Skip to content
2000
image of Platelet-rich Plasma-derived Exosomes as Novel Frontier in Regenerative Medicine

Abstract

Regenerative medicine is a relatively new field that has been utilized recently to address specific problems by harnessing the body's molecular composition. Platelet-rich plasma (PRP) is an autologous blood product with a high concentration of platelets, which further releases two important growth factors: Transforming Growth Factor-Beta (TGF-β) and Platelet-Derived Growth Factor (PDGF), responsible for tissue regeneration and repair. PRP contains small extracellular vesicles known as exosomes, which enhance cell-to-cell communication by delivering lipids, proteins, and nucleotides to the target cells. This dual mechanism enhances the therapeutic potential of PRP by stimulating cell proliferation, angiogenesis, and immunological regulation. Exosomes derived from PRP have been investigated for potential applications in cancer, orthopedics, wound healing, and dermatology. They have shown promising results in decreasing inflammation, promoting bone and cartilage regeneration, reshaping tumor microenvironments, and accelerating tissue repair. To enhance their clinical application, advanced isolation and characterization methods, such as size exclusion chromatography and ultracentrifugation, are required to further characterize their nature and facilitate downstream purification. A couple of lingering concerns, aside from the advantages of standardizing the isolation procedure, include regulatory hurdles. Future research aims to refine PRP exosome applications through the identification of biomarkers and the development of combination therapies. With further advancements, PRP-derived exosomes could revolutionize regenerative medicine, offering a targeted, non-invasive, and highly effective treatment modality for various medical conditions.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947399426250911115018
2025-10-01
2026-01-31
Loading full text...

Full text loading...

References

  1. Bakadia B.M. Qaed Ahmed A.A. Lamboni L. Engineering homologous platelet-rich plasma, platelet-rich plasma-derived exosomes, and mesenchymal stem cell-derived exosomes-based dual-crosslinked hydrogels as bioactive diabetic wound dressings. Bioact. Mater. 2023 28 74 94 10.1016/j.bioactmat.2023.05.002 37234363
    [Google Scholar]
  2. Alsousou J. Ali A. Willett K. Harrison P. The role of platelet-rich plasma in tissue regeneration. Platelets 2013 24 3 173 182 10.3109/09537104.2012.684730 22647081
    [Google Scholar]
  3. Hosgood G. Wound healing. The role of platelet-derived growth factor and transforming growth factor beta. Vet. Surg. 1993 22 6 490 495 10.1111/j.1532‑950X.1993.tb00426.x 8116205
    [Google Scholar]
  4. Bahmani L. Ullah M. Different sourced extracellular vesicles and their potential applications in clinical treatments. Cells 2022 11 13 1989 10.3390/cells11131989 35805074
    [Google Scholar]
  5. Jin S. Guerrero-Juarez C.F. Zhang L. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 2021 12 1 1088 10.1038/s41467‑021‑21246‑9 33597522
    [Google Scholar]
  6. Everts P.A. Lana J.F. Alexander R.W. Profound properties of protein-rich, platelet-rich plasma matrices as novel, multi-purpose biological platforms in tissue repair, regeneration, and wound healing. Int. J. Mol. Sci. 2024 25 14 7914 10.3390/ijms25147914 39063156
    [Google Scholar]
  7. Yáñez-Mó M. Siljander P.R.M. Andreu Z. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 2015 4 1 27066 10.3402/jev.v4.27066 25979354
    [Google Scholar]
  8. Wu J. Piao Y. Liu Q. Yang X. Platelet‐rich plasma‐derived extracellular vesicles: A superior alternative in regenerative medicine? Cell Prolif. 2021 54 12 13123 10.1111/cpr.13123 34609779
    [Google Scholar]
  9. Camussi G. Deregibus M.C. Bruno S. Cantaluppi V. Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 2010 78 9 838 848 10.1038/ki.2010.278 20703216
    [Google Scholar]
  10. Vizoso F. Eiro N. Cid S. Schneider J. Perez-Fernandez R. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. Int. J. Mol. Sci. 2017 18 9 1852 10.3390/ijms18091852 28841158
    [Google Scholar]
  11. Vyas K.S. Kaufman J. Munavalli G.S. Robertson K. Behfar A. Wyles S.P. Exosomes: The latest in regenerative aesthetics. Regen. Med. 2023 18 2 181 194 10.2217/rme‑2022‑0134 36597716
    [Google Scholar]
  12. Saumell-Esnaola M. Delgado D. García del Caño G. Isolation of platelet-derived exosomes from human platelet-rich plasma: Biochemical and morphological characterization. Int. J. Mol. Sci. 2022 23 5 2861 10.3390/ijms23052861 35270001
    [Google Scholar]
  13. Ribitsch I. Oreff G.L. Jenner F. Regenerative medicine for equine musculoskeletal diseases. Animals 2021 11 1 234 10.3390/ani11010234 33477808
    [Google Scholar]
  14. Nurden A.T. Nurden P. Sanchez M. Andia I. Anitua E. Platelets and wound healing. Front. Biosci. 2008 13 9 3532 3548 18508453
    [Google Scholar]
  15. Schmidt-Bleek K. Kwee B.J. Mooney D.J. Duda G.N. Boon and bane of inflammation in bone tissue regeneration and its link with angiogenesis. Tissue Engineering Part B Review 2015 21 4 354 364 10.1089/ten.teb.2014.0677 25742724
    [Google Scholar]
  16. Dwyer G.K. Turnquist H.R. Untangling local pro-inflammatory, reparative, and regulatory damage-associated molecular-patterns (DAMPs) pathways to improve transplant outcomes. Front. Immunol. 2021 12 611910 10.3389/fimmu.2021.611910 33708206
    [Google Scholar]
  17. Kalra H. Drummen G.P. Mathivanan S. Focus on extracellular vesicles: introducing the next small big thing. International journal of molecular sciences 2016 17 2 170 10.3390/ijms17020170 26861301
    [Google Scholar]
  18. Huda M.N. Nafiujjaman M. Deaguero I.G. Potential use of exosomes as diagnostic biomarkers and in targeted drug delivery: Progress in clinical and preclinical applications. ACS Biomater. Sci. Eng. 2021 7 6 2106 2149 10.1021/acsbiomaterials.1c00217 33988964
    [Google Scholar]
  19. Abid F. Saleem M. Jamshaid T. Opuntia monacantha: Validation of the anti-inflammatory and anti-arthritic activity of its polyphenolic rich extract in silico and in vivo via assessment of pro- and anti-inflammatory cytokines. J. Ethnopharmacol. 2024 326 117884 10.1016/j.jep.2024.117884 38350502
    [Google Scholar]
  20. Cecerska-Heryć E. Goszka M. Serwin N. Applications of the regenerative capacity of platelets in modern medicine. Cytokine Growth Factor Rev. 2022 64 84 94 10.1016/j.cytogfr.2021.11.003 34924312
    [Google Scholar]
  21. Hou Y. Wen X. Zhou L. Fang X. The value of platelet-rich plasma-derived extracellular vesicles in modern medicine. Ann. Med. 2023 55 2 2287705 10.1080/07853890.2023.2287705 38065677
    [Google Scholar]
  22. Kowal J. Tkach M. Théry C. Biogenesis and secretion of exosomes. Curr. Opin. Cell Biol. 2014 29 116 125 10.1016/j.ceb.2014.05.004 24959705
    [Google Scholar]
  23. Xu M. Ji J. Jin D. The biogenesis and secretion of exosomes and multivesicular bodies (MVBs): Intercellular shuttles and implications in human diseases. Genes Dis. 2023 10 5 1894 1907 10.1016/j.gendis.2022.03.021 37492712
    [Google Scholar]
  24. Samanta S. Rajasingh S. Drosos N. Zhou Z. Dawn B. Rajasingh J. Exosomes: New molecular targets of diseases. Acta Pharmacol. Sin. 2018 39 4 501 513 10.1038/aps.2017.162 29219950
    [Google Scholar]
  25. Jafari A. Babajani A. Abdollahpour-Alitappeh M. Ahmadi N. Rezaei-Tavirani M. Exosomes and cancer: From molecular mechanisms to clinical applications. Med. Oncol. 2021 38 4 45 10.1007/s12032‑021‑01491‑0 33743101
    [Google Scholar]
  26. Lemcke H. Steinhoff G. David R. Gap junctional shuttling of miRNA — A novel pathway of intercellular gene regulation and its prospects in clinical application. Cell. Signal. 2015 27 12 2506 2514 10.1016/j.cellsig.2015.09.012 26391653
    [Google Scholar]
  27. Chellini F. Tani A. Zecchi-Orlandini S. Sassoli C. Influence of platelet-rich and platelet-poor plasma on endogenous mechanisms of skeletal muscle repair/regeneration. Int. J. Mol. Sci. 2019 20 3 683 10.3390/ijms20030683 30764506
    [Google Scholar]
  28. Perán M. García M.A. López-Ruiz E. Functionalized nanostructures with application in regenerative medicine. Int. J. Mol. Sci. 2012 13 3 3847 3886 10.3390/ijms13033847 22489186
    [Google Scholar]
  29. Jia Y. Yu L. Ma T. Small extracellular vesicles isolation and separation: Current techniques, pending questions and clinical applications. Theranostics 2022 12 15 6548 6575 10.7150/thno.74305 36185597
    [Google Scholar]
  30. Jeppesen D.K. Hvam M.L. Primdahl-Bengtson B. Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J. Extracell. Vesicles 2014 3 1 25011 10.3402/jev.v3.25011 25396408
    [Google Scholar]
  31. Wang C. Lan C.Q. Effects of shear stress on microalgae – A review. Biotechnol. Adv. 2018 36 4 986 1002 10.1016/j.biotechadv.2018.03.001 29524464
    [Google Scholar]
  32. Sidhom K. Obi P.O. Saleem A. A review of exosomal isolation methods: Is size exclusion chromatography the best option? Int. J. Mol. Sci. 2020 21 18 6466 10.3390/ijms21186466 32899828
    [Google Scholar]
  33. Yu L.L. Zhu J. Liu J.X. A comparison of traditional and novel methods for the separation of exosomes from human samples. BioMed Res. Int. 2018 2018 1 1 9 10.1155/2018/3634563 30148165
    [Google Scholar]
  34. Laloze J. Fiévet L. Desmoulière A. Adipose-derived mesenchymal stromal cells in regenerative medicine: State of play, current clinical trials, and future prospects. Adv. Wound Care 2021 10 1 24 48 10.1089/wound.2020.1175 32470315
    [Google Scholar]
  35. Rui S. Yuan Y. Du C. Comparison and investigation of exosomes derived from platelet-rich plasma activated by different agonists. Cell Transplant. 2021 30 09636897211017833 10.1177/09636897211017833 34006140
    [Google Scholar]
  36. Marugán-Lobón J. Blanco-Miranda D. Chamero Macho B. Martín-Abad H. On the importance of examining the relationship between shape data and biologically meaningful variables. An example studying allometry with geometric morphometrics. Rev. Esp. Paleontol. 2013 28 2 139 148 10.7203/sjp.28.2.17848
    [Google Scholar]
  37. Jarzębski M. Bellich B. Białopiotrowicz T. Śliwa T. Kościński J. Cesàro A. Particle tracking analysis in food and hydrocolloids investigations. Food Hydrocoll. 2017 68 90 101 10.1016/j.foodhyd.2016.09.037
    [Google Scholar]
  38. Contreras-Naranjo J.C. Wu H.J. Ugaz V.M. Microfluidics for exosome isolation and analysis: Enabling liquid biopsy for personalized medicine. Lab Chip 2017 17 21 3558 3577 10.1039/C7LC00592J 28832692
    [Google Scholar]
  39. Barile L. Vassalli G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol. Ther. 2017 174 63 78 10.1016/j.pharmthera.2017.02.020 28202367
    [Google Scholar]
  40. Banoub J.H. Newton R.P. Esmans E. Ewing D.F. Mackenzie G. Recent developments in mass spectrometry for the characterization of nucleosides, nucleotides, oligonucleotides, and nucleic acids. Chem. Rev. 2005 105 5 1869 1916 10.1021/cr030040w 15884792
    [Google Scholar]
  41. Schiller L.T. Lemus-Diaz N. Rinaldi Ferreira R. Böker K.O. Gruber J. Enhanced production of exosome-associated AAV by overexpression of the tetraspanin CD9. Mol. Ther. Methods Clin. Dev. 2018 9 278 287 10.1016/j.omtm.2018.03.008 29707602
    [Google Scholar]
  42. Simons B. Kaplan H. Hefford M.A. Novel cross-linked enzyme–antibody conjugates for Western blot and ELISA. J. Immunol. Methods 2006 315 1-2 88 98 10.1016/j.jim.2006.07.004 16905142
    [Google Scholar]
  43. Fatima F. Ekstrom K. Nazarenko I. Non-coding RNAs in mesenchymal stem cell-derived extracellular vesicles: Deciphering regulatory roles in stem cell potency, inflammatory resolve, and tissue regeneration. Front. Genet. 2017 8 161 10.3389/fgene.2017.00161 29123544
    [Google Scholar]
  44. Najar M. Melki R. Khalife F. Therapeutic mesenchymal stem/stromal cells: Value, challenges and optimization. Front. Cell Dev. Biol. 2022 9 716853 10.3389/fcell.2021.716853 35096805
    [Google Scholar]
  45. Shang X. Böker Kai Oliver, Taheri Shahed, Lehmann Wolfgang. Cell-cell communication between chondrocytes and osteoblasts through miR-221-3p loaded extracellular vesicles. Osteologie 2021 30 4 10.1055/s‑0041‑1736728
    [Google Scholar]
  46. Caporali A. Emanueli C. MicroRNA regulation in angiogenesis. Vascul. Pharmacol. 2011 55 4 79 86 10.1016/j.vph.2011.06.006 21777698
    [Google Scholar]
  47. de Freitas Pereira FSR Blocking tumor exosome release using nanovectorization systems. 2015
    [Google Scholar]
  48. Fernandes Ribeiro M. Zhu H. Exosomes function in pro-and anti-angiogenesis. Curr. Angiogenes. 2013 2 1 54 59 10.2174/22115528113020020001 25374792
    [Google Scholar]
  49. Allegra A. Petrarca C. Di Gioacchino M. Casciaro M. Musolino C. Gangemi S. Exosome-mediated therapeutic strategies for management of solid and hematological malignancies. Cells 2022 11 7 1128 10.3390/cells11071128 35406692
    [Google Scholar]
  50. Avgoulas D.I. Tasioulis K.S. Papi R.M. Pantazaki A.A. Therapeutic and diagnostic potential of exosomes as drug delivery systems in brain cancer. Pharmaceutics 2023 15 5 1439 10.3390/pharmaceutics15051439 37242681
    [Google Scholar]
  51. Zebrowska A. Widlak P. Whiteside T. Pietrowska M. Signaling of tumor-derived sEV impacts melanoma progression. Int. J. Mol. Sci. 2020 21 14 5066 10.3390/ijms21145066 32709086
    [Google Scholar]
  52. Yun C.W. Lee J.H. Go G. Jeon J. Yoon S. Lee S.H. Prion protein of extracellular vesicle regulates the progression of colorectal cancer. Cancers 2021 13 9 2144 10.3390/cancers13092144 33946823
    [Google Scholar]
  53. Esmaeilzadeh A. Yeganeh P.M. Nazari M. Esmaeilzadeh K. Platelet-derived extracellular vesicles: A new-generation nanostructured tool for chronic wound healing. Nanomedicine 2024 19 10 915 941 10.2217/nnm‑2023‑0344 38445377
    [Google Scholar]
  54. Wang Z. Yang Q. Tan Y. Cancer-associated fibroblasts suppress cancer development: The other side of the coin. Front. Cell Dev. Biol. 2021 9 613534 10.3389/fcell.2021.613534 33614646
    [Google Scholar]
  55. Guo S.C. Tao S.C. Yin W.J. Qi X. Yuan T. Zhang C.Q. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model. Theranostics 2017 7 1 81 96 10.7150/thno.16803 28042318
    [Google Scholar]
  56. Ding M.H. Lozoya E.G. Rico R.N. Chew S.A. The role of angiogenesis-inducing microRNAs in vascular tissue engineering. Tissue Eng. Part A 2020 26 23-24 1283 1302 10.1089/ten.tea.2020.0170 32762306
    [Google Scholar]
  57. Wang Y. Zhang Y. Li T. Adipose mesenchymal stem cell derived exosomes promote keratinocytes and fibroblasts embedded in collagen/platelet‐rich plasma scaffold and accelerate wound healing. Adv. Mater. 2023 35 40 2303642 10.1002/adma.202303642 37342075
    [Google Scholar]
  58. Everts P. Onishi K. Jayaram P. Lana J.F. Mautner K. Platelet-rich plasma: New performance understandings and therapeutic considerations in 2020. Int. J. Mol. Sci. 2020 21 20 7794 10.3390/ijms21207794 33096812
    [Google Scholar]
  59. Zou J. Yang W. Cui W. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon–bone healing. J. Nanobiotechnology 2023 21 1 14 10.1186/s12951‑023‑01778‑6 36642728
    [Google Scholar]
  60. Zhang Y. Wang X. Chen J. Exosomes derived from platelet-rich plasma administration in site mediate cartilage protection in subtalar osteoarthritis. J. Nanobiotechnology 2022 20 1 56 10.1186/s12951‑022‑01245‑8 35093078
    [Google Scholar]
  61. Taghiyar L. Jahangir S. Khozaei Ravari M. Shamekhi M.A. Eslaminejad M.B. Cartilage repair by mesenchymal stem cell-derived exosomes: Preclinical and clinical trial update and perspectives. Adv. Exp. Med. Biol. 2021 1326 73 93 10.1007/5584_2021_625
    [Google Scholar]
  62. Ragni E. Papait A. Perucca Orfei C. Amniotic membrane-mesenchymal stromal cells secreted factors and extracellular vesicle-miRNAs: Anti-inflammatory and regenerative features for musculoskeletal tissues. Stem Cells Transl. Med. 2021 10 7 1044 1062 10.1002/sctm.20‑0390 33656805
    [Google Scholar]
  63. Chung M.J. Son J.Y. Park S. Mesenchymal stem cell and MicroRNA therapy of musculoskeletal diseases. Int. J. Stem Cells 2021 14 2 150 167 10.15283/ijsc20167 33377459
    [Google Scholar]
  64. Verling S.D. Mashoudy K. Gompels M. Goldenberg G. Regenerative Medicine in Clinical and Aesthetic Dermatology A Comprehensive Guide to Male Aesthetic and Reconstructive Plastic Surgery. Cham Springer 2024 65 79
    [Google Scholar]
  65. Li Y. Xiao Q. Tang J. Xiong L. Li L. Extracellular vesicles: Emerging therapeutics in cutaneous lesions. Int. J. Nanomedicine 2021 16 6183 6202 10.2147/IJN.S322356 34522095
    [Google Scholar]
  66. Li P. Sun Y. Nie L. Fabrication of carboxymethyl cellulose/hyaluronic acid/polyvinylpyrrolidone composite pastes incorporation of minoxidil-loaded ferulic acid-derived lignin nanoparticles and valproic acid for treatment of androgenetic alopecia. Int. J. Biol. Macromol. 2023 249 126013 10.1016/j.ijbiomac.2023.126013 37517761
    [Google Scholar]
  67. Anastassakis K. Exosomes. In: Androgenetic Alopecia From A to Z, Vol 3: Hair Restoration Surgery, Alternative Treatments, and Hair Care Cham: Springer 2023 705 19
    [Google Scholar]
  68. Hu P Yang Q Wang Q Mesenchymal stromal cells-exosomes: A promising cell-free therapeutic tool for wound healing and cutaneous regeneration. Burns Trauma 2019 7 s41038-019 0178-8 10.1186/s41038‑019‑0178‑8 31890717
    [Google Scholar]
  69. Tevlin R. desJardins-Park H. Huber J. DiIorio S.E. Longaker M.T. Wan D.C. Musculoskeletal tissue engineering: Adipose derived stromal cell implementation for the treatment of osteoarthritis. Biomaterials 2022 286 121544 10.1016/j.biomaterials.2022.121544 35633592
    [Google Scholar]
  70. Verma R. Kumar S. Garg P. Verma Y.K. Platelet-rich plasma: A comparative and economical therapy for wound healing and tissue regeneration. Cell Tissue Bank. 2023 24 2 285 306 10.1007/s10561‑022‑10039‑z 36222966
    [Google Scholar]
  71. Qin X. He J. Wang X. Wang J. Yang R. Chen X. The functions and clinical application potential of exosomes derived from mesenchymal stem cells on wound repair: A review of recent research advances. Front. Immunol. 2023 14 1256687 10.3389/fimmu.2023.1256687 37691943
    [Google Scholar]
  72. Kroll H.V. Platelet concentrates. In: Transfusion Medicine. Basel (Switzerland): Karger Publishers; 2001 3 Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC2997292/
    [Google Scholar]
  73. Wu Y. Zhang J. He W. Li C. Wang Y. Nanomaterials for targeting liver disease: Research progress and future perspectives. Nano Biomed. Eng. 2023 15 2 199 224 10.26599/NBE.2023.9290024
    [Google Scholar]
  74. Xue Y. Riva N. Zhao L. Recent advances of exosomes in soft tissue injuries in sports medicine: A critical review on biological and biomaterial applications. J. Control. Release 2023 364 90 108 10.1016/j.jconrel.2023.10.031 37866405
    [Google Scholar]
  75. El-Kadiry A.E.H. Rafei M. Shammaa R. Cell therapy: Types, regulation, and clinical benefits. Front. Med. 2021 8 756029 10.3389/fmed.2021.756029 34881261
    [Google Scholar]
  76. Lecture OP Cancer-resistant mice. 2024
    [Google Scholar]
  77. Shukla L. Yuan Y. Shayan R. Greening D.W. Karnezis T. Fat therapeutics: The clinical capacity of adipose-derived stem cells and exosomes for human disease and tissue regeneration. Front. Pharmacol. 2020 11 158 10.3389/fphar.2020.00158 32194404
    [Google Scholar]
  78. Gentile P. Garcovich S. Concise review: Adipose-derived stem cells (ASCs) and adipocyte-secreted exosomal microRNA (A-SE-miR) modulate cancer growth and promote wound repair. J. Clin. Med. 2019 8 6 855 10.3390/jcm8060855 31208047
    [Google Scholar]
  79. Akhtar Z.B. Gupta A.D. Advancements within molecular engineering for regenerative medicine and biomedical applications an investigation analysis towards a computing retrospective. J Elect Elect Eng Med Informat 2024 6 1 54 72 10.35882/jeeemi.v6i1.351
    [Google Scholar]
  80. Schröder D. Applications of electrospray ionization mass spectrometry in mechanistic studies and catalysis research. Acc. Chem. Res. 2012 45 9 1521 1532 10.1021/ar3000426 22702223
    [Google Scholar]
  81. Liao W. Ning Y. Xu H.J. BMSC-derived exosomes carrying microRNA-122-5p promote proliferation of osteoblasts in osteonecrosis of the femoral head. Clin. Sci. 2019 133 18 1955 1975 10.1042/CS20181064 31387936
    [Google Scholar]
  82. Zhang J. Chen C. Hu B. Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through Erk1/2 signaling. Int. J. Biol. Sci. 2016 12 12 1472 1487 10.7150/ijbs.15514 27994512
    [Google Scholar]
  83. Wang L. Huang J. Huang C. Adult stem cells and hydrogels for cartilage regeneration. Curr. Stem Cell Res. Ther. 2018 13 7 533 546 10.2174/1574888X12666170511142917 28494722
    [Google Scholar]
  84. Mubark H. Interventional regenerative medicine for pain control and quality of life improvement as an alternative therapy: Review article. J Anesth Pain Med 2022 7 1 17 23
    [Google Scholar]
  85. Chouhan D. Dey N. Bhardwaj N. Mandal B.B. Emerging and innovative approaches for wound healing and skin regeneration: Current status and advances. Biomaterials 2019 216 119267 10.1016/j.biomaterials.2019.119267 31247480
    [Google Scholar]
  86. Boeckx A. Unravelling the exosomal export of miR-503 and its implication in tumor response to chemotherapy. Thesis, Faculty of Sciences University of Liège 2022
    [Google Scholar]
  87. Sun Y. Liu X. Zhang D. Platelet-derived exosomes affect the proliferation and migration of human umbilical vein endothelial cells via miR-126. Curr. Vasc. Pharmacol. 2019 17 4 379 387 10.2174/1570161116666180313142139 29532758
    [Google Scholar]
  88. Ogéus T. Amniotic derived exosomes in the treatment of degenerative bone-and cartilage disease: A case series. Open J Orthop Rheumatol 2024 2024 9 1 001 6
    [Google Scholar]
  89. Miletta N. Siwy K. Hivnor C. Fractional ablative laser therapy is an effective treatment for hypertrophic burn scars: A prospective study of objective and subjective outcomes. Ann. Surg. 2021 274 6 e574 e580 10.1097/SLA.0000000000003576 31469749
    [Google Scholar]
  90. Sanapati J. Manchikanti L. Atluri S. Do regenerative medicine therapies provide long-term relief in chronic low back pain: A systematic review and metaanalysis. Pain Physician 2018 21 6 515 540 30508983
    [Google Scholar]
  91. Vakil D. Doshi R. Mckinnirey F. Sidhu K. Stem cell-derived exosomes as new horizon for cell-free therapeutic development: current status and prospects. In: Possibilities and Limitations in Current Translational Stem Cell Research. United Kingdon: IntechOpen 2023
    [Google Scholar]
  92. Andriolo G. Provasi E. Lo Cicero V. Exosomes from human cardiac progenitor cells for therapeutic applications: Development of a GMP-grade manufacturing method. Front. Physiol. 2018 9 1169 10.3389/fphys.2018.01169 30197601
    [Google Scholar]
  93. Guidance W. Ethics and governance of artificial intelligence for health. Switzerland World Health Organization 2021
    [Google Scholar]
  94. Dai Z. Zhao T. Song N. Platelets and platelet extracellular vesicles in drug delivery therapy: A review of the current status and future prospects. Front. Pharmacol. 2022 13 1026386 10.3389/fphar.2022.1026386 36330089
    [Google Scholar]
  95. Ding M. Wang C. Lu X. Comparison of commercial exosome isolation kits for circulating exosomal microRNA profiling. Anal. Bioanal. Chem. 2018 410 16 3805 3814 10.1007/s00216‑018‑1052‑4 29671027
    [Google Scholar]
  96. Malone E.R. Oliva M. Sabatini P.J.B. Stockley T.L. Siu L.L. Molecular profiling for precision cancer therapies. Genome Med. 2020 12 1 8 10.1186/s13073‑019‑0703‑1 31937368
    [Google Scholar]
  97. Khazaei F. Rezakhani L. Alizadeh M. Mahdavian E. Khazaei M. Exosomes and exosome-loaded scaffolds: Characterization and application in modern regenerative medicine. Tissue Cell 2023 80 102007 10.1016/j.tice.2022.102007 36577349
    [Google Scholar]
  98. Mastrogiacomo M. Nardini M. Collina M.C. Innovative cell and platelet rich plasma therapies for diabetic foot ulcer treatment: The allogeneic approach. Front. Bioeng. Biotechnol. 2022 10 869408 10.3389/fbioe.2022.869408 35586557
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947399426250911115018
Loading
/content/journals/cctr/10.2174/0115733947399426250911115018
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test