Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Repurposing of drugs through nanocarriers (NCs) based platforms has been a recent trend in drug delivery research. Various routine drugs are now being repurposed to treat challenging neurodegenerative disorders including Alzheimer disease (AD). AD, at present is one of the challenging neurodegenerative disorders characterized by extracellular accumulation of amyloid-β and intracellular accumulations of neurofibrillary tangles. In spite of catchy progress in drug development, effective treatment outcome in AD patients is far-fetched dream. Out of several proposed hypothesis in the development and progression of AD, potential role of microorganisms causing dementia and AD cannot be ruled out. Several recent researches have been documented a clear correlation in between microbial infection and neuronal damage leading to progression of AD. Thus, antimicrobial drugs repurposing has been emerged as alternate, potential, cost-effective strategy to check progression of AD. Further, for efficient delivery of antimicrobial drugs to brain tissue, novel NCs based platforms are the preferred option to bypass blood-brain barrier. Several polymeric and lipid NCs have been extensively studied over the past years to improve antimicrobial drug delivery to brain. The present review encompasses various repurposing strategy of antimicrobial drugs delivered through various NCs to target AD. Evidence-based research outcome compiled from authentic database like Scopus, PubMed, Web of science have been pooled to provide an updated review. Side by side some light has been thrown on the practical problems faced by nanodrug carriers during technology transfer.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638329824241220055621
2024-12-31
2025-09-04
Loading full text...

Full text loading...

References

  1. BallardC. AarslandD. CummingsJ. Drug repositioning and repurposing for Alzheimer disease.Nat. Rev. Neurol.2020161266167310.1038/s41582‑020‑0397‑4 32939050
    [Google Scholar]
  2. BegleyC.G. AshtonM. BaellJ. Drug repurposing: Misconceptions, challenges, and opportunities for academic researchers.Sci. Transl. Med.202113612eabd552410.1126/scitranslmed.abd5524 34550729
    [Google Scholar]
  3. AgrawalK. SajiM. KumarD. Drug repurposing in future drug discovery and development. In: Drug Repurposing and Computational Drug Discovery.Apple Academic Press202412610.1201/9781003347705
    [Google Scholar]
  4. Hernández-LemusE. Martínez-GarcíaM. Pathway-based drug-repurposing schemes in cancer: The role of translational bioinformatics.Front. Oncol.20211060568010.3389/fonc.2020.605680 33520715
    [Google Scholar]
  5. FarhaM.A. BrownE.D. Drug repurposing for antimicrobial discovery.Nat. Microbiol.20194456557710.1038/s41564‑019‑0357‑1 30833727
    [Google Scholar]
  6. VojtechovaI. MachacekT. KristofikovaZ. StuchlikA. PetrasekT. Infectious origin of Alzheimer’s disease: Amyloid beta as a component of brain antimicrobial immunity.PLoS Pathog.20221811e101092910.1371/journal.ppat.1010929 36395147
    [Google Scholar]
  7. ClementM. The association of microbial infection and adaptive immune cell activation in Alzheimer’s disease.Discovery Immunology202321kyad01510.1093/discim/kyad01538567070
    [Google Scholar]
  8. LymanM. LloydD.G. JiX. VizcaychipiM.P. MaD. Neuroinflammation: The role and consequences.Neurosci. Res.20147911210.1016/j.neures.2013.10.004 24144733
    [Google Scholar]
  9. SureshS. SinghS.A. RushendranR. VellapandianC. PrajapatiB. Alzheimer’s disease: The role of extrinsic factors in its development, an investigation of the environmental enigma.Front. Neurol.202314130311110.3389/fneur.2023.1303111 38125832
    [Google Scholar]
  10. HuaY. DaiX. XuY. Drug repositioning: Progress and challenges in drug discovery for various diseases.Eur. J. Med. Chem.202223411423910.1016/j.ejmech.2022.114239 35290843
    [Google Scholar]
  11. OgbodoJ.O. AgboC.P. NjokuU.O. Alzheimer’s disease: Pathogenesis and therapeutic interventions.Curr. Aging Sci.202215122510.2174/1874609814666210302085232 33653258
    [Google Scholar]
  12. SantiagoJ.A. PotashkinJ.A. Physical activity and lifestyle modifications in the treatment of neurodegenerative diseases.Front. Aging Neurosci.202315118567110.3389/fnagi.2023.1185671 37304072
    [Google Scholar]
  13. World Health Organization. The global dementia observatory reference guide (No. WHO/MSD/MER/18.1). 2018. Available from: https://www.who.int/publications/i/item/who-msd-mer-18.1 (accessed on 18-11-2024).
  14. NicholsE. VosT. The estimation of the global prevalence of dementia from 1990‐2019 and forecasted prevalence through 2050: An analysis for the Global Burden of Disease (GBD) study 2019.Alzheimers Dement.202117S10e05149610.1002/alz.051496
    [Google Scholar]
  15. LeeJ. MeijerE. LangaK.M. Prevalence of dementia in India: National and state estimates from a nationwide study.Alzheimers Dement.20231972898291210.1002/alz.12928 36637034
    [Google Scholar]
  16. FülöpT. ItzhakiR.F. BalinB.J. MiklossyJ. BarronA.E. Role of microbes in the development of Alzheimer’s disease: State of the art–An international symposium presented at the 2017 IAGG congress in San Francisco.Front. Genet.2018936210.3389/fgene.2018.00362 30250480
    [Google Scholar]
  17. AngelucciF. CechovaK. AmlerovaJ. HortJ. Antibiotics, gut microbiota, and Alzheimer’s disease.J. Neuroinflammation201916110810.1186/s12974‑019‑1494‑4 31118068
    [Google Scholar]
  18. RahmaniM. Negro ÁlvarezS.E. HernándezE.B. The potential use of tetracyclines in neurodegenerative diseases and the role of nano-based drug delivery systems.Eur. J. Pharm. Sci.202217510623710.1016/j.ejps.2022.106237 35710076
    [Google Scholar]
  19. SongX. ChenJ. HouZ. XieN. Antimicrobial therapy and the potential mechanisms in Alzheimer’s disease.Neurosci. Lett.202174113546410.1016/j.neulet.2020.135464 33166642
    [Google Scholar]
  20. IqbalU.H. ZengE. PasinettiG.M. The use of antimicrobial and antiviral drugs in Alzheimer’s disease.Int. J. Mol. Sci.20202114492010.3390/ijms21144920 32664669
    [Google Scholar]
  21. AlonsoR. PisaD. Fernández-FernándezA.M. CarrascoL. Infection of fungi and bacteria in brain tissue from elderly persons and patients with Alzheimer’s disease.Front. Aging Neurosci.20181015910.3389/fnagi.2018.00159 29881346
    [Google Scholar]
  22. YeoI.J. YunJ. SonD.J. HanS.B. HongJ.T. Antifungal drug miconazole ameliorated memory deficits in a mouse model of LPS-induced memory loss through targeting iNOS.Cell Death Dis.202011862310.1038/s41419‑020‑2619‑5 32796824
    [Google Scholar]
  23. PartridgeB. EardleyA. MoralesB.E. Advancements in drug delivery methods for the treatment of brain disease.Front. Vet. Sci.20229103974510.3389/fvets.2022.1039745 36330152
    [Google Scholar]
  24. LeH. KarakasyanC. JouenneT. Le CerfD. DéE. Application of polymeric nanocarriers for enhancing the bioavailability of antibiotics at the target site and overcoming antimicrobial resistance.Appl. Sci. (Basel)202111221069510.3390/app112210695
    [Google Scholar]
  25. DinF. AmanW. UllahI. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.Int. J. Nanomedicine2017127291730910.2147/IJN.S146315 29042776
    [Google Scholar]
  26. SpirescuV.A. ChircovC. GrumezescuA.M. AndronescuE. Polymeric nanoparticles for antimicrobial therapies: An up-to-date overview.Polymers202113572410.3390/polym13050724 33673451
    [Google Scholar]
  27. PerrigueP.M. MurrayR.A. MielcarekA. HenschkeA. MoyaS.E. Degradation of drug delivery nanocarriers and payload release: A review of physical methods for tracing nanocarrier biological fate.Pharmaceutics202113677010.3390/pharmaceutics13060770 34064155
    [Google Scholar]
  28. TeixeiraM.I. LopesC.M. AmaralM.H. CostaP.C. Surface-modified lipid nanocarriers for crossing the blood-brain barrier (BBB): A current overview of active targeting in brain diseases.Colloids Surf. B Biointerfaces202322111299910.1016/j.colsurfb.2022.112999 36368148
    [Google Scholar]
  29. ZhangP. LiY. TangW. ZhaoJ. JingL. McHughK.J. Theranostic nanoparticles with disease-specific administration strategies.Nano Today20224210133510.1016/j.nantod.2021.101335
    [Google Scholar]
  30. SociasS.B. González-LizárragaF. AvilaC.L. Exploiting the therapeutic potential of ready-to-use drugs: Repurposing antibiotics against amyloid aggregation in neurodegenerative diseases.Prog. Neurobiol.2018162173610.1016/j.pneurobio.2017.12.002 29241812
    [Google Scholar]
  31. WangJ. SongY. ChenZ. LengS.X. Connection between systemic inflammation and neuroinflammation underlies neuroprotective mechanism of several phytochemicals in neurodegenerative diseases.Oxid. Med. Cell. Longev.20182018197271410.1155/2018/1972714
    [Google Scholar]
  32. FulopT. TripathiS. RodriguesS. Targeting impaired antimicrobial immunity in the brain for the treatment of Alzheimer’s disease.Neuropsychiatr. Dis. Treat.2021171311133910.2147/NDT.S264910 33976546
    [Google Scholar]
  33. HuiZ. ZhijunY. YushanY. The combination of acyclovir and dexamethasone protects against Alzheimer’s disease-related cognitive impairments in mice.Psychopharmacology202023761851186010.1007/s00213‑020‑05503‑1 32221697
    [Google Scholar]
  34. HartselS.C. WeilandT.R. Amphotericin B binds to amyloid fibrils and delays their formation: A therapeutic mechanism?Biochemistry200342206228623310.1021/bi0270384 12755626
    [Google Scholar]
  35. AllenH.B. A novel approach to the treatment and prevention of Alzheimer’s disease based on the pathology and microbiology.J. Alzheimers Dis.2021841616710.3233/JAD‑210429 34542071
    [Google Scholar]
  36. TikhonovaM.A. AmstislavskayaT.G. HoY.J. Neuroprotective effects of ceftriaxone involve the reduction of Aβ burden and neuroinflammatory response in a mouse model of Alzheimer’s disease.Front. Neurosci.20211573678610.3389/fnins.2021.736786 34658774
    [Google Scholar]
  37. LiX. LiT. ZhangP. Discovery of novel hybrids containing clioquinol−1-benzyl-1,2,3,6-tetrahydropyridine as multi-target-directed ligands (MTDLs) against Alzheimer’s disease.Eur. J. Med. Chem.202224411484110.1016/j.ejmech.2022.114841 36257284
    [Google Scholar]
  38. LeeJ.H. KanwarB. LeeC.J. SergiC. ColemanM.D. Dapsone is an anticatalysis for Alzheimer’s disease exacerbation.iScience202225510427410.1016/j.isci.2022.104274 35542045
    [Google Scholar]
  39. JonesR. LaakeK. ØksengårdA.R. D-cycloserine for Alzheimer’s disease.Cochrane Libr.200220101CD00315310.1002/14651858.CD003153
    [Google Scholar]
  40. GautieriA. BeegM. GobbiM. RigoldiF. ColomboL. SalmonaM. The anti-amyloidogenic action of doxycycline: A molecular dynamics study on the interaction with Aβ42.Int. J. Mol. Sci.20192018464110.3390/ijms20184641 31546787
    [Google Scholar]
  41. KatayamaY. InabaT. NitoC. UedaM. KatsuraK. Neuroprotective effects of erythromycin on cerebral ischemia reperfusion-injury and cell viability after oxygen-glucose deprivation in cultured neuronal cells.Brain Res.2014158815916710.1016/j.brainres.2014.09.016 25264351
    [Google Scholar]
  42. BudniJ. GarcezM.L. de MedeirosJ. The anti-inflammatory role of minocycline in Alzheimer s disease.Curr. Alzheimer Res.201613121319132910.2174/1567205013666160819124206 27539598
    [Google Scholar]
  43. WozniakM.A. FrostA.L. PrestonC.M. ItzhakiR.F. Antivirals reduce the formation of key Alzheimer’s disease molecules in cell cultures acutely infected with herpes simplex virus type 1.PLoS One2011610e2515210.1371/journal.pone.0025152 22003387
    [Google Scholar]
  44. HouS.J. ZhangS.X. LiY. XuS.Y. Rapamycin responds to Alzheimer’s disease: A potential translational therapy.Clin. Interv. Aging2023181629163910.2147/CIA.S429440 37810956
    [Google Scholar]
  45. UmedaT. SakaiA. ShigemoriK. YokotaA. KumagaiT. TomiyamaT. Oligomer-targeting prevention of neurodegenerative dementia by intranasal rifampicin and resveratrol combination–a preclinical study in model mice.Front. Neurosci.20211576347610.3389/fnins.2021.763476 34966254
    [Google Scholar]
  46. MarkulinI. MatasinM. TurkV.E. Salković-PetrisicM. Challenges of repurposing tetracyclines for the treatment of Alzheimer’s and Parkinson’s disease.J. Neural Transm. (Vienna)20221295-677380410.1007/s00702‑021‑02457‑2 34982206
    [Google Scholar]
  47. CatumbelaC.S.G. GiridharanV.V. BarichelloT. MoralesR. Clinical evidence of human pathogens implicated in Alzheimer’s disease pathology and the therapeutic efficacy of antimicrobials: An overview.Transl. Neurodegener.20231213710.1186/s40035‑023‑00369‑7 37496074
    [Google Scholar]
  48. AhlawatJ. Guillama BarrosoG. Masoudi AsilS. Nanocarriers as potential drug delivery candidates for overcoming the blood–brain barrier: Challenges and possibilities.ACS Omega2020522125831259510.1021/acsomega.0c01592 32548442
    [Google Scholar]
  49. BauzonJ. LeeG. CummingsJ. Repurposed agents in the Alzheimer’s disease drug development pipeline.Alzheimers Res. Ther.20201219810.1186/s13195‑020‑00662‑x 32807237
    [Google Scholar]
  50. NorinsL.C. Repurposing licensed drugs for use against Alzheimer’s disease.J. Alzheimers Dis.202181392193210.3233/JAD‑210080 33843684
    [Google Scholar]
  51. LiY.Y. JonesS.J.M. Drug repositioning for personalized medicine.Genome Med.2012432710.1186/gm326 22494857
    [Google Scholar]
  52. ApplebyB.S. NacopoulosD. MilanoN. ZhongK. CummingsJ.L. A review: Treatment of Alzheimer’s disease discovered in repurposed agents.Dement. Geriatr. Cogn. Disord.2013351-212210.1159/000345791 23307039
    [Google Scholar]
  53. GulisanoW. MaugeriD. BaltronsM.A. Role of amyloid-β and tau proteins in Alzheimer’s disease: Confuting the amyloid cascade.J. Alzheimers Dis.201864s1S611S63110.3233/JAD‑179935 29865055
    [Google Scholar]
  54. ButlerL. WalkerK.A. The role of chronic infection in Alzheimer’s disease: Instigators, co-conspirators, or bystanders?Curr. Clin. Microbiol. Rep.20218419921210.1007/s40588‑021‑00168‑6 35186664
    [Google Scholar]
  55. QinQ. LiY. Herpesviral infections and antimicrobial protection for Alzheimer’s disease: Implications for prevention and treatment.J. Med. Virol.20199181368137710.1002/jmv.25481 30997676
    [Google Scholar]
  56. MielcarskaM.B. SkowrońskaK. WyżewskiZ. TokaF.N. Disrupting neurons and glial cells oneness in the brain—the possible causal role of herpes simplex virus type 1 (HSV-1) in alzheimer’s disease.Int. J. Mol. Sci.202123124210.3390/ijms23010242 35008671
    [Google Scholar]
  57. WainbergM. LuquezT. KoelleD.M. The viral hypothesis: How herpesviruses may contribute to Alzheimer’s disease.Mol. Psychiatry202126105476548010.1038/s41380‑021‑01138‑6 33972690
    [Google Scholar]
  58. YadavP. LeeY.H. PandayH. Implications of microorganisms in Alzheimer’s disease.Curr. Issues Mol. Biol.202244104584461510.3390/cimb44100314 36286029
    [Google Scholar]
  59. SyedM.M. PhulwaniN.K. KielianT. Tumor necrosis factor‐alpha (TNF‐α) regulates Toll‐like receptor 2 (TLR2) expression in microglia.J. Neurochem.200710341461147110.1111/j.1471‑4159.2007.04838.x 17961202
    [Google Scholar]
  60. LoebM.B. MolloyD.W. SmiejaM. A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimer’s disease.J. Am. Geriatr. Soc.200452338138710.1111/j.1532‑5415.2004.52109.x 14962152
    [Google Scholar]
  61. LanzJ. Biniaz-HarrisN. KuvaldinaM. JainS. LewisK. FallonB.A. Disulfiram: Mechanisms, applications, and challenges.Antibiotics202312352410.3390/antibiotics12030524 36978391
    [Google Scholar]
  62. DowC.T. Warm, sweetened milk at the twilight of immunity - Alzheimer’s disease - inflammaging, insulin resistance, M. paratuberculosis and immunosenescence.Front. Immunol.20211271417910.3389/fimmu.2021.714179 34421917
    [Google Scholar]
  63. IizukaT. MorimotoK. SasakiY. Preventive effect of rifampicin on Alzheimer disease needs at least 450 mg daily for 1 year: An FDG-PET follow-up study.Dement. Geriatr. Cogn. Disord. Extra20177220421410.1159/000477343 28690634
    [Google Scholar]
  64. GofritO.N. KleinB.Y. CohenI.R. Ben-HurT. GreenblattC.L. BercovierH. Bacillus Calmette-Guérin (BCG) therapy lowers the incidence of Alzheimer’s disease in bladder cancer patients.PLoS One20191411e022443310.1371/journal.pone.0224433 31697701
    [Google Scholar]
  65. ChackoA. DelbazA. WalkdenH. Chlamydia pneumoniae can infect the central nervous system via the olfactory and trigeminal nerves and contributes to Alzheimer’s disease risk.Sci. Rep.2022121275910.1038/s41598‑022‑06749‑9 35177758
    [Google Scholar]
  66. LittleC.S. JoyceT.A. HammondC.J. Detection of bacterial antigens and Alzheimer’s disease-like pathology in the central nervous system of BALB/c mice following intranasal infection with a laboratory isolate of Chlamydia pneumoniae.Front. Aging Neurosci.2014630410.3389/fnagi.2014.00304 25538615
    [Google Scholar]
  67. TomiyamaT. AsanoS. SuwaY. Rifampicin prevents the aggregation and neurotoxicity of amyloid β protein in vitro.Biochem. Biophys. Res. Commun.19942041768310.1006/bbrc.1994.2428 7945395
    [Google Scholar]
  68. ForloniG. ColomboL. GirolaL. TagliaviniF. SalmonaM. Anti‐amyloidogenic activity of tetracyclines: Studies in vitro.FEBS Lett.2001487340440710.1016/S0014‑5793(00)02380‑2 11163366
    [Google Scholar]
  69. NayeriT. SarviS. SharifM. DaryaniA. Toxoplasma gondii: A possible etiologic agent for Alzheimer’s disease.Heliyon202176e0715110.1016/j.heliyon.2021.e07151 34141920
    [Google Scholar]
  70. TorresL. RobinsonS.A. KimD.G. YanA. ClelandT.A. BynoeM.S. Toxoplasma gondii alters NMDAR signaling and induces signs of Alzheimer’s disease in wild-type, C57BL/6 mice.J. Neuroinflammation20181515710.1186/s12974‑018‑1086‑8 29471842
    [Google Scholar]
  71. MahmoudvandH. SheibaniV. ShojaeeS. Toxoplasma gondii infection potentiates cognitive impairments of Alzheimer’s disease in the BALB/c mice.J. Parasitol.2016102662963510.1645/16‑28 27513205
    [Google Scholar]
  72. FanL. QiuX. ZhuZ. Nitazoxanide, an anti-parasitic drug, efficiently ameliorates learning and memory impairments in AD model mice.Acta Pharmacol. Sin.201940101279129110.1038/s41401‑019‑0220‑1 31000769
    [Google Scholar]
  73. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  74. LombardoD. KiselevM.A. Methods of liposomes preparation: Formation and control factors of versatile nanocarriers for biomedical and nanomedicine application.Pharmaceutics202214354310.3390/pharmaceutics14030543 35335920
    [Google Scholar]
  75. LiuP. ChenG. ZhangJ. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives.Molecules2022274137210.3390/molecules27041372 35209162
    [Google Scholar]
  76. NabiB. RehmanS. KhanS. BabootaS. AliJ. Ligand conjugation: An emerging platform for enhanced brain drug delivery.Brain Res. Bull.201814238439310.1016/j.brainresbull.2018.08.003 30086350
    [Google Scholar]
  77. AcharA. MyersR. GhoshC. Drug delivery challenges in brain disorders across the blood–brain barrier: Novel methods and future considerations for improved therapy.Biomedicines2021912183410.3390/biomedicines9121834 34944650
    [Google Scholar]
  78. KongL. LiX. NiY. Transferrin-modified osthole PEGylated liposomes travel the blood-brain barrier and mitigate Alzheimer’s disease-related pathology in APP/PS-1 mice.Int. J. Nanomedicine2020152841285810.2147/IJN.S239608 32425521
    [Google Scholar]
  79. GeX. WeiM. HeS. YuanW.E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery.Pharmaceutics20191125510.3390/pharmaceutics11020055 30700021
    [Google Scholar]
  80. LigaS. PaulC. MoacăE.A. PéterF. Niosomes: Composition, formulation techniques, and recent progress as delivery systems in cancer therapy.Pharmaceutics202416222310.3390/pharmaceutics16020223 38399277
    [Google Scholar]
  81. ThabetY. ElsabahyM. EissaN.G. Methods for preparation of niosomes: A focus on thin-film hydration method.Methods202219991510.1016/j.ymeth.2021.05.004 34000392
    [Google Scholar]
  82. YasaminehS. YasaminehP. Ghafouri KalajahiH. A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system.Int. J. Pharm.202262412187810.1016/j.ijpharm.2022.121878 35636629
    [Google Scholar]
  83. MomekovaD.B. GuglevaV.E. PetrovP.D. Nanoarchitectonics of multifunctional niosomes for advanced drug delivery.ACS Omega2021649332653327310.1021/acsomega.1c05083 34926878
    [Google Scholar]
  84. JaiswalM DudheR SharmaPK Nanoemulsion: An advanced mode of drug delivery system.3 Biotech2015 Apr;512312710.1007/s13205‑014‑0214‑0
    [Google Scholar]
  85. PreetiS.S. SambhakarS. MalikR. Nanoemulsion: An emerging novel technology for improving the bioavailability of drugs.Scientifica (Cairo)20232023112510.1155/2023/6640103 37928749
    [Google Scholar]
  86. KumarM. BishnoiR.S. ShuklaA.K. JainC.P. Techniques for formulation of nanoemulsion drug delivery system: A review.Prev. Nutr. Food Sci.201924322523410.3746/pnf.2019.24.3.225 31608247
    [Google Scholar]
  87. BonferoniM.C. RossiS. SandriG. Nanoemulsions for “nose-to-brain” drug delivery.Pharmaceutics20191128410.3390/pharmaceutics11020084 30781585
    [Google Scholar]
  88. EspinozaL.C. Silva-AbreuM. ClaresB. Formulation strategies to improve nose-to-brain delivery of donepezil.Pharmaceutics20191126410.3390/pharmaceutics11020064 30717264
    [Google Scholar]
  89. BukkeS.P.N. VenkateshC. Bandenahalli RajannaS. Solid lipid nanocarriers for drug delivery: Design innovations and characterization strategies—a comprehensive review.Discover Applied Sciences20246627910.1007/s42452‑024‑05897‑z
    [Google Scholar]
  90. StahlM.A. LüdtkeF.L. GrimaldiR. GiganteM.L. RibeiroA.P.B. Characterization and stability of solid lipid nanoparticles produced from different fully hydrogenated oils.Food Res. Int.202417611382110.1016/j.foodres.2023.113821 38163721
    [Google Scholar]
  91. SatapathyM.K. YenT.L. JanJ.S. Solid lipid nanoparticles (SLNs): An advanced drug delivery system targeting brain through BBB.Pharmaceutics2021138118310.3390/pharmaceutics13081183 34452143
    [Google Scholar]
  92. MunirM. ZamanM. WaqarM.A. KhanM.A. AlviM.N. Solid lipid nanoparticles: A versatile approach for controlled release and targeted drug delivery.J. Liposome Res.202434233534810.1080/08982104.2023.2268711 37840238
    [Google Scholar]
  93. ChattopadhyayN. ZastreJ. WongH.L. WuX.Y. BendayanR. Solid lipid nanoparticles enhance the delivery of the HIV protease inhibitor, atazanavir, by a human brain endothelial cell line.Pharm. Res.200825102262227110.1007/s11095‑008‑9615‑2 18516666
    [Google Scholar]
  94. SumeraA.A. AnwarA. OvaisM. KhanA. RazaA. Docetaxel‐loaded solid lipid nanoparticles: A novel drug delivery system.IET Nanobiotechnol.201711662162910.1049/iet‑nbt.2017.0001
    [Google Scholar]
  95. ZielińskaA. CarreiróF. OliveiraA.M. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules25163731 32824172
    [Google Scholar]
  96. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  97. PulingamT. ForoozandehP. ChuahJ.A. SudeshK. Exploring various techniques for the chemical and biological synthesis of polymeric nanoparticles.Nanomaterials (Basel)202212357610.3390/nano12030576 35159921
    [Google Scholar]
  98. HoaL.T.M. ChiN.T. NguyenL.H. ChienD.M. Preparation and characterisation of nanoparticles containing ketoprofen and acrylic polymers prepared by emulsion solvent evaporation method.J. Exp. Nanosci.20127218919710.1080/17458080.2010.515247
    [Google Scholar]
  99. ImamF. MukhopadhyayS. KothiyalP. Formulation and characterization of polymeric nanoparticle of Rivastigmine for effective management of Alzheimer’s disease.Saudi Pharm. J.202432510204810.1016/j.jsps.2024.102048 38585197
    [Google Scholar]
  100. CanoA. TurowskiP. EttchetoM. Nanomedicine-based technologies and novel biomarkers for the diagnosis and treatment of Alzheimer’s disease: From current to future challenges.J. Nanobiotechnology202119112210.1186/s12951‑021‑00864‑x 33926475
    [Google Scholar]
  101. JavedI. PengG. XingY. Inhibition of amyloid beta toxicity in zebrafish with a chaperone-gold nanoparticle dual strategy.Nat. Commun.2019101378010.1038/s41467‑019‑11762‑0 31439844
    [Google Scholar]
  102. ZhangJ. LiuR. ZhangD. Neuroprotective effects of maize tetrapeptide-anchored gold nanoparticles in Alzheimer’s disease.Colloids Surf. B Biointerfaces202120011158410.1016/j.colsurfb.2021.111584 33508658
    [Google Scholar]
  103. MiriA.L. HosniA.P. GomesJ.C. MainardesR.M. KhalilN.M. Study of the effects of L-tryptophane nanoparticles on motor behavior in Alzheimer’s experimental models.CNS Neurol. Disord. Drug Targets2019181445510.2174/1871527317666181105111157
    [Google Scholar]
  104. ChopraH. BibiS. SinghI. Nanomedicines in the management of Alzheimer’s disease: Current view and future prospects.Front. Aging Neurosci.20221487911410.3389/fnagi.2022.879114 35875806
    [Google Scholar]
  105. WangJ. WangK. ZhuZ. Inhibition of metal-induced amyloid β-peptide aggregation by a blood–brain barrier permeable silica–cyclen nanochelator.RSC Advances2019925141261413110.1039/C9RA02358E 35519314
    [Google Scholar]
  106. LoureiroJ. AndradeS. DuarteA. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease.Molecules201722227710.3390/molecules22020277 28208831
    [Google Scholar]
  107. RajuM. KundeS.S. AutiS.T. KulkarniY.A. WairkarS. Berberine loaded nanostructured lipid carrier for Alzheimer’s disease: Design, statistical optimization and enhanced in vivo performance.Life Sci.202128511999010.1016/j.lfs.2021.119990 34592234
    [Google Scholar]
  108. HuangY. ChangY. LiuL. WangJ. Nanomaterials for modulating the aggregation of β-amyloid peptides.Molecules20212614430110.3390/molecules26144301 34299575
    [Google Scholar]
  109. PoudelP. ParkS. Recent advances in the treatment of Alzheimer’s disease using nanoparticle-based drug delivery systems.Pharmaceutics202214483510.3390/pharmaceutics14040835 35456671
    [Google Scholar]
  110. QiY. GuoL. JiangY. ShiY. SuiH. ZhaoL. Brain delivery of quercetin-loaded exosomes improved cognitive function in AD mice by inhibiting phosphorylated tau-mediated neurofibrillary tangles.Drug Deliv.202027174575510.1080/10717544.2020.1762262 32397764
    [Google Scholar]
  111. AnjiReddyK. KarpagamS. Chitosan nanofilm and electrospun nanofiber for quick drug release in the treatment of Alzheimer’s disease: In vitro and in vivo evaluation.Int. J. Biol. Macromol.2017105Pt 113114210.1016/j.ijbiomac.2017.07.021 28698078
    [Google Scholar]
  112. KrishnamurthyN. GrimshawA.A. AxsonS.A. ChoeS.H. MillerJ.E. Drug repurposing: A systematic review on root causes, barriers and facilitators.BMC Health Serv. Res.202222197010.1186/s12913‑022‑08272‑z 35906687
    [Google Scholar]
  113. QosaH. AbuznaitA.H. HillR.A. KaddoumiA. Enhanced brain amyloid-β clearance by rifampicin and caffeine as a possible protective mechanism against Alzheimer’s disease.J. Alzheimers Dis.201231115116510.3233/JAD‑2012‑120319 22504320
    [Google Scholar]
  114. JankowskyJ.L. SluntH.H. GonzalesV. Persistent amyloidosis following suppression of Abeta production in a transgenic model of Alzheimer disease.PLoS Med.2005212e35510.1371/journal.pmed.0020355 16279840
    [Google Scholar]
  115. HeR.B. LiL. LiuL.Z. Ceftriaxone improves impairments in synaptic plasticity and cognitive behavior in APP/PS1 mouse model of Alzheimer’s disease by inhibiting extrasynaptic NMDAR‐STEP 61 signaling.J. Neurochem.2023166221523210.1111/jnc.15874 37284938
    [Google Scholar]
  116. PanahiY. SahebkarA. NaderiY. BarretoG.E. Neuroprotective effects of minocycline on focal cerebral ischemia injury: A systematic review.Neural Regen. Res.202015577378210.4103/1673‑5374.268898 31719236
    [Google Scholar]
  117. ChoiY. KimH.S. ShinK.Y. Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer’s disease models.Neuropsychopharmacology200732112393240410.1038/sj.npp.1301377 17406652
    [Google Scholar]
  118. NairK.G.S. VelmuruganR. SukumaranS.K. Formulation and optimization of ansamycin-loaded polymeric nanoparticles using response surface methodology for bacterial meningitis.Bionanoscience202010127929110.1007/s12668‑019‑00713‑0
    [Google Scholar]
  119. AbassiM. BoulwareD.R. RheinJ. Cryptococcal meningitis: diagnosis and management update.Curr. Trop. Med. Rep.201522909910.1007/s40475‑015‑0046‑y 26279970
    [Google Scholar]
  120. NixonG.L. McEnteeL. JohnsonA. Repurposing and reformulation of the antiparasitic agent flubendazole for treatment of cryptococcal meningoencephalitis, a neglected fungal disease.Antimicrob. Agents Chemother.2018624e01909e0191710.1128/AAC.01909‑17 29311092
    [Google Scholar]
  121. ZhouR. ZhuL. ZengZ. Targeted brain delivery of RVG29‐modified rifampicin‐loaded nanoparticles for Alzheimer’s disease treatment and diagnosis.Bioeng. Transl. Med.202273e1039510.1002/btm2.10395 36176608
    [Google Scholar]
  122. UmedaT. OnoK. SakaiA. Rifampicin is a candidate preventive medicine against amyloid-β and tau oligomers.Brain201613951568158610.1093/brain/aww042 27020329
    [Google Scholar]
  123. HolmkvistA.D. AgoreliusJ. ForniM. NilssonU.J. LinsmeierC.E. SchouenborgJ. Local delivery of minocycline-loaded PLGA nanoparticles from gelatin-coated neural implants attenuates acute brain tissue responses in mice.J. Nanobiotechnology20201812710.1186/s12951‑020‑0585‑9 32024534
    [Google Scholar]
  124. LiuL. VenkatramanS.S. YangY.Y. Polymeric micelles anchored with TAT for delivery of antibiotics across the blood–brain barrier.Biopolymers200890561762310.1002/bip.20998 18412128
    [Google Scholar]
  125. LampteyR.N.L. GothwalA. TrivediR. AroraS. SinghJ. Synthesis and characterization of fatty acid grafted chitosan polymeric micelles for improved gene delivery of vgf to the brain through intranasal route.Biomedicines202210249310.3390/biomedicines10020493 35203704
    [Google Scholar]
  126. XuN. JulinG. YuanjieZ. HaiW. QiushiR. JianghanC. Efficacy of intravenous amphotericin B-polybutylcyanoacrylate nanoparticles against Cryptococcaal meningitis in mice.Int. J. Nanomedicine2011690591310.2147/IJN.S17503 21720503
    [Google Scholar]
  127. LimW. RajinikanthP.S. MallikarjunC. KangY.B. Formulation and delivery of itraconazole to the brain using a nanolipid carrier system.Int. J. Nanomedicine201492117212610.2147/IJN.S57565 24833900
    [Google Scholar]
  128. ZiaS. Islam AqibA. MuneerA. Insights into nanoparticles-induced neurotoxicity and cope up strategies.Front. Neurosci.202317112746010.3389/fnins.2023.1127460 37214389
    [Google Scholar]
  129. GodfreyL. IannitelliA. GarrettN.L. Nanoparticulate peptide delivery exclusively to the brain produces tolerance free analgesia.J. Control. Release201827013514410.1016/j.jconrel.2017.11.041 29191784
    [Google Scholar]
  130. ZhangX. SongY. GongH. Neurotoxicity of titanium dioxide nanoparticles: A comprehensive review.Int. J. Nanomedicine2023187183720410.2147/IJN.S442801 38076727
    [Google Scholar]
  131. YouR. HoY.S. ChangR.C.C. The pathogenic effects of particulate matter on neurodegeneration: A review.J. Biomed. Sci.20222911510.1186/s12929‑022‑00799‑x 35189880
    [Google Scholar]
  132. LiuY. GaoY. LiuY. LiB. ChenC. WuG. Oxidative stress and acute changes in murine brain tissues after nasal instillation of copper particles with different sizes.J. Nanosci. Nanotechnol.20141464534454010.1166/jnn.2014.8290 24738425
    [Google Scholar]
  133. GuptaA. MumtazS. LiC.H. HussainI. RotelloV.M. Combatting antibiotic-resistant bacteria using nanomaterials.Chem. Soc. Rev.201948241542710.1039/C7CS00748E 30462112
    [Google Scholar]
  134. LuC.T. ZhaoY.Z. WongH.L. CaiJ. PengL. TianX.Q. Current approaches to enhance CNS delivery of drugs across the brain barriers.Int. J. Nanomedicine201492241225710.2147/IJN.S61288 24872687
    [Google Scholar]
  135. D’AgataF. RuffinattiF. BoschiS. Magnetic nanoparticles in the central nervous system: targeting principles, applications and safety issues.Molecules2017231910.3390/molecules23010009 29267188
    [Google Scholar]
  136. GuptaR. XieH. Nanoparticles in daily life: Applications, toxicity and regulations.J. Environ. Pathol. Toxicol. Oncol.201837320923010.1615/JEnvironPatholToxicolOncol.2018026009 30317972
    [Google Scholar]
  137. BaruaS. MitragotriS. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects.Nano Today20149222324310.1016/j.nantod.2014.04.00825132862
    [Google Scholar]
  138. Lee D, Minko T. Nanotherapeutics for nose-to-brain drug delivery: An approach to bypass the blood brain barrier.Pharmaceutics20211312204910.3390/pharmaceutics13122049 34959331
    [Google Scholar]
  139. LiJ. ZhengM. ShimoniO. Development of novel therapeutics targeting the blood–brain barrier: from barrier to carrier.Adv. Sci. (Weinh.)2021816210109010.1002/advs.202101090 34085418
    [Google Scholar]
  140. AnnuS.A. SartajA. QamarZ. An insight to brain targeting utilizing polymeric nanoparticles: effective treatment modalities for neurological disorders and brain tumor.Front. Bioeng. Biotechnol.20221078812810.3389/fbioe.2022.788128 35186901
    [Google Scholar]
  141. MasseriniM. Nanoparticles for brain drug delivery.ISRN Biochem.2013201311810.1155/2013/238428 25937958
    [Google Scholar]
  142. CaldeiraL.R. FernandesF.R. CostaD.F. FrézardF. AfonsoL.C.C. FerreiraL.A.M. Nanoemulsions loaded with amphotericin B: A new approach for the treatment of leishmaniasis.Eur. J. Pharm. Sci.20157012513110.1016/j.ejps.2015.01.015 25660615
    [Google Scholar]
  143. SaimanL. MarshallB.C. Mayer-HamblettN. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: A randomized controlled trial.JAMA2003290131749175610.1001/jama.290.13.1749 14519709
    [Google Scholar]
  144. BergH.F. MarahaB. SchefferG.J. PeetersM.F. KluytmansJ.A.J.W. Effect of clarithromycin on inflammatory markers in patients with atherosclerosis.Clin. Vaccine Immunol.200310452552810.1128/CDLI.10.4.525‑528.2003 12853380
    [Google Scholar]
  145. VelinoC. CarellaF. AdamianoA. Nanomedicine approaches for the pulmonary treatment of cystic fibrosis.Front. Bioeng. Biotechnol.2019740610.3389/fbioe.2019.00406 31921811
    [Google Scholar]
  146. ChenL. ShenJ. KangZ. Fusobacterium nucleatum-mimicking nanovehicles to overcome chemoresistance for breast cancer treatment by eliminating tumor-colonizing bacteria.Chem20241061783180310.1016/j.chempr.2024.01.030
    [Google Scholar]
  147. WadhwaS. SinghB. SharmaG. RazaK. KatareO.P. Liposomal fusidic acid as a potential delivery system: a new paradigm in the treatment of chronic plaque psoriasis.Drug Deliv.20162341204121310.3109/10717544.2015.1110845 26592918
    [Google Scholar]
  148. CankayaS. CankayaB. KilicU. KilicE. YulugB. The therapeutic role of minocycline in Parkinson’s disease.Drugs Context2019811410.7573/dic.212553 30873213
    [Google Scholar]
  149. GajendiranM. Jainuddin YousufS.M. ElangovanV. BalasubramanianS. Gold nanoparticle conjugated PLGA–PEG–SA–PEG–PLGA multiblock copolymer nanoparticles: synthesis, characterization, in vivo release of rifampicin.J. Mater. Chem. B Mater. Biol. Med.20142441842710.1039/C3TB21113D 32261386
    [Google Scholar]
  150. SivadasanD. RamakrishnanK. MahendranJ. RanganathanH. KaruppaiahA. RahmanH. Solid lipid nanoparticles: Applications and prospects in cancer treatment.Int. J. Mol. Sci.2023247619910.3390/ijms24076199 37047172
    [Google Scholar]
  151. WangC.P.J. ByunM.J. KimS.N. Biomaterials as therapeutic drug carriers for inflammatory bowel disease treatment.J. Control. Release202234511910.1016/j.jconrel.2022.02.028 35227764
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638329824241220055621
Loading
/content/journals/cddt/10.2174/0115701638329824241220055621
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test