. DíazL.E. Gómez-MartinezS. MarcosA. Moderate alcohol consumption and the immune system: A review.Br. J. Nutr.200798S1S111S11510.1017/S0007114507838049 17922947
    [Google Scholar]
  59. MolinaP.E. HappelK.I. ZhangP. KollsJ.K. NelsonS. Focus on: Alcohol and the immune system.Alcohol Res. Health2010331-297108 23579940
    [Google Scholar]
  60. GharagozlooM. KarimiM. AmirghofranZ. Immunomodulatory effects of silymarin in patients with β-thalassemia major.Int. Immunopharmacol.201316224324710.1016/j.intimp.2013.04.016 23624215
    [Google Scholar]
  61. SureshchandraS. RausA. JankeelA. Dose-dependent effects of chronic alcohol drinking on peripheral immune responses.Sci. Rep.2009917847 31127176
    [Google Scholar]
  62. ChandrasekaranP. SaravananN. BethunaickanR. TripathyS. Malnutrition: Modulator of immune responses in tuberculosis.Front. Immunol.20178131610.3389/fimmu.2017.01316 29093710
    [Google Scholar]
  63. VilaC.C. SaracinoM.P. FaldutoG.H. Protein malnutrition impairs the immune control of Trichinella spiralis infection.Nutrition20196016116910.1016/j.nut.2018.10.024 30599460
    [Google Scholar]
  64. GasconM. MoralesE. SunyerJ. VrijheidM. Effects of persistent organic pollutants on the developing respiratory and immune systems: A systematic review.Environ. Int.201352516510.1016/j.envint.2012.11.005 23291098
    [Google Scholar]
  65. WinansB. HumbleM.C. LawrenceB.P. Environmental toxicants and the developing immune system: A missing link in the global battle against infectious disease?Reprod. Toxicol.201131332733610.1016/j.reprotox.2010.09.004 20851760
    [Google Scholar]
  66. RamanadhamM. NageshwariB. Anti-proliferative effect of levamisole on human myeloma cell lines in vitro.J. Immunotoxicol.20107432733210.3109/1547691X.2010.514871 20860474
    [Google Scholar]
  67. YasuiK. KobayashiN. YamazakiT. AgematsuK. Thalidomide as an immunotherapeutic agent: the effects on neutrophil-mediated inflammation.Curr. Pharm. Des.200511339540110.2174/1381612053382179 15723633
    [Google Scholar]
  68. LarsenE.S. JoensenU.N. PoulsenA.M. GolettiD. JohansenI.S. Bacillus Calmette–Guérin immunotherapy for bladder cancer: A review of immunological aspects, clinical effects and BCG infections.Acta Pathol Microbiol Scand Suppl202012829210310.1111/apm.13011 31755155
    [Google Scholar]
  69. MoorlagS.J.C.F.M. ArtsR.J.W. van CrevelR. NeteaM.G. Non-specific effects of BCG vaccine on viral infections.Clin. Microbiol. Infect.201925121473147810.1016/j.cmi.2019.04.020 31055165
    [Google Scholar]
  70. LeeS. MargolinK. Cytokines in cancer immunotherapy.Cancers2011343856389310.3390/cancers3043856 24213115
    [Google Scholar]
  71. IlangkovanM. JantanI. MesaikM.A. BukhariS.N. Immunosuppressive effects of the standardized extract of Phyllanthus amarus on cellular immune responses in Wistar-Kyoto rats.Drug Des. Devel. Ther.2015949174930 26347462
    [Google Scholar]
  72. RussellRGG GraveleyR CoxonF Cyclosporin A. Mode of action and effects on bone and joint tissues.Scand J Rheumatol199221sup9591810.3109/030097492091014781475634
    [Google Scholar]
  73. TyagiS. SinghG. SharmaA. AggarwalG. Phytochemicals as candidate therapeutics: An overview.Int. J. Pharm. Sci. Rev. Res.201035355
    [Google Scholar]
  74. KurmukovA.G. Medicinal plants of central asia.Uzbekistan and KyrgyzstanSpringer20121314
    [Google Scholar]
  75. NalbantsoyA. NesilT. Yılmaz-DilsizÖ. AksuG. KhanS. BedirE. Evaluation of the immunomodulatory properties in mice and in vitro anti-inflammatory activity of cycloartane type saponins from Astragalus species.J. Ethnopharmacol.2012139257458110.1016/j.jep.2011.11.053 22155389
    [Google Scholar]
  76. SunH. HeS. ShiM. Adjuvant-active fraction from Albizia julibrissin saponins improves immune responses by inducing cytokine and chemokine at the site of injection.Int. Immunopharmacol.201422234635510.1016/j.intimp.2014.07.021 25075718
    [Google Scholar]
  77. LiuR.H. Health-promoting components of fruits and vegetables in the diet.Adv. Nutr.201343384S392S10.3945/an.112.003517 23674808
    [Google Scholar]
  78. MartinezK. MackertJ. McIntoshM. Chapter 18 - Polyphenols and Intestinal Health.Nutrition and Functional Foods for Healthy Aging.Academic Press2017191210
    [Google Scholar]
  79. KocheD. ShirsatR. KawaleM. An overview of major classes of phytochemicals: their types and role in disease prevention.Hislopia J20189111
    [Google Scholar]
  80. NenaahG. Antimicrobial activity of Calotropis procera Ait. (Asclepiadaceae) and isolation of four flavonoid glycosides as the active constituents.World J. Microbiol. Biotechnol.20132971255126210.1007/s11274‑013‑1288‑2 23417281
    [Google Scholar]
  81. LiC. ZhaW. LiW. WangJ. YouA. Advances in the biosynthesis of terpenoids and their ecological functions in plant resistance.Int. J. Mol. Sci.202324141156110.3390/ijms241411561 37511319
    [Google Scholar]
  82. ChiouW.F. ChenC.F. LinJ.J. Mechanisms of suppression of inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells by andrographolide.Br. J. Pharmacol.200012981553156010.1038/sj.bjp.0703191 10780958
    [Google Scholar]
  83. PodderB. JangW.S. NamK.W. LeeB.E. SongH.Y. Ursolic acid activates intracellular killing effect of macrophages during Mycobacterium tuberculosis infection.J. Microbiol. Biotechnol.201525573874410.4014/jmb.1407.07020 25406534
    [Google Scholar]
  84. MukherjeeN. BanerjeeS. AminS.A. JhaT. DattaS. Das SahaK. Host P2X7R-p38MAPK axis mediated intra-macrophage leishmanicidal activity of Spergulin-A.Exp. Parasitol.202224110836510.1016/j.exppara.2022.108365 36007587
    [Google Scholar]
  85. RasoolM. VaralakshmiP. Immunomodulatory role of Withania somnifera root powder on experimental induced inflammation: An in vivo and in vitro study.Vascul. Pharmacol.200644640641010.1016/j.vph.2006.01.015 16713367
    [Google Scholar]
  86. LogieE. Vanden BergheW. Tackling chronic inflammation with withanolide phytochemicals—a withaferin a perspective.Antioxidants2020911110710.3390/antiox9111107 33182809
    [Google Scholar]
  87. DubeyS. SinghM. NelsonA. KaranD. A perspective on Withania somnifera modulating antitumor immunity in targeting prostate cancer.J. Immunol. Res.2021202111110.1155/2021/9483433 34485538
    [Google Scholar]
  88. CushnieT.P.T. CushnieB. LambA.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities.Int. J. Antimicrob. Agents201444537738610.1016/j.ijantimicag.2014.06.001 25130096
    [Google Scholar]
  89. SoutoA.L. TavaresJ.F. Da SilvaM.S. DinizM.F.F.M. De Athayde-FilhoP.F. Barbosa FilhoJ.M. Anti-inflammatory activity of alkaloids: an update from 2000 to 2010.Molecules201116108515853410.3390/molecules16108515 21989312
    [Google Scholar]
  90. ZhaoZ. XiaoJ. WangJ. DongW. PengZ. AnD. Anti-inflammatory effects of novel sinomenine derivatives.Int. Immunopharmacol.201529235436010.1016/j.intimp.2015.10.030 26525983
    [Google Scholar]
  91. PaudelS. MishraN. AgarwalR. Phytochemicals as immunomodulatory molecules in cancer therapeutics.Pharmaceuticals20231612165210.3390/ph16121652 38139779
    [Google Scholar]
  92. BurgosR.A. SeguelK. PerezM. Andrographolide inhibits IFN-gamma and IL-2 cytokine production and protects against cell apoptosis.Planta Med.200571542943410.1055/s‑2005‑864138 15931581
    [Google Scholar]
  93. GokhaleA.B. DamreA.S. SarafM.N. Investigations into the immunomodulatory activity of Argyreia speciosa.J. Ethnopharmacol.200384110911410.1016/S0378‑8741(02)00168‑X 12499085
    [Google Scholar]
  94. AminaM. Al MusayeibN.M. AlarfajN.A. El-TohamyM.F. Al-HamoudG.A. Antibacterial and immunomodulatory potentials of biosynthesized Ag, Au, Ag-Au bimetallic alloy nanoparticles using the Asparagus racemosus Root Extract.Nanomaterials20201012245310.3390/nano10122453 33302432
    [Google Scholar]
  95. PatilK. JalalpureS.S. WadekarR.R. Effect of Baliospermum montanum root extract on phagocytosis by human neutrophils.Indian J. Pharm. Sci.2009711687110.4103/0250‑474X.51966 20177463
    [Google Scholar]
  96. DasS. SinghP.K. AmeeruddinS. Ethnomedicinal values of Boerhaavia diffusa L. as a panacea against multiple human ailments.Med Pharm Chem202311129730010.3389/fchem.2023.1297300
    [Google Scholar]
  97. HartmannR.M. Morgan MartinsM.I. TieppoJ. FillmannH.S. MarroniN.P. Effect of Boswellia serrata on antioxidant status in an experimental model of colitis rats induced by acetic acid.Dig. Dis. Sci.20125782038204410.1007/s10620‑012‑2134‑3 22451119
    [Google Scholar]
  98. SiniK.R. SinhaB.N. RajasekaranA. Protective effects of Capparis zeylanica Linn. leaf extract on gastric lesions in experimental animals.Avicenna J. Med. Biotechnol.2011313135 23407576
    [Google Scholar]
  99. AminA.H. BughdadiF.A. Abo-ZaidM.A. Immunomodulatory effect of papaya (Carica papaya) pulp and seed extracts as a potential natural treatment for bacterial stress.J. Food Biochem.20194312e1305010.1111/jfbc.13050 31571245
    [Google Scholar]
  100. KumarB.S. KishoreT.C. Phytochemical screening and immunomodulatory activities of methanolic extract of Eclipta alba and Centella asiatica.RJPPD202113158
    [Google Scholar]
  101. PopovicA. DeljaninM. PopovicS. Chelidonium majus crude extract induces activation of peripheral blood mononuclear cells and enhances their cytotoxic effect toward HeLa cells.Int. J. Environ. Health Res.20223271554156610.1080/09603123.2021.1897534 33706629
    [Google Scholar]
  102. PalakshaM.N. RavishankarK. NandiniV. Evaluation of the immunomodulatory effect of Eclipta prostrata whole plant extract on albino rats.RJPPD201792414510.5958/2321‑5836.2017.00008.8
    [Google Scholar]
  103. IdokoND ChukwumaIF SopuruchukwuFN Immunomodulatory effects of epiphytic Loranthus micranthus leaf extracts collected from two host plants: Psidium guajava and Parkia biglobosaBMC Complement Med2024241710.1186/s12906‑023‑04282‑4
    [Google Scholar]
  104. ZhuZ. YuY. WangB. Dietary supplementation with pseudostellaria heterophylla polysaccharide enhanced immunity and changed mRNA expression of spleen in chicks.Dev. Comp. Immunol.202415110509410.1016/j.dci.2023.105094 37951325
    [Google Scholar]
  105. ZhangY. XuQ. WangY. Caragana sinica (Buc’hoz) Rehd. (jin ji er) polysaccharide regulates the immune function and intestinal microbiota of cyclophosphamide (CTX) induced immunosuppressed mice.J. Ethnopharmacol.202432211755110.1016/j.jep.2023.117551
    [Google Scholar]
  106. WangX. ChenJ. ChanY. Effect of Echinacea purpurea (L.) Moench and its extracts on the immunization outcome of avian influenza vaccine in broilers.J. Ethnopharmacol.2024319Pt 311730610.1016/j.jep.2023.117306
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638326442241118053543
Loading
/content/journals/cddt/10.2174/0115701638326442241118053543
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test