Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Artificial intelligence (AI) is one of the fastest-growing fields in various industries, including engineering, architecture, medical and clinical research, aerospace, and others. AI, which is a combination of machine learning (ML), deep learning (DL), and human intelligence (HI), is revolutionizing drug discovery and development by making it more cost-effective and efficient. It is also being used in fields such as medicinal chemistry, molecular and cell biology, pharmacology, pharmacokinetics, formulation development, and toxicology. AI plays a crucial role in clinical testing by enhancing patient stratification, patient sample evaluation, and trial design, assisting in the identification of biomarkers, determining efficacy criteria, dose selection, trial length, and target patient population selection. The primary objective of this study is to emphasize the importance of AI in clinical trials and drug development, while also exploring the existing challenges and potential advancements in AI within the healthcare industry. A comprehensive literature review was conducted, covering the period from 1998 to 2023. The Science Direct, PubMed, and Google Scholar databases were searched for relevant information. A variety of publications, including Research Gate, Nature, MDPI, and Springer Link, provided pertinent data. This study aimed to gain a deeper understanding of the use of AI in clinical research and drug development, as well as its potential and limitations. We also discuss the benefits and main data limitations of the traditional trial and drug development approach. AI approaches are currently being used to overcome research obstacles and eliminate conceptual or methodological limitations. After discussing possible obstacles and coping mechanisms, we provide several recommendations to help individuals understand the challenges and difficulties associated with clinical research and drug development. It is essential for pharmaceutical companies to have a cutting-edge AI strategy if AI is to become a routine tool for clinical research and drug development.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638314252241016165345
2024-10-28
2025-09-28
Loading full text...

Full text loading...

References

  1. BajwaJ. MunirU. NoriA. WilliamsB. Artificial intelligence in healthcare: Transforming the practice of medicine.Future Healthc. J.202182e188e19410.7861/fhj.2021‑009534286183
    [Google Scholar]
  2. AlowaisS.A. AlghamdiS.S. AlsuhebanyN. AlqahtaniT. AlshayaA.I. AlmoharebS.N. AldairemA. AlrashedM. Bin SalehK. BadreldinH.A. Al YamiM.S. Al HarbiS. AlbekairyA.M. Revolutionizing healthcare: The role of artificial intelligence in clinical practice.BMC Med. Educ.202323168910.1186/s12909‑023‑04698‑z37740191
    [Google Scholar]
  3. RandhawaG.K. JacksonM. The role of artificial intelligence in learning and professional development for healthcare professionals.Healthc. Manage. Forum2020331192410.1177/084047041986903231802725
    [Google Scholar]
  4. SecinaroS. CalandraD. SecinaroA. MuthuranguV. BianconeP. The role of artificial intelligence in healthcare: A structured literature review.BMC Med. Inform. Decis. Mak.202121112510.1186/s12911‑021‑01488‑933836752
    [Google Scholar]
  5. Tutorials - Javatpoint.2011Available from: https://www.javatpoint.com/
  6. DwivediY.K. HughesL. IsmagilovaE. AartsG. CoombsC. CrickT. DuanY. DwivediR. EdwardsJ. EirugA. GalanosV. IlavarasanP.V. JanssenM. JonesP. KarA.K. KizginH. KronemannB. LalB. LuciniB. MedagliaR. Le Meunier-FitzHughK. Le Meunier-FitzHughL.C. MisraS. MogajiE. SharmaS.K. SinghJ.B. RaghavanV. RamanR. RanaN.P. SamothrakisS. SpencerJ. TamilmaniK. TubadjiA. WaltonP. WilliamsM.D. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy.Int. J. Inf. Manage.20215710199410199410.1016/j.ijinfomgt.2019.08.002
    [Google Scholar]
  7. RazaM.A. AzizS. NoreenM. SaeedA. AnjumI. AhmedM. RazaS.M. Artificial Intelligence (AI) in pharmacy: An overview of innovations.Innov. Pharm.20221321310.24926/iip.v13i2.483936654703
    [Google Scholar]
  8. ChoudhuryA. AsanO. Role of Artificial Intelligence in patient safety outcomes: Systematic literature review.JMIR Med. Inform.202087e1859910.2196/1859932706688
    [Google Scholar]
  9. WHO issues first global report on Artificial Intelligence (AI) in health and six guiding principles for its design and use.2021Available from: https://www.who.int/news/item/28-06-2021-who-issues-first-global-report-on-ai-in-health-and-six-guiding-principles-for-its-design-and-use(Accessed on: August 20, 2024)
  10. NascimentoI.J.S. de AquinoT.M. da Silva-JúniorE.F. The new era of drug discovery: The power of computer-aided drug design (CADD).Lett. Drug Des. Discov.2022191195195510.2174/1570180819666220405225817
    [Google Scholar]
  11. PushkaranA.C. ArabiA.A. From understanding diseases to drug design: Can artificial intelligence bridge the gap?Artif. Intell. Rev.20245748610.1007/s10462‑024‑10714‑5
    [Google Scholar]
  12. BerdigaliyevN. AljofanM. An overview of drug discovery and development.Future Med. Chem.2020121093994710.4155/fmc‑2019‑030732270704
    [Google Scholar]
  13. Di FilippoJ.I. BolliniM. CavasottoC.N. A machine learning model to predict drug transfer across the human placenta barrier.Front Chem.2021971467810.3389/fchem.2021.71467834354979
    [Google Scholar]
  14. SellwoodM.A. AhmedM. SeglerM.H.S. BrownN. Artificial intelligence in drug discovery.Future Med. Chem.201810172025202810.4155/fmc‑2018‑021230101607
    [Google Scholar]
  15. Blanco-GonzálezA. CabezónA. Seco-GonzálezA. Conde-TorresD. Antelo-RiveiroP. PiñeiroÁ. Garcia-FandinoR. The role of AI in drug discovery: Challenges, opportunities, and strategies.Pharmaceuticals (Basel)202316689189110.3390/ph1606089137375838
    [Google Scholar]
  16. VamathevanJ. ClarkD. CzodrowskiP. DunhamI. FerranE. LeeG. LiB. MadabhushiA. ShahP. SpitzerM. ZhaoS. Applications of machine learning in drug discovery and development.Nat. Rev. Drug Discov.201918646347710.1038/s41573‑019‑0024‑530976107
    [Google Scholar]
  17. LoY.C. RensiS.E. TorngW. AltmanR.B. Machine learning in chemoinformatics and drug discovery.Drug Discov. Today20182381538154610.1016/j.drudis.2018.05.01029750902
    [Google Scholar]
  18. SchmidhuberJ. Deep learning in neural networks: An overview.Neural Netw.201561618511710.1016/j.neunet.2014.09.00325462637
    [Google Scholar]
  19. XueL. BajorathJ. Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening.Comb. Chem. High Throughput Screen.20003536337210.2174/138620700333145411032954
    [Google Scholar]
  20. SchneiderG. Mind and machine in drug design.Nat. Mach. Intell.20191312813010.1038/s42256‑019‑0030‑7
    [Google Scholar]
  21. FeinbergE.N. SurD. WuZ. HusicB.E. MaiH. LiY. SunS. YangJ. RamsundarB. PandeV.S. PotentialNet for molecular property prediction.ACS Cent. Sci.20184111520153010.1021/acscentsci.8b0050730555904
    [Google Scholar]
  22. BrownT. WyattJ. Design thinking for social innovation.Dev. Outreach2010121294310.1596/1020‑797X_12_1_29
    [Google Scholar]
  23. KroschinskyF. StölzelF. von BoninS. BeutelG. KochanekM. KiehlM. SchellongowskiP. New drugs, new toxicities: Severe side effects of modern targeted and immunotherapy of cancer and their management.Crit. Care20172118910.1186/s13054‑017‑1678‑128407743
    [Google Scholar]
  24. LiZ. LiX. LiuX. FuZ. XiongZ. WuX. TanX. ZhaoJ. ZhongF. WanX. LuoX. ChenK. JiangH. ZhengM. KinomeX: A web application for predicting kinome-wide polypharmacology effect of small molecules.Bioinformatics201935245354535610.1093/bioinformatics/btz51931228181
    [Google Scholar]
  25. MiljkovićF. VogtM. BajorathJ. Systematic computational identification of promiscuity cliff pathways formed by inhibitors of the human kinome.J. Comput. Aided Mol. Des.201933655957210.1007/s10822‑019‑00198‑930915709
    [Google Scholar]
  26. ChaudhariR. TanZ. HuangB. ZhangS. Computational polypharmacology: A new paradigm for drug discovery.Expert Opin. Drug Discov.201712327929110.1080/17460441.2017.128002428067061
    [Google Scholar]
  27. TanZ. ChaudhaiR. ZhangS. Polypharmacology in drug development: A minireview of current technologies.ChemMedChem201611121211121810.1002/cmdc.20160006727154144
    [Google Scholar]
  28. LiH. SzeK.H. LuG. BallesterP.J. Machine‐learning scoring functions for structure‐based drug lead optimization.Wiley Interdiscip. Rev. Comput. Mol. Sci.2020105e146510.1002/wcms.1465
    [Google Scholar]
  29. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms2018433131487867
    [Google Scholar]
  30. ChaudhariR. FongL.W. TanZ. HuangB. ZhangS. An up-to-date overview of computational polypharmacology in modern drug discovery.Expert Opin. Drug Discov.20201591025104410.1080/17460441.2020.176706332452701
    [Google Scholar]
  31. ShenC. DingJ. WangZ. CaoD. DingX. HouT. From machine learning to deep learning: Advances in scoring functions for protein–ligand docking.Wiley Interdiscip. Rev. Comput. Mol. Sci.2020101e142910.1002/wcms.1429
    [Google Scholar]
  32. ChuaH.E. BhowmickS.S. Tucker-KelloggL. Synergistic target combination prediction from curated signaling networks: Machine learning meets systems biology and pharmacology.Methods2017129608010.1016/j.ymeth.2017.05.01528552265
    [Google Scholar]
  33. Al-AliH. LeeD.H. DanziM.C. NassifH. GautamP. WennerbergK. ZuercherB. DrewryD.H. LeeJ.K. LemmonV.P. BixbyJ.L. Rational polypharmacology: Systematically identifying and engaging multiple drug targets to promote axon growth.ACS Chem. Biol.20151081939195110.1021/acschembio.5b0028926056718
    [Google Scholar]
  34. PrasadK. KumarV. Artificial intelligence-driven drug repurposing and structural biology for SARS-CoV-2.Curr. Res. Pharmacol. Drug Discov.2021210004210.1016/j.crphar.2021.10004234870150
    [Google Scholar]
  35. PiccialliF. di ColaV.S. GiampaoloF. CuomoS. The role of Artificial Intelligence in fighting the COVID-19 pandemic.Inf. Syst. Front.20212361467149710.1007/s10796‑021‑10131‑x33935585
    [Google Scholar]
  36. MottaqiM.S. MohammadipanahF. SajediH. Contribution of machine learning approaches in response to SARS-CoV-2 infection.Inform. Med. Unlocked20212310052610.1016/j.imu.2021.10052633869730
    [Google Scholar]
  37. De RosaM.C. PurohitR. García-SosaA.T. Drug repurposing: A nexus of innovation, science, and potential.Sci. Rep.20231311788710.1038/s41598‑023‑44264‑737857641
    [Google Scholar]
  38. YangF. ZhangQ. JiX. ZhangY. LiW. PengS. XueF. Machine learning applications in drug repurposing.Interdiscip. Sci.2022141152110.1007/s12539‑021‑00487‑835066811
    [Google Scholar]
  39. SinghA. Artificial intelligence for drug repurposing against infectious diseases.Artif. Intell. Chem.20242210007110.1016/j.aichem.2024.100071
    [Google Scholar]
  40. AronovaE.A. BelovB.S. GridnevaG.I. Revisiting the question of the safety of glucocorticoids use of in the treatment of rheumatoid arthritis.Mod. Rheumatol. J.2023173899510.14412/1996‑7012‑2023‑3‑89‑95
    [Google Scholar]
  41. PeskaL. BuzaK. KollerJ. Drug-target interaction prediction: A Bayesian ranking approach.Comput. Methods Programs Biomed.2017152152110.1016/j.cmpb.2017.09.00329054256
    [Google Scholar]
  42. LiY.Y. AnJ. JonesS.J.M. A computational approach to finding novel targets for existing drugs.PLoS Comput. Biol.792011e100213910.1371/journal.pcbi.1002139
    [Google Scholar]
  43. XiaZ. WuL.Y. ZhouX. WongS.T.C. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces.BMC Syst. Biol.20104S2S610.1186/1752‑0509‑4‑S2‑S620840733
    [Google Scholar]
  44. TakarabeM. KoteraM. NishimuraY. GotoS. YamanishiY. Drug target prediction using adverse event report systems: A pharmacogenomic approach.Bioinformatics20122818i611i61810.1093/bioinformatics/bts41322962489
    [Google Scholar]
  45. WhitebreadS. HamonJ. BojanicD. UrbanL. Keynote review: In vitro safety pharmacology profiling: An essential tool for successful drug development.Drug Discov. Today200510211421143310.1016/S1359‑6446(05)03632‑916243262
    [Google Scholar]
  46. JangH.Y. SongJ. KimJ.H. LeeH. KimI.W. MoonB. OhJ.M. Machine learning-based quantitative prediction of drug exposure in drug-drug interactions using drug label information.NPJ Digit. Med.2022518810.1038/s41746‑022‑00639‑035817846
    [Google Scholar]
  47. HansenK. BieglerF. RamakrishnanR. PronobisW. von LilienfeldO.A. MüllerK.R. TkatchenkoA. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space.J. Phys. Chem. Lett.20156122326233110.1021/acs.jpclett.5b0083126113956
    [Google Scholar]
  48. Pérez SantínE. Rodríguez SolanaR. González GarcíaM. García SuárezM.D.M. Blanco DíazG.D. Cima CabalM.D. Moreno RojasJ.M. López SánchezJ.I. Toxicity prediction based on artificial intelligence: A multidisciplinary overview.Wiley Interdiscip. Rev. Comput. Mol. Sci.2021115e151610.1002/wcms.1516
    [Google Scholar]
  49. KrittanawongC. JohnsonK.W. TangW.H.W. How artificial intelligence could redefine clinical trials in cardiovascular medicine: Lessons learned from oncology.Per. Med.2019162879210.2217/pme‑2018‑013030838909
    [Google Scholar]
  50. BasileA.O. YahiA. TatonettiN.P. Artificial intelligence for drug toxicity and safety.Trends Pharmacol. Sci.201940962463510.1016/j.tips.2019.07.00531383376
    [Google Scholar]
  51. SangariN QuY. A comparative study on machine learning algorithms for predicting breast cancer prognosis in improving clinical trials.International Conference on Computational Science and Computational Intelligence (CSCI)Las Vegas, NV, USA16-18 Dec, 202081381810.1109/CSCI51800.2020.00152
    [Google Scholar]
  52. DelsoG. CirilloD. KaggieJ.D. ValenciaA. MetserU. Veit-HaibachP. How to design ai-driven clinical trials in nuclear medicine.Semin. Nucl. Med.202151211211910.1053/j.semnuclmed.2020.09.00333509367
    [Google Scholar]
  53. FeijooF. PalopoliM. BernsteinJ. SiddiquiS. AlbrightT.E. Key indicators of phase transition for clinical trials through machine learning.Drug Discov. Today202025241442110.1016/j.drudis.2019.12.01431926317
    [Google Scholar]
  54. WeisslerE.H. NaumannT. AnderssonT. RanganathR. ElementoO. LuoY. FreitagD.F. BenoitJ. HughesM.C. KhanF. SlaterP. ShameerK. RoeM. HutchisonE. KollinsS.H. BroedlU. MengZ. WongJ.L. CurtisL. HuangE. GhassemiM. The role of machine learning in clinical research: Transforming the future of evidence generation.Trials202122153710.1186/s13063‑021‑05489‑x34399832
    [Google Scholar]
  55. ZhavoronkovA. VanhaelenQ. OpreaT.I. Will Artificial Intelligence for drug discovery impact clinical pharmacology?Clin. Pharmacol. Ther.2020107478078510.1002/cpt.179531957003
    [Google Scholar]
  56. GligorijevicJ. GligorijevicD. PavlovskiM. MilkovitsE. GlassL. GrierK. VankireddyP. ObradovicZ. Optimizing clinical trials recruitment via deep learning.J. Am. Med. Inform. Assoc.201926111195120210.1093/jamia/ocz06431188432
    [Google Scholar]
  57. FrankI. BluteM.L. ChevilleJ.C. LohseC.M. WeaverA.L. ZinckeH. An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score.J. Urol.200216862395240010.1016/S0022‑5347(05)64153‑512441925
    [Google Scholar]
  58. JiangF. JiangY. ZhiH. DongY. LiH. MaS. WangY. DongQ. ShenH. WangY. Artificial intelligence in healthcare: Past, present and future.Stroke Vasc. Neurol.20172423024310.1136/svn‑2017‑00010129507784
    [Google Scholar]
  59. PaulD. SanapG. ShenoyS. KalyaneD. KaliaK. TekadeR.K. Artificial intelligence in drug discovery and development.Drug Discov. Today2021261809310.1016/j.drudis.2020.10.01033099022
    [Google Scholar]
  60. HardmanT.C. AitchisonR. ScaifeR. EdwardsJ. SlaterG. The future of clinical trials and drug development: 2050.Drugs Context20231211110.7573/dic.2023‑2‑237313038
    [Google Scholar]
  61. Growth insight - Role of AI in the pharmaceutical industry, global, 2018-2022.Available from: https://www.researchandmarkets.com/reports/4846380/growth-insight-role-of-ai-in-the?srsltid=AfmBOopGkviX07GkvvP2As5i1yUcv8nK43meMau6bsH8FeXb4EURO3z9
  62. Jämsä-JounelaS-L. Future trends in process automation.Annu. Rev. Control.312200721122010.3182/20070213‑3‑CU‑2913.00003
    [Google Scholar]
  63. AskinS BurkhalterD CaladoG Artificial Intelligence applied to clinical trials: Opportunities and challenges.Health Technol. (Berl).132203213202310.1007/s12553‑023‑00738‑2
    [Google Scholar]
  64. Legacy communities - IBM TechXchange community.Available from: https://www.ibm.com/developerworks/community/blogs/InsideSystemStorage/entry/ibm_watson_how_to_build_your_own_watson_jr_in_your_basement7?lang=en(Accessed on: August 21, 2024)
  65. DilsizianS.E. SiegelE.L. Artificial intelligence in medicine and cardiac imaging: Harnessing big data and advanced computing to provide personalized medical diagnosis and treatment.Curr. Cardiol. Rep.201416144110.1007/s11886‑013‑0441‑824338557
    [Google Scholar]
  66. ParkC.W. SeoS.W. KangN. KoB. ChoiB.W. ParkC. ChangD.K. KimH. KimH. LeeH. JangJ. YeJ.C. JeonJ.H. SeoJ.B. KimK.J. JungK.H. KimN. PaekS. ShinS.Y. YooS. ChoiY.S. KimY. YoonH.J. Artificial Intelligence in health care: Current applications and issues.J. Korean Med. Sci.20203542e37910.3346/jkms.2020.35.e37933140591
    [Google Scholar]
  67. GuptaR. SrivastavaD. SahuM. TiwariS. AmbastaR.K. KumarP. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery.Mol. Divers.20212531315136010.1007/s11030‑021‑10217‑333844136
    [Google Scholar]
  68. KarekarS.R. VazifdarA.K. Current status of clinical research using artificial intelligence techniques.Perspect. Clin. Res.2021121485210.4103/picr.PICR_25_2033816209
    [Google Scholar]
  69. BhattA. Artificial intelligence in managing clinical trial design and conduct.Perspect. Clin. Res.20211211310.4103/picr.PICR_312_2033816201
    [Google Scholar]
  70. 7 applications of machine learning in pharma and medicine.2020Available from: https://emerj.com/ai-sector-overviews/machine-learning-in-pharma-medicine/(Accessed on: August 21, 2024)
  71. LiuX. FaesL. KaleA.U. WagnerS.K. FuD.J. BruynseelsA. MahendiranT. MoraesG. ShamdasM. KernC. LedsamJ.R. SchmidM.K. BalaskasK. TopolE.J. BachmannL.M. KeaneP.A. DennistonA.K. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: A systematic review and meta-analysis.Lancet Digit. Health201916e271e29710.1016/S2589‑7500(19)30123‑233323251
    [Google Scholar]
  72. MakK.K. PichikaM.R. Artificial intelligence in drug development: Present status and future prospects.Drug Discov. Today201924377378010.1016/j.drudis.2018.11.01430472429
    [Google Scholar]
  73. HarrerS. ShahP. AntonyB. HuJ. artificial intelligence for clinical trial design.Trends Pharmacol. Sci.201940857759110.1016/j.tips.2019.05.00531326235
    [Google Scholar]
  74. DSP-1181: Drug created using AI enters clinical trials.2020Available from: https://www.europeanpharmaceuticalreview.com/news/112044/dsp-1181-drug-created-using-ai-enters-clinical-trials/
  75. Garcia-SernaR. VidalD. RemezN. MestresJ. Large-scale predictive drug safety: From structural alerts to biological mechanisms.Chem. Res. Toxicol.201528101875188710.1021/acs.chemrestox.5b0026026360911
    [Google Scholar]
  76. XuD. XuH. ZhangY. WangM. ChenW. GaoR. MDAKRLS: Predicting human microbe-disease association based on Kronecker regularized least squares and similarities.J. Transl. Med.20211916610.1186/s12967‑021‑02732‑633579301
    [Google Scholar]
  77. HeT. HeidemeyerM. BanF. CherkasovA. EsterM. SimBoost: A read-across approach for predicting drug–target binding affinities using gradient boosting machines.J. Cheminform.2017912410.1186/s13321‑017‑0209‑z29086119
    [Google Scholar]
  78. ZhuH. Big data and Artificial Intelligence modeling for drug discovery.Annu. Rev. Pharmacol. Toxicol.202060157358910.1146/annurev‑pharmtox‑010919‑02332431518513
    [Google Scholar]
  79. ChanH.C.S. ShanH. DahounT. VogelH. YuanS. Advancing drug discovery via Artificial Intelligence.Trends Pharmacol. Sci.201940859260410.1016/j.tips.2019.06.00431320117
    [Google Scholar]
  80. CiallellaH.L. ZhuH. Advancing computational toxicology in the big data era by Artificial Intelligence: Data-driven and mechanism-driven modeling for chemical toxicity.Chem. Res. Toxicol.201932453654710.1021/acs.chemrestox.8b0039330907586
    [Google Scholar]
  81. BrownN. In Silico Medicinal Chemistry: Computational Methods to Support Drug DesignRoyal Society of Chemistry201510.1039/9781782622604
    [Google Scholar]
  82. PereiraJ.C. CaffarenaE.R. dos SantosC.N. Boosting docking-based virtual screening with deep learning.J. Chem. Inf. Model.201656122495250610.1021/acs.jcim.6b0035528024405
    [Google Scholar]
  83. StorkC. WagnerJ. FriedrichN.O. de Bruyn KopsC. ŠíchoM. KirchmairJ. Hit dexter: A machine‐learning model for the prediction of frequent hitters.ChemMedChem201813656457110.1002/cmdc.20170067329285887
    [Google Scholar]
  84. GromskiP.S. GrandaJ.M. CroninL. Universal chemical synthesis and discovery with ‘The Chemputer’.Trends Chem.20202141210.1016/j.trechm.2019.07.004
    [Google Scholar]
  85. AlphaFold: Protein structure database.Available from: https://alphafold.com/(Accessed on: August 21, 2024)
  86. AwasthiG. FadewarH. SiddiquiA. GaikwadB.P. Analysis of fingerprint recognition system using neural networkSSRN10.2139/ssrn.3648835
    [Google Scholar]
  87. WangC. ZhangY. Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest.J. Comput. Chem.201738316917710.1002/jcc.2466727859414
    [Google Scholar]
  88. AvdagicZ. PurisevicE. OmanovicS. CoralicZ. Artificial Intelligence in prediction of secondary protein structure using CB513 database.Summit. Transl. Bioinform.200920091521347158
    [Google Scholar]
  89. Aminul IslamM. Impact of big data analytics on digital marketing: Academic review.J. Electr. Syst.2024205s78682010.52783/jes.2327
    [Google Scholar]
  90. HolzingerA. DehmerM. JurisicaI. Knowledge Discovery and interactive Data Mining in Bioinformatics - State-of-the-Art, future challenges and research directions.BMC Bioinformatics201415S6I110.1186/1471‑2105‑15‑S6‑I125078282
    [Google Scholar]
  91. ChenY. Elenee ArgentinisJ.D. WeberG. IBM Watson: How cognitive computing can be applied to big data challenges in life sciences research.Clin. Ther.201638468870110.1016/j.clinthera.2015.12.00127130797
    [Google Scholar]
  92. PetiwalaFF. ShuklaVK. VyasS. IBM Watson: Redefining artificial intelligence through cognitive computing.Proceedings of International Conference on Machine Intelligence and Data Science ApplicationsSpringerSingapore PrateekM. SinghT.P. ChoudhuryT. PandeyH.M. Gia NhuN. pp. 1738510.1007/978‑981‑33‑4087‑9_15
    [Google Scholar]
  93. SpanglerS. MyersJ.N. StanoiI. Automated hypothesis generation based on mining scientific literature.KDD '14: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining18771886New York, New York, USA24 Aug, 201410.1145/2623330.2623667
    [Google Scholar]
  94. NagarajanM. WilkinsAD. BachmanBJ. Predicting future scientific discoveries based on a networked analysis of the past literature.KDD '15 Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data MiningSydney, NSW, Australia10 Aug, 201520192028201510.1145/2783258.2788609
    [Google Scholar]
  95. LiB. ShinH. GulbekyanG. Development of a drug-response modeling framework to identify cell line derived translational biomarkers that can predict treatment outcome to erlotinib or sorafenib.PLoS One106e0130700201510.1371/journal.pone.013070026107615
    [Google Scholar]
  96. HwangT.J. CarpenterD. LauffenburgerJ.C. WangB. FranklinJ.M. KesselheimA.S. Failure of investigational drugs in late-stage clinical development and publication of trial results.JAMA Intern. Med.2016176121826183310.1001/jamainternmed.2016.600827723879
    [Google Scholar]
  97. van der LeeM. SwenJ.J. Artificial intelligence in pharmacology research and practice.Clin. Transl. Sci.2023161313610.1111/cts.1343136181380
    [Google Scholar]
  98. LiB. DaiC. WangL. A novel drug repurposing approach for non-small cell lung cancer using deep learning.PLoS One156e0233112202010.1371/journal.pone.0233112
    [Google Scholar]
  99. KuenziB.M. ParkJ. FongS.H. SanchezK.S. LeeJ. KreisbergJ.F. MaJ. IdekerT. Predicting drug response and synergy using a deep learning model of human cancer cells.Cancer Cell2020385672684.e610.1016/j.ccell.2020.09.01433096023
    [Google Scholar]
  100. ArnoldC. Inside the nascent industry of AI-designed drugs.Nat. Med.20232961292129510.1038/s41591‑023‑02361‑037264208
    [Google Scholar]
  101. LambertiM.J. WilkinsonM. DonzantiB.A. WohlhieterG.E. ParikhS. WilkinsR.G. GetzK. A study on the application and use of artificial intelligence to support drug development.Clin. Ther.20194181414142610.1016/j.clinthera.2019.05.01831248680
    [Google Scholar]
  102. VasiljevaT. KreitussI. LulleI. Artificial Intelligence: The attitude of the public and representatives of various industries.J. Risk Financ. Manag.202114833910.3390/jrfm14080339
    [Google Scholar]
  103. Jiménez-LunaJ. GrisoniF. SchneiderG. Drug discovery with explainable artificial intelligence.Nat. Mach. Intell.202021057358410.1038/s42256‑020‑00236‑4
    [Google Scholar]
  104. BajorathJ. OveringtonJ. JenkinsJ.L. WaltersP. Drug discovery and development in the era of Big Data.Future Med. Chem.20168151807181310.4155/fmc‑2014‑008127654148
    [Google Scholar]
  105. KhanB. FatimaH. QureshiA. Drawbacks of Artificial Intelligence and their potential solutions in the healthcare sector.Biomed. Mater. Devices202381810.1007/s44174‑023‑00063‑236785697
    [Google Scholar]
  106. JiS. GuQ. WengH. De-Health: All your online health information are belong to us.IEEE 36th International Conference on Data Engineering (ICDE)Dallas, TX, USA20-24 Apr, 20201609162010.1109/ICDE48307.2020.00143
    [Google Scholar]
  107. FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems.Case Med. Res.201810.31525/fda2‑ucm604357.htm
    [Google Scholar]
  108. NeillD.B. Using Artificial Intelligence to improve hospital inpatient care.IEEE Intell. Syst.2013282929510.1109/MIS.2013.51
    [Google Scholar]
  109. ReedJ.E. HoweC. DoyleC. BellD. Simple rules for evidence translation in complex systems: A qualitative study.BMC Med.20181619210.1186/s12916‑018‑1076‑929921274
    [Google Scholar]
  110. MennellaC. ManiscalcoU. De PietroG. EspositoM. Ethical and regulatory challenges of AI technologies in healthcare: A narrative review.Heliyon2024104e26297e2629710.1016/j.heliyon.2024.e2629738384518
    [Google Scholar]
  111. StoumposA.I. KitsiosF. TaliasM.A. Digital transformation in healthcare: Technology acceptance and its applications.Int. J. Environ. Res. Public Health2023204340710.3390/ijerph2004340736834105
    [Google Scholar]
  112. ShenY. ZhangX. The impact of artificial intelligence on employment: The role of virtual agglomeration.Humanit. Soc. Sci. Commun.202411112210.1057/s41599‑024‑02647‑9
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638314252241016165345
Loading
/content/journals/cddt/10.2174/0115701638314252241016165345
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test