Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Background

Computer-aided Drug Design (CADD) approaches are essential in the drug discovery and development process. Pharmaceutical and biotechnology organizations, as well as academic institutions, utilize CADDs to identify and enhance the efficacy of bioactive compounds.

Objective

This study aims to entice researchers by investigating the significance or value of Computer-aided Drug and Design (CADD) and its fundamental principles. The main focus is to speed up the drug discovery process, improve accuracy, and reduce the time and financial resources needed, ultimately making a positive impact on public health.

Methods

A comprehensive literature search was conducted using databases such as PubMed and Scopus, focusing on studies published till 2024. The selection of studies was based on their analysis of the connection between contemporary pharmaceutical research and computer-aided drug design, with a focus on both structure-based and ligand-based drug design strategies can include molecular docking, fragment-based drug discovery, de novo drug design, pharmacophore modelling, Quantitative structure-activity relationship, 3D-QSAR, homology modelling, absorption–distribution–metabolism–excretion–toxicity, and machine learning/deep learning.

Results

Computer-aided Drug Design (CADD) approaches are mathematical tools used to modify and measure certain characteristics of possible drug candidates. These methods are implemented in various applications. These encompass a variety of software products that are accessible to the public and can be purchased for corporate use. The CADD method is used at several stages of the drug development process, including as a foundation for chemical synthesis and biological testing. It provides information for the development of future SAR (Structure-Activity Relationship), resulting in enhanced molecules in terms of their activity and ADME (Absorption, Distribution, Metabolism, and Excretion). CADD techniques are predominantly employed to analyze and assess the affinity of large molecules for specific biomolecules, such as DNA, RNA, proteins, and enzymes, which serve exclusively as receptors. CADD improves the selection of lead compounds by predicting various parameters, including drug-likeness, physicochemical properties, pharmacokinetics, and toxicity. The application of CADD in drug modelling is to tackle challenges such as cost and time constraints. Modern computer-assisted drug discovery necessitates conducting virtual screening and high-throughput screening (HTS).

Conclusion

Computer-aided drug design plays a crucial role for academic institutions and leading pharmaceutical companies in the development of drugs that enhance potency with the significance of reducing both time and costs.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638361318241230073123
2024-12-31
2025-10-31
Loading full text...

Full text loading...

References

  1. YuW. MacKerellA.D. Computer-aided drug design methods.Methods Mol. Biol.2017152085106
    [Google Scholar]
  2. KapetanovicI.M. Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach.Chem. Biol. Interact.2008171216517610.1016/j.cbi.2006.12.006 17229415
    [Google Scholar]
  3. EceA. Computer-aided drug design.BMC Chem.20231712610.1186/s13065‑023‑00939‑w 36964610
    [Google Scholar]
  4. TiwariA. SinghS. Computational approaches in drug designing.Bioinformatics.Academic Press202220721710.1016/B978‑0‑323‑89775‑4.00010‑9
    [Google Scholar]
  5. SliwoskiG. KothiwaleS. MeilerJ. LoweE.W.Jr Computational methods in drug discovery.Pharmacol. Rev.201466133439510.1124/pr.112.007336 24381236
    [Google Scholar]
  6. WuZ. ChenS. WangY. Current perspectives and trend of computer-aided drug design: A review and bibliometric analysis.Int. J. Surg.202411063848387810.1097/JS9.0000000000001289 38502850
    [Google Scholar]
  7. SongC.M. LimS.J. TongJ.C. Recent advances in computer-aided drug design.Brief. Bioinform.200910557959110.1093/bib/bbp023 19433475
    [Google Scholar]
  8. MohsR.C. GreigN.H. Drug discovery and development: Role of basic biological research.Alzheimers Dement.20173465165710.1016/j.trci.2017.10.005 29255791
    [Google Scholar]
  9. SzymańskiP. MarkowiczM. Mikiciuk-OlasikE. Adaptation of high-throughput screening in drug discovery-toxicological screening tests.Int. J. Mol. Sci.201113142745210.3390/ijms13010427 22312262
    [Google Scholar]
  10. ArruéL. Cigna-MéndezA. BarbosaT. New drug design avenues targeting Alzheimer’s disease by pharmacoinformatics-aided tools.Pharmaceutics2022149191410.3390/pharmaceutics14091914 36145662
    [Google Scholar]
  11. HansonS NadigL AltevogtB Forum on neuroscience and nervous system disorders board on health sciences policy.2010
    [Google Scholar]
  12. MakK.K. WongY.H. PichikaM.R. Artificial intelligence in drug discovery and development.Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays.SwitzerlandSpringer2023138
    [Google Scholar]
  13. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms20184331 31487867
    [Google Scholar]
  14. SinghS. MalikB.K. SharmaD.K. Molecular drug targets and structure based drug design: A holistic approach.Bioinformation20061831432010.6026/97320630001314 17597912
    [Google Scholar]
  15. TiwariA. TiwariV. KumarS. Molecular docking and simulation analysis of cyclopeptides as anticancer agents.Curr. Drug Ther.202318324726110.2174/1574885518666230222113033
    [Google Scholar]
  16. LiontaE. SpyrouG. VassilatisD. CourniaZ. Structure-based virtual screening for drug discovery: Principles, applications and recent advances.Curr. Top. Med. Chem.201414161923193810.2174/1568026614666140929124445 25262799
    [Google Scholar]
  17. GuoZ. LiB. ChengL.T. ZhouS. McCammonJ.A. CheJ. Identification of protein-ligand binding sites by the level-set variational implicit-solvent approach.J. Chem. Theory Comput.201511275376510.1021/ct500867u 25941465
    [Google Scholar]
  18. GuedesI.A. PereiraF.S.S. DardenneL.E. Empirical scoring functions for structure-based virtual screening: Applications, critical aspects, and challenges.Front. Pharmacol.20189108910.3389/fphar.2018.01089 30319422
    [Google Scholar]
  19. FerreiraL. Dos SantosR. OlivaG. AndricopuloA. Molecular docking and structure-based drug design strategies.Molecules2015207133841342110.3390/molecules200713384 26205061
    [Google Scholar]
  20. BajadN.G. RayalaS. GuttiG. Systematic review on role of structure based drug design (SBDD) in the identification of anti-viral leads against SARS-Cov-2.Curr. Res. Pharmacol. Drug Discov.2021210002610.1016/j.crphar.2021.100026 34870145
    [Google Scholar]
  21. CebiE. LeeJ. SubramaniV.K. BakN. OhC. KimK.K. Cryo-electron microscopy-based drug design.Front. Mol. Biosci.202411134217910.3389/fmolb.2024.1342179 38501110
    [Google Scholar]
  22. ZhuK.F. YuanC. DuY.M. Applications and prospects of cryo-EM in drug discovery.Mil. Med. Res.20231011010.1186/s40779‑023‑00446‑y 36872349
    [Google Scholar]
  23. AparoyP. Kumar ReddyK. ReddannaP. Structure and ligand based drug design strategies in the development of novel 5-LOX inhibitors.Curr. Med. Chem.201219223763377810.2174/092986712801661112 22680930
    [Google Scholar]
  24. ShimJ. MacKerellA.D.Jr Computational ligand-based rational design: Role of conformational sampling and force fields in model development.MedChemComm20112535637010.1039/c1md00044f 21716805
    [Google Scholar]
  25. EkinsS. MirnyL. SchuetzE.G. A ligand-based approach to understanding selectivity of nuclear hormone receptors PXR, CAR, FXR, LXRalpha, and LXRbeta.Pharm. Res.200219121788180010.1023/A:1021429105173 12523656
    [Google Scholar]
  26. ChangC. EkinsS. BahadduriP. SwaanP.W. Pharmacophore-based discovery of ligands for drug transporters.Adv. Drug Deliv. Rev.20065812-131431145010.1016/j.addr.2006.09.006 17097188
    [Google Scholar]
  27. KurogiY. GünerO. Pharmacophore modeling and three-dimensional database searching for drug design using catalyst.Curr. Med. Chem.2001891035105510.2174/0929867013372481 11472240
    [Google Scholar]
  28. MarroneT.J. BriggsJ.M. McCammonJ.A. Structure-based drug design: Computational advances.Annu. Rev. Pharmacol. Toxicol.1997371719010.1146/annurev.pharmtox.37.1.71 9131247
    [Google Scholar]
  29. MasonJ. GoodA. MartinE. 3-D pharmacophores in drug discovery.Curr. Pharm. Des.20017756759710.2174/1381612013397843 11375769
    [Google Scholar]
  30. BernardD. CoopA. MacKerellA.D.Jr Conformationally sampled pharmacophore for peptidic δ opioid ligands.J. Med. Chem.200548247773778010.1021/jm050785p 16302816
    [Google Scholar]
  31. GünerO.F. Pharmacophore perception, development, and use in drug design.Internat'l University Line20002
    [Google Scholar]
  32. AkamatsuM. Current state and perspectives of 3D-QSAR.Curr. Top. Med. Chem.20022121381139410.2174/1568026023392887 12470286
    [Google Scholar]
  33. VermaR.P. HanschC. Camptothecins: A SAR/QSAR study.Chem. Rev.2009109121323510.1021/cr0780210 19099450
    [Google Scholar]
  34. HollowayM.K. A priori prediction of ligand affinity by energy minimization.Perspect. Drug Discov. Des.19989/110638410.1023/A:1027251719816
    [Google Scholar]
  35. BohlC.E. ChangC. MohlerM.L. A ligand-based approach to identify quantitative structure-activity relationships for the androgen receptor.J. Med. Chem.200447153765377610.1021/jm0499007 15239655
    [Google Scholar]
  36. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: A powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/157340911795677602 21534921
    [Google Scholar]
  37. AguP.C. AfiukwaC.A. OrjiO.U. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management.Sci. Rep.20231311339810.1038/s41598‑023‑40160‑2 37592012
    [Google Scholar]
  38. de MagalhãesC.S. AlmeidaD.M. BarbosaH.J.C. DardenneL.E. A dynamic niching genetic algorithm strategy for docking highly flexible ligands.Inf. Sci.201428920622410.1016/j.ins.2014.08.002
    [Google Scholar]
  39. ThomsenR. ChristensenM.H. MolDock: A new technique for high-accuracy molecular docking.J. Med. Chem.200649113315332110.1021/jm051197e 16722650
    [Google Scholar]
  40. GioiaD. BertazzoM. RecanatiniM. MasettiM. CavalliA. Dynamic docking: A paradigm shift in computational drug discovery.Molecules20172211202910.3390/molecules22112029 29165360
    [Google Scholar]
  41. BrooijmansN. KuntzI.D. Molecular recognition and docking algorithms.Annu. Rev. Biophys. Biomol. Struct.200332133537310.1146/annurev.biophys.32.110601.142532 12574069
    [Google Scholar]
  42. Bentham Science Publisher BSP Reid D, Simon A, Sadjad BS, Johnson AP. eHiTS: An innovative approach to the docking and scoring function problems.Curr. Protein Pept. Sci.20067542143510.2174/138920306778559412 17073694
    [Google Scholar]
  43. MoitessierN. EnglebienneP. LeeD. LawandiJ. CorbeilC.R. Towards the development of universal, fast and highly accurate docking/scoring methods: A long way to go.Br. J. Pharmacol.2008153S1Suppl. 1S7S2610.1038/sj.bjp.0707515 18037925
    [Google Scholar]
  44. KoesD.R. BaumgartnerM.P. CamachoC.J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise.J. Chem. Inf. Model.20135381893190410.1021/ci300604z 23379370
    [Google Scholar]
  45. AbagyanR. TotrovM. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins.J. Mol. Biol.19942353983100210.1006/jmbi.1994.1052 8289329
    [Google Scholar]
  46. FriesnerR.A. BanksJ.L. MurphyR.B. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy.J. Med. Chem.20044771739174910.1021/jm0306430 15027865
    [Google Scholar]
  47. VadlooriB. SharathA.K. PrabhuN.P. MauryaR. Homology modelling, molecular docking, and molecular dynamics simulations reveal the inhibition of Leishmania donovani dihydrofolate reductase-thymidylate synthase enzyme by Withaferin-A.BMC Res. Notes201811124610.1186/s13104‑018‑3354‑1 29661206
    [Google Scholar]
  48. HalgrenT.A. The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters.J. Am. Chem. Soc.1992114207827784310.1021/ja00046a032
    [Google Scholar]
  49. EldridgeM.D. MurrayC.W. AutonT.R. PaoliniG.V. MeeR.P. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes.J. Comput. Aided Mol. Des.199711542544510.1023/A:1007996124545 9385547
    [Google Scholar]
  50. HetényiC. van der SpoelD. Blind docking of drug‐sized compounds to proteins with up to a thousand residues.FEBS Lett.200658051447145010.1016/j.febslet.2006.01.074 16460734
    [Google Scholar]
  51. GaiebZ. LiuS. GathiakaS. D3R Grand Challenge 2: Blind prediction of protein–ligand poses, affinity rankings, and relative binding free energies.J. Comput. Aided Mol. Des.201832112010.1007/s10822‑017‑0088‑4 29204945
    [Google Scholar]
  52. GaiebZ. ParksC.D. ChiuM. D3R Grand Challenge 3: blind prediction of protein–ligand poses and affinity rankings.J. Comput. Aided Mol. Des.201933111810.1007/s10822‑018‑0180‑4 30632055
    [Google Scholar]
  53. MengE.C. ShoichetB.K. KuntzI.D. Automated docking with grid‐based energy evaluation.J. Comput. Chem.199213450552410.1002/jcc.540130412
    [Google Scholar]
  54. de MagalhaesC.S. BarbosaH.J. DardenneL.E. Selection-insertion schemes in genetic algorithms for the flexible ligand docking problem.Genetic and Evolutionary Computation Conference2004Seattle, WA, USA, June 26-3036837910.1007/978‑3‑540‑24854‑5_38
    [Google Scholar]
  55. JonesG. WillettP. GlenR.C. LeachA.R. TaylorR. Development and validation of a genetic algorithm for flexible Docking1. 1Edited by F. E. Cohen.J Mol Biol199726737274810.1006/jmbi.1996.0897 9126849
    [Google Scholar]
  56. RareyM. KramerB. LengauerT. KlebeG. A fast flexible docking method using an incremental construction algorithm.J. Mol. Biol.1996261347048910.1006/jmbi.1996.0477 8780787
    [Google Scholar]
  57. KorbO. StützleT. ExnerT.E. An ant colony optimization approach to flexible protein–ligand docking.Swarm Intell.20071211513410.1007/s11721‑007‑0006‑9
    [Google Scholar]
  58. LiH. LiC. GuiC. GAsDock: A new approach for rapid flexible docking based on an improved multi-population genetic algorithm.Bioorg. Med. Chem. Lett.200414184671467610.1016/j.bmcl.2004.06.091 15324886
    [Google Scholar]
  59. JainA.N. Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine.J. Med. Chem.200346449951110.1021/jm020406h 12570372
    [Google Scholar]
  60. TotrovM. AbagyanR. Flexible ligand docking to multiple receptor conformations: A practical alternative.Curr. Opin. Struct. Biol.200818217818410.1016/j.sbi.2008.01.004 18302984
    [Google Scholar]
  61. De ParisR. Vahl QuevedoC. RuizD.D. GarganoF. de SouzaO.N. A selective method for optimizing ensemble docking-based experiments on an InhA Fully-Flexible receptor model.BMC Bioinformatics201819123510.1186/s12859‑018‑2222‑2 29929475
    [Google Scholar]
  62. De ParisR. FrantzF.A. Norberto de SouzaO. RuizD.D.A. wFReDoW: A cloud-based web environment to handle molecular docking simulations of a fully flexible receptor model.BioMed Res. Int.20132013111210.1155/2013/469363 23691504
    [Google Scholar]
  63. CavasottoC.N. KovacsJ.A. AbagyanR.A. Representing receptor flexibility in ligand docking through relevant normal modes.J. Am. Chem. Soc.2005127269632964010.1021/ja042260c 15984891
    [Google Scholar]
  64. PagadalaN.S. SyedK. TuszynskiJ. Software for molecular docking: A review.Biophys. Rev.2017929110210.1007/s12551‑016‑0247‑1 28510083
    [Google Scholar]
  65. KohlbacherO. LenhofH.P. BALL—rapid software prototyping in computational molecular biology.Bioinformatics200016981582410.1093/bioinformatics/16.9.815 11108704
    [Google Scholar]
  66. OhueM. ShimodaT. SuzukiS. MatsuzakiY. IshidaT. AkiyamaY. MEGADOCK 4.0: An ultra–high-performance protein–protein docking software for heterogeneous supercomputers.Bioinformatics201430223281328310.1093/bioinformatics/btu532 25100686
    [Google Scholar]
  67. PierceB.G. HouraiY. WengZ. Accelerating protein docking in ZDOCK using an advanced 3D convolution library.PLoS One201169e2465710.1371/journal.pone.0024657 21949741
    [Google Scholar]
  68. RitchieD.W. VenkatramanV. Ultra-fast FFT protein docking on graphics processors.Bioinformatics201026192398240510.1093/bioinformatics/btq444 20685958
    [Google Scholar]
  69. OhueM. MatsuzakiY. UchikogaN. IshidaT. AkiyamaY. MEGADOCK: An all-to-all protein-protein interaction prediction system using tertiary structure data.Protein Pept. Lett.201321876677810.2174/09298665113209990050 23855673
    [Google Scholar]
  70. JiangF. KimS.H. “Soft docking”: Matching of molecular surface cubes.J. Mol. Biol.199121917910210.1016/0022‑2836(91)90859‑5 2023263
    [Google Scholar]
  71. Katchalski-KatzirE. SharivI. EisensteinM. FriesemA.A. AflaloC. VakserI.A. Molecular surface recognition: Determination of geometric fit between proteins and their ligands by correlation techniques.Proc. Natl. Acad. Sci. USA19928962195219910.1073/pnas.89.6.2195 1549581
    [Google Scholar]
  72. ZhangC. LaiL. SDOCK: A global protein‐protein docking program using stepwise force‐field potentials.J. Comput. Chem.201132122598261210.1002/jcc.21839 21618559
    [Google Scholar]
  73. LiN. SunZ. JiangF. SOFTDOCK application to protein–protein interaction benchmark and CAPRI.Proteins200769480180810.1002/prot.21728 17803216
    [Google Scholar]
  74. GarzonJ.I. Lopéz-BlancoJ.R. PonsC. FRODOCK: A new approach for fast rotational protein–protein docking.Bioinformatics200925192544255110.1093/bioinformatics/btp447 19620099
    [Google Scholar]
  75. KashyapA. SinghP.K. SilakariO. Counting on fragment based drug design approach for drug discovery.Curr. Top. Med. Chem.201918272284229310.2174/1568026619666181130134250 30499406
    [Google Scholar]
  76. KirschP. HartmanA.M. HirschA.K.H. EmptingM. Concepts and core principles of fragment-based drug design.Molecules20192423430910.3390/molecules24234309 31779114
    [Google Scholar]
  77. SureshB.M. TaghaviA. Childs-DisneyJ.L. DisneyM.D. Fragment-based approaches to identify RNA binders.J. Med. Chem.202366106523654110.1021/acs.jmedchem.3c00034 37186875
    [Google Scholar]
  78. BartuziD. KaczorA. Targowska-DudaK. MatosiukD. Recent advances and applications of molecular docking to G protein-coupled receptors.Molecules201722234010.3390/molecules22020340 28241450
    [Google Scholar]
  79. BonM. BilslandA. BowerJ. McAulayK. Fragment‐based drug discovery—the importance of high‐quality molecule libraries.Mol. Oncol.202216213761377710.1002/1878‑0261.13277 35749608
    [Google Scholar]
  80. MouchlisV.D. AfantitisA. SerraA. Advances in de novo drug design: From conventional to machine learning methods.Int. J. Mol. Sci.2021224167610.3390/ijms22041676 33562347
    [Google Scholar]
  81. AtzK. CotosL. IsertC. Prospective de novo drug design with deep interactome learning.Nat. Commun.2024151340810.1038/s41467‑024‑47613‑w 38649351
    [Google Scholar]
  82. ChalkleyM.J. MannS.I. DeGradoW.F. De novo metalloprotein design.Nat. Rev. Chem.202161315010.1038/s41570‑021‑00339‑5 35811759
    [Google Scholar]
  83. WatsonJ.L. JuergensD. BennettN.R. De novo design of protein structure and function with RFdiffusion.Nature202362079761089110010.1038/s41586‑023‑06415‑8 37433327
    [Google Scholar]
  84. HuaY. DaiX. XuY. Drug repositioning: Progress and challenges in drug discovery for various diseases.Eur. J. Med. Chem.202223411423910.1016/j.ejmech.2022.114239 35290843
    [Google Scholar]
  85. Douguet D. e-LEA3D: A computational-aided drug design web server.Nucleic Acids Res.201038Web Server)(Suppl. 2W615W62110.1093/nar/gkq32220444867
    [Google Scholar]
  86. EhrlichP. Über die constitution des diphtheriegiftes.Dtsch. Med. Wochenschr.1898243859760010.1055/s‑0029‑1204471
    [Google Scholar]
  87. GünerO.F. BowenJ.P. Setting the record straight: The origin of the pharmacophore concept.J. Chem. Inf. Model.20145451269128310.1021/ci5000533 24745881
    [Google Scholar]
  88. KasererT. BeckK. AkramM. OdermattA. SchusterD. Pharmacophore models and pharmacophore-based virtual screening: Concepts and applications exemplified on hydroxysteroid dehydrogenases.Molecules20152012227992283210.3390/molecules201219880 26703541
    [Google Scholar]
  89. GiordanoD. BiancanielloC. ArgenioM.A. FacchianoA. Drug design by pharmacophore and virtual screening approach.Pharmaceuticals202215564610.3390/ph15050646 35631472
    [Google Scholar]
  90. SeidelT. WiederO. GaronA. LangerT. Applications of the pharmacophore concept in natural product inspired drug design.Mol. Inform.20203911200005910.1002/minf.202000059 32578959
    [Google Scholar]
  91. GaoK. NguyenD.D. SreshtV. MathiowetzA.M. TuM. WeiG.W. Are 2D fingerprints still valuable for drug discovery?Phys. Chem. Chem. Phys.202022168373839010.1039/D0CP00305K 32266895
    [Google Scholar]
  92. KumarS. DeepikaD. KumarV. Pharmacophore modeling using machine learning for screening the blood–brain barrier permeation of xenobiotics.Int. J. Environ. Res. Public Health202219201347110.3390/ijerph192013471 36294053
    [Google Scholar]
  93. SzilágyiK. FlachnerB. HajdúI. Rapid identification of potential drug candidates from multi-million compounds’ repositories. combination of 2D similarity search with 3D ligand/structure based methods and in vitro screening.Molecules20212618559310.3390/molecules26185593 34577064
    [Google Scholar]
  94. McGregorM.J. MuskalS.M. Pharmacophore fingerprinting. 1. Application of QSAR and focused library design.J. Chem. Inf. Comput. Sci.199939356957410.1021/ci980159j 10361729
    [Google Scholar]
  95. PalS. KumarV. KunduB. Ligand-based pharmacophore modeling, virtual screening and molecular docking studies for discovery of potential topoisomerase I inhibitors.Comput. Struct. Biotechnol. J.20191729131010.1016/j.csbj.2019.02.006 30867893
    [Google Scholar]
  96. BastikarV. BastikarA. GuptaP. Quantitative structure–activity relationship-based computational approaches.Academic Press2022
    [Google Scholar]
  97. SokoutiB. Hamzeh-MivehroudM. 6D-QSAR for predicting biological activity of human aldose reductase inhibitors using quasar receptor surface modeling.BMC Chem.20231716310.1186/s13065‑023‑00970‑x 37349775
    [Google Scholar]
  98. YuanitaE. Sudirman, Dharmayani NKT, Ulfa M, Syahri J. Quantitative structure–activity relationship (QSAR) and molecular docking of xanthone derivatives as anti-tuberculosis agents.J. Clin. Tuberc. Other Mycobact. Dis.20202110020310.1016/j.jctube.2020.100203 33294629
    [Google Scholar]
  99. SchneiderG. Modeling structure-activity relationships.Madame Curie Bioscience Database.Landes Bioscience2013
    [Google Scholar]
  100. VilarS. CostanziS. Predicting the biological activities through QSAR analysis and docking-based scoring.Methods Mol. Biol.201291427128410.1007/978‑1‑62703‑023‑6_16 22976034
    [Google Scholar]
  101. MuratovE.N. BajorathJ. SheridanR.P. QSAR without borders.Chem. Soc. Rev.202049113525356410.1039/D0CS00098A 32356548
    [Google Scholar]
  102. NiaziS.K. MariamZ. Recent advances in machine-learning-based chemoinformatics: A comprehensive review.Int. J. Mol. Sci.202324141148810.3390/ijms241411488 37511247
    [Google Scholar]
  103. HassanzadehF. Sadeghian-RiziS. SakhtemanA. A quantitative structure-activity relationship (QSAR) study of some diaryl urea derivatives of B-RAF inhibitors.Res. Pharm. Sci.201611644545310.4103/1735‑5362.194869 28003837
    [Google Scholar]
  104. RasulevB. Recent developments in 3D QSAR and molecular docking studies of organic and nanostructures.Handbook of Computational Chemistry.Springer Nature201621332161
    [Google Scholar]
  105. VermaJ. KhedkarV. CoutinhoE. 3D-QSAR in drug design-A review.Curr. Top. Med. Chem.20101019511510.2174/156802610790232260 19929826
    [Google Scholar]
  106. ZhaoL. FuL. LiG. Three-dimensional quantitative structural-activity relationship and molecular dynamics study of multivariate substituted 4-oxyquinazoline HDAC6 inhibitors.Mol. Divers.20232731123114010.1007/s11030‑022‑10474‑w 35767128
    [Google Scholar]
  107. KlebeG. AbrahamU. Comparative molecular similarity index analysis (CoMSIA) to study hydrogen-bonding properties and to score combinatorial libraries.J. Comput. Aided Mol. Des.199913111010.1023/A:1008047919606 10087495
    [Google Scholar]
  108. ZhaoX. ChenM. HuangB. JiH. YuanM. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) studies on α(1A)-adrenergic receptor antagonists based on pharmacophore molecular alignment.Int. J. Mol. Sci.201112107022703710.3390/ijms12107022 22072933
    [Google Scholar]
  109. VyasV.K. UkawalaR.D. ChinthaC. GhateM. Homology modeling a fast tool for drug discovery: Current perspectives.Indian J. Pharm. Sci.201274111710.4103/0250‑474X.102537 23204616
    [Google Scholar]
  110. CavasottoC.N. PhatakS.S. Homology modeling in drug discovery: Current trends and applications.Drug Discov. Today20091413-1467668310.1016/j.drudis.2009.04.006 19422931
    [Google Scholar]
  111. TramontanoA. MoreaV. Assessment of homology-based predictions in CASP5.Proteins200353S6Suppl. 635236810.1002/prot.10543 14579324
    [Google Scholar]
  112. CapenerC.E. ShrivastavaI.H. RanatungaK.M. ForrestL.R. SmithG.R. SansomM.S.P. Homology modeling and molecular dynamics simulation studies of an inward rectifier potassium channel.Biophys. J.20007862929294210.1016/S0006‑3495(00)76833‑0 10827973
    [Google Scholar]
  113. OshiroC. BradleyE.K. EksterowiczJ. Performance of 3D-database molecular docking studies into homology models.J. Med. Chem.200447376476710.1021/jm0300781 14736258
    [Google Scholar]
  114. HilbertM. BöhmG. JaenickeR. Structural relationships of homologous proteins as a fundamental principle in homology modeling.Proteins199317213815110.1002/prot.340170204 8265562
    [Google Scholar]
  115. FrançoijsC.J.J. KlompJ.P.G. KnegtelR.M.A. Sequence annotation of nuclear receptor ligand-binding domains by automated homology modeling.Protein Eng. Des. Sel.200013639139410.1093/protein/13.6.391 10877848
    [Google Scholar]
  116. WongW.C. Maurer-StrohS. EisenhaberF. Not all transmembrane helices are born equal: Towards the extension of the sequence homology concept to membrane proteins.Biol. Direct2011615710.1186/1745‑6150‑6‑57 22024092
    [Google Scholar]
  117. JooK. LeeJ. LeeJ. Methods for accurate homology modeling by global optimization.Methods Mol. Biol.2012857175188
    [Google Scholar]
  118. ShiJ. BlundellT.L. MizuguchiK. FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties11Edited by B. Honig.J Mol Biol200131012435710.1006/jmbi.2001.4762 11419950
    [Google Scholar]
  119. XiangZ. Advances in homology protein structure modeling.Curr. Protein Pept. Sci.20067321722710.2174/138920306777452312 16787261
    [Google Scholar]
  120. ZhuJ. FanH. PerioleX. HonigB. MarkA.E. Refining homology models by combining replica‐exchange molecular dynamics and statistical potentials.Proteins20087241171118810.1002/prot.22005 18338384
    [Google Scholar]
  121. HanR. Leo-MaciasA. ZerbinoD. BastollaU. Contreras-MoreiraB. OrtizA.R. An efficient conformational sampling method for homology modeling.Proteins200871117518810.1002/prot.21672 17985353
    [Google Scholar]
  122. VardhanS. SahooS.K. In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19.Comput. Biol. Med.202012410393610.1016/j.compbiomed.2020.103936 32738628
    [Google Scholar]
  123. Nandini AshaR. Ravindran Durai NayagamB. BhuvaneshN. Synthesis, molecular docking, and in silico ADMET studies of 4-benzyl-1-(2,4,6-trimethyl-benzyl)-piperidine: Potential Inhibitor of SARS-CoV2.Bioorg. Chem.202111210496710.1016/j.bioorg.2021.104967 33975232
    [Google Scholar]
  124. DaraS. DhamercherlaS. JadavS.S. BabuC.H.M. AhsanM.J. Machine learning in drug discovery: A review.Artif. Intell. Rev.20225531947199910.1007/s10462‑021‑10058‑4 34393317
    [Google Scholar]
  125. TurzoS B A HantzE R LindertS Applications of machine learning in computer-aided drug discovery.QRB Discov20223e14.2022
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638361318241230073123
Loading
/content/journals/cddt/10.2174/0115701638361318241230073123
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test