Skip to content
2000
image of Exploring the Potential Value of Drugs Targeting Cellular Redox for the Treatment of Diseases Associated with KSHV Infection

Abstract

Kaposi’s sarcoma-associated herpesvirus (KSHV) is a pathogen associated with Kaposi's sarcoma (KS), multicentric Castleman disease (MCD), primary effusion lymphoma (PEL), and KS-associated inflammatory cytokine syndrome malignancies. Similar to other gamma-herpesviruses, KSHV exhibits both latent and lytic phases. The genes expressed during these phases contribute to maintaining viral infection, promoting the survival of infected cells, and driving tumor development. Redox homeostasis is a central component in the regulation of cell proliferation, apoptosis, and immune response. The delicate balance between oxidative systems (reactive oxygen species and reactive nitrogen species) and antioxidant systems (GSH, thioredoxin, Nrf2, .) is crucial for viral replication and the remodeling of the tumor microenvironment. KSHV alters the host redox network through multiple mechanisms. The latent protein promotes Nrf2 nuclear translocation, which enhances antioxidant defenses and protects infected cells from ROS damage. Additionally, the cleavage protein vGPCR activates NADPH oxidase (NOX) to induce a reactive oxygen species burst, promoting angiogenesis and amplifying inflammatory signals. Therefore, an in-depth analysis of the KSHV-host redox interaction network and the development of intervention strategies targeting viral redox regulatory nodes are expected to enable precise antiviral and antitumor therapies. The review highlights the potential of redox targets as therapeutic agents for KSHV-associated diseases. It summarizes potential drug molecules and targets that achieve survival inhibitory effects by disrupting redox homeostasis in the KSHV host.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947399339251106102000
2026-01-08
2026-01-31
Loading full text...

Full text loading...

/deliver/fulltext/cctr/10.2174/0115733947399339251106102000/BMS-CCTR-2025-40.html?itemId=/content/journals/cctr/10.2174/0115733947399339251106102000&mimeType=html&fmt=ahah

References

  1. Chang Y. Cesarman E. Pessin M.S. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 1994 266 5192 1865 1869 10.1126/science.7997879 7997879
    [Google Scholar]
  2. Minhas V. Wood C. Epidemiology and transmission of Kaposi’s sarcoma-associated herpesvirus. Viruses 2014 6 11 4178 4194 10.3390/v6114178 25375883
    [Google Scholar]
  3. Dedicoat M. Newton R. Review of the distribution of Kaposi’s sarcoma-associated herpesvirus (KSHV) in Africa in relation to the incidence of Kaposi’s sarcoma. Br. J. Cancer 2003 88 1 1 3 10.1038/sj.bjc.6600745 12556950
    [Google Scholar]
  4. Pfeiffer R.M. Wheeler W.A. Mbisa G. Geographic heterogeneity of prevalence of the human herpesvirus 8 in sub-Saharan Africa: Clues about etiology. Ann. Epidemiol. 2010 20 12 958 963 10.1016/j.annepidem.2010.07.098 21074111
    [Google Scholar]
  5. Whitby D. Marshall V.A. Bagni R.K. Reactivation of Kaposi’s sarcoma-associated herpesvirus by natural products from Kaposi’s sarcoma endemic regions. Int. J. Cancer 2007 120 2 321 328 10.1002/ijc.22205 17066452
    [Google Scholar]
  6. Broussard G. Damania B. KSHV: Immune modulation and immunotherapy. Front. Immunol. 2020 10 3084 10.3389/fimmu.2019.03084 32117196
    [Google Scholar]
  7. Gantt S. Casper C. Human herpesvirus 8-associated neoplasms. Curr. Opin. Infect. Dis. 2011 24 4 295 301 10.1097/QCO.0b013e3283486d04 21666458
    [Google Scholar]
  8. Brambilla L. Genovese G. Berti E. Diagnosis and treatment of classic and iatrogenic Kaposi’s sarcoma: Italian recommendations. Ital. J. Dermatol. Venereol. 2021 156 3 356 365 10.23736/S2784‑8671.20.06703‑6 33179877
    [Google Scholar]
  9. Alomari N. Totonchy J. Cytokine-targeted therapeutics for KSHV-Associated disease. Viruses 2020 12 10 1097 10.3390/v12101097 32998419
    [Google Scholar]
  10. Gathers D. Galloway E. Kelemen K. Rosenthal A. Gibson S. Munoz J. Primary effusion lymphoma: A clinicopathologic perspective. Cancers 2022 14 3 722 10.3390/cancers14030722 35158997
    [Google Scholar]
  11. Mataix R.P. Cabello D.L. Morillo J.S.G. Castleman’s disease, pathophysiology, advances in diagnosis and treatment. Med Clín 2024 162 6 283 290 10.1016/j.medcli.2023.10.013 38016855
    [Google Scholar]
  12. Dumic I. Radovanovic M. Igandan O. A fatal case of Kaposi Sarcoma Immune Reconstitution Syndrome (KS-IRIS) complicated by Kaposi Sarcoma Inflammatory Cytokine Syndrome (KICS) or Multicentric Castleman Disease (MCD): A case report and review. Am. J. Case Rep. 2020 21 e926433 10.12659/AJCR.926433 33268763
    [Google Scholar]
  13. Russo I. Marino D. Cozzolino C. Kaposi’s Sarcoma: Evaluation of clinical features, treatment outcomes, and prognosis in a single-center retrospective case series. Cancers 2024 16 4 691 10.3390/cancers16040691 38398082
    [Google Scholar]
  14. Karabajakian A. Ray-Coquard I. Blay J.Y. Molecular mechanisms of kaposi sarcoma development. Cancers 2022 14 8 1869 10.3390/cancers14081869 35454776
    [Google Scholar]
  15. Srivastava A. Srivastava A. Singh R.K. Insight into the Epigenetics of Kaposi’s Sarcoma-Associated Herpesvirus. Int. J. Mol. Sci. 2023 24 19 14955 10.3390/ijms241914955 37834404
    [Google Scholar]
  16. Liang D. Hu H. Li S. Oncogenic herpesvirus KSHV Hijacks BMP-Smad1-Id signaling to promote tumorigenesis. PLoS Pathog. 2014 10 7 e1004253 10.1371/journal.ppat.1004253 25010525
    [Google Scholar]
  17. Kim Y.J. Kim Y. Kumar A. Kaposi’s sarcoma-associated herpesvirus latency-associated nuclear antigen dysregulates expression of MCL-1 by targeting FBW7. PLoS Pathog. 2021 17 1 e1009179 10.1371/journal.ppat.1009179 33471866
    [Google Scholar]
  18. Verma S.C. Lan K. Robertson E. Structure and function of latency-associated nuclear antigen. Curr. Top. Microbiol. Immunol. 2007 312 101 136 10.1007/978‑3‑540‑34344‑8_4 17089795
    [Google Scholar]
  19. Niu D. Ma Y. Ren P. Methylation of KSHV vCyclin by PRMT5 contributes to cell cycle progression and cell proliferation. PLoS Pathog. 2024 20 9 e1012535 10.1371/journal.ppat.1012535 39255317
    [Google Scholar]
  20. Jones T. Ramos da Silva S. Bedolla R. Ye F. Zhou F. Gao S. Viral cyclin promotes KSHV-induced cellular transformation and tumorigenesis by overriding contact inhibition. Cell Cycle 2014 13 5 845 858 10.4161/cc.27758 24419204
    [Google Scholar]
  21. Sun Q. Matta H. Chaudhary P.M. The human herpes virus 8–encoded viral FLICE inhibitory protein protects against growth factor withdrawal–induced apoptosis via NF-κB activation. Blood 2003 101 5 1956 1961 10.1182/blood‑2002‑07‑2072 12406869
    [Google Scholar]
  22. Zhu Y. Ramos da Silva S. He M. An oncogenic virus promotes cell survival and cellular transformation by suppressing glycolysis. PLoS Pathog. 2016 12 5 e1005648 10.1371/journal.ppat.1005648 27187079
    [Google Scholar]
  23. Qin J. Li W. Gao S.J. Lu C. KSHV microRNAs: Tricks of the devil. Trends Microbiol. 2017 25 8 648 661 10.1016/j.tim.2017.02.002 28259385
    [Google Scholar]
  24. Broussard G. Damania B. Regulation of KSHV latency and lytic reactivation. Viruses 2020 12 9 1034 10.3390/v12091034 32957532
    [Google Scholar]
  25. Purushothaman P. Uppal T. Verma S. Molecular biology of KSHV lytic reactivation. Viruses 2015 7 1 116 153 10.3390/v7010116 25594835
    [Google Scholar]
  26. Montaner S. Sodhi A. Molinolo A. Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi’s sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 2003 3 1 23 36 10.1016/S1535‑6108(02)00237‑4 12559173
    [Google Scholar]
  27. Bais C. Van Geelen A. Eroles P. Kaposi’s sarcoma associated herpesvirus G protein-coupled receptor immortalizes human endothelial cells by activation of the VEGF receptor-2/KDR. Cancer Cell 2003 3 2 131 143 10.1016/S1535‑6108(03)00024‑2 12620408
    [Google Scholar]
  28. Angelova M. Ferris M. Swan K.F. Kaposi’s sarcoma-associated herpesvirus G-protein coupled receptor activates the canonical Wnt/β-catenin signaling pathway. Virol. J. 2014 11 1 218 10.1186/s12985‑014‑0218‑8 25514828
    [Google Scholar]
  29. Martin D. Galisteo R. Ji Y. Montaner S. Gutkind J.S. An NF-κB gene expression signature contributes to Kaposi’s sarcoma virus vGPCR-induced direct and paracrine neoplasia. Oncogene 2008 27 13 1844 1852 10.1038/sj.onc.1210817 17934524
    [Google Scholar]
  30. Medina M.V. D’Agostino A. Ma Q. KSHV G-protein coupled receptor vGPCR oncogenic signaling upregulation of Cyclooxygenase-2 expression mediates angiogenesis and tumorigenesis in Kaposi’s sarcoma. PLoS Pathog. 2020 16 10 e1009006 10.1371/journal.ppat.1009006 33057440
    [Google Scholar]
  31. Sousa-Squiavinato A.C.M. Silvestre R.N. Elgui De Oliveira D. Biology and oncogenicity of the Kaposi sarcoma herpesvirus K1 protein. Rev. Med. Virol. 2015 25 5 273 285 10.1002/rmv.1843 26192396
    [Google Scholar]
  32. Bala K. Bosco R. Gramolelli S. Kaposi’s sarcoma herpesvirus K15 protein contributes to virus-induced angiogenesis by recruiting PLCγ1 and activating NFAT1-dependent RCAN1 expression. PLoS Pathog. 2012 8 9 e1002927 10.1371/journal.ppat.1002927 23028325
    [Google Scholar]
  33. Lennicke C. Cochemé H.M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol. Cell 2021 81 18 3691 3707 10.1016/j.molcel.2021.08.018 34547234
    [Google Scholar]
  34. Li P Stetler RA Leak RK Oxidative stress and DNA damage after cerebral ischemia: Potential therapeutic targets to repair the genome and improve stroke recovery. Neuropharmacology 2018 134Pt B20817 10.1016/j.neuropharm.2017.11.011 29128308 PMC5940593
    [Google Scholar]
  35. Peluso M. Russo V. Mello T. Galli A. Oxidative stress and DNA damage in chronic disease and environmental studies. Int. J. Mol. Sci. 2020 21 18 6936 10.3390/ijms21186936 32967341
    [Google Scholar]
  36. Xiao W. Loscalzo J. Metabolic responses to reductive stress. Antioxid. Redox Signal. 2020 32 18 1330 1347 10.1089/ars.2019.7803 31218894
    [Google Scholar]
  37. Palma F.R. Gantner B.N. Sakiyama M.J. ROS production by mitochondria: Function or dysfunction? Oncogene 2024 43 5 295 303 10.1038/s41388‑023‑02907‑z 38081963
    [Google Scholar]
  38. Muller F.L. Liu Y. Van Remmen H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J. Biol. Chem. 2004 279 47 49064 49073 10.1074/jbc.M407715200 15317809
    [Google Scholar]
  39. Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009 417 1 1 13 10.1042/BJ20081386 19061483
    [Google Scholar]
  40. Han D. Williams E. Cadenas E. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem. J. 2001 353 2 411 416 10.1042/bj3530411 11139407
    [Google Scholar]
  41. Moloney J.N. Cotter T.G. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol. 2018 80 50 64 10.1016/j.semcdb.2017.05.023 28587975
    [Google Scholar]
  42. Hayes J.D. Dinkova-Kostova A.T. Tew K.D. Oxidative stress in cancer. Cancer Cell 2020 38 2 167 197 10.1016/j.ccell.2020.06.001 32649885
    [Google Scholar]
  43. Tang Y. Zhang Z. Chen Y. Metabolic adaptation-mediated cancer survival and progression in oxidative stress. Antioxidants 2022 11 7 1324 10.3390/antiox11071324 35883815
    [Google Scholar]
  44. Ma Q. Cavallin L.E. Yan B. Antitumorigenesis of antioxidants in a transgenic Rac1 model of Kaposi’s sarcoma. Proc. Natl. Acad. Sci. 2009 106 21 8683 8688 10.1073/pnas.0812688106 19429708
    [Google Scholar]
  45. Fan J. Ren D. Wang J. Bruceine D induces lung cancer cell apoptosis and autophagy via the ROS/MAPK signaling pathway in vitro and in vivo. Cell Death Dis. 2020 11 2 126 10.1038/s41419‑020‑2317‑3 32071301
    [Google Scholar]
  46. Kim T.W. Nodakenin induces ROS-Dependent apoptotic cell death and ER stress in radioresistant breast cancer. Antioxidants 2023 12 2 492 10.3390/antiox12020492 36830050
    [Google Scholar]
  47. Redza-Dutordoir M. Averill-Bates D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res. 2016 1863 12 2977 2992 10.1016/j.bbamcr.2016.09.012 27646922
    [Google Scholar]
  48. Jiang X. Li G. Zhu B. p20BAP31 induces cell apoptosis via both AIF caspase-independent and the ROS/JNK mitochondrial pathway in colorectal cancer. Cell. Mol. Biol. Lett. 2023 28 1 25 10.1186/s11658‑023‑00434‑z 36977989
    [Google Scholar]
  49. Orrenius S. Gogvadze V. Zhivotovsky B. Calcium and mitochondria in the regulation of cell death. Biochem. Biophys. Res. Commun. 2015 460 1 72 81 10.1016/j.bbrc.2015.01.137 25998735
    [Google Scholar]
  50. Wang B. Wang Y. Zhang J. ROS-induced lipid peroxidation modulates cell death outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis. Arch. Toxicol. 2023 97 6 1439 1451 10.1007/s00204‑023‑03476‑6 37127681
    [Google Scholar]
  51. Lewis C.A. Parker S.J. Fiske B.P. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol. Cell 2014 55 2 253 263 10.1016/j.molcel.2014.05.008 24882210
    [Google Scholar]
  52. Menegon S. Columbano A. Giordano S. The dual roles of NRF2 in cancer. Trends Mol. Med. 2016 22 7 578 593 10.1016/j.molmed.2016.05.002 27263465
    [Google Scholar]
  53. Tebay LE Robertson H Durant ST Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med 2015 88Pt B10846 10.1016/j.freeradbiomed.2015.06.021 26122708 PMC4659505
    [Google Scholar]
  54. Foo J. Bellot G. Pervaiz S. Alonso S. Mitochondria-mediated oxidative stress during viral infection. Trends Microbiol. 2022 30 7 679 692 10.1016/j.tim.2021.12.011 35063304
    [Google Scholar]
  55. Camini F.C. da Silva Caetano C.C. Almeida L.T. de Brito Magalhães C.L. Implications of oxidative stress on viral pathogenesis. Arch. Virol. 2017 162 4 907 917 10.1007/s00705‑016‑3187‑y 28039563
    [Google Scholar]
  56. Li T. Gao S.J. KSHV hijacks FoxO1 to promote cell proliferation and cellular transformation by antagonizing oxidative stress. J. Med. Virol. 2023 95 3 e28676 10.1002/jmv.28676 36929740
    [Google Scholar]
  57. Qin Z. Freitas E. Sullivan R. Upregulation of xCT by KSHV-encoded microRNAs facilitates KSHV dissemination and persistence in an environment of oxidative stress. PLoS Pathog. 2010 6 1 e1000742 10.1371/journal.ppat.1000742 20126446
    [Google Scholar]
  58. Bottero V. Chakraborty S. Chandran B. Reactive oxygen species are induced by Kaposi’s sarcoma-associated herpesvirus early during primary infection of endothelial cells to promote virus entry. J. Virol. 2013 87 3 1733 1749 10.1128/JVI.02958‑12 23175375
    [Google Scholar]
  59. Ma Q. Cavallin L.E. Leung H.J. Chiozzini C. Goldschmidt-Clermont P.J. Mesri E.A. A role for virally induced reactive oxygen species in Kaposi’s sarcoma herpesvirus tumorigenesis. Antioxid. Redox Signal. 2013 18 1 80 90 10.1089/ars.2012.4584 22746102
    [Google Scholar]
  60. Ye F. Zhou F. Bedolla R.G. Reactive oxygen species hydrogen peroxide mediates Kaposi’s sarcoma-associated herpesvirus reactivation from latency. PLoS Pathog. 2011 7 5 e1002054 10.1371/journal.ppat.1002054 21625536
    [Google Scholar]
  61. Lan J. Wang Y. Yue S. Targeting FoxO proteins induces lytic reactivation of KSHV for treating herpesviral primary effusion lymphoma. PLoS Pathog. 2023 19 8 e1011581 10.1371/journal.ppat.1011581 37594999
    [Google Scholar]
  62. Hu L. Ying W. Ren R. Anti-oxidative stress actions and regulation mechanisms of Keap1-Nrf2/ARE signal pathway. J Int Pharm Res 2016 43 01 146 152 10.13220/j.cnki.jipr.2016.01.022
    [Google Scholar]
  63. Kumar B. Roy A. Asha K. Sharma-Walia N. Ansari M.A. Chandran B. HACE1, an E3 ubiquitin protein ligase, mitigates Kaposi’s Sarcoma-Associated herpesvirus infection-induced oxidative stress by promoting Nrf2 activity. J. Virol. 2019 93 9 e01812 e01818 10.1128/JVI.01812‑18 30787155
    [Google Scholar]
  64. Gjyshi O. Flaherty S. Veettil M.V. Johnson K.E. Chandran B. Bottero V. Kaposi’s sarcoma-associated herpesvirus induces Nrf2 activation in latently infected endothelial cells through SQSTM1 phosphorylation and interaction with polyubiquitinated Keap1. J. Virol. 2015 89 4 2268 2286 10.1128/JVI.02742‑14 25505069
    [Google Scholar]
  65. Iftode N. Rădulescu M.A. Aramă Ș.S. Aramă V. Update on Kaposi sarcoma-associated herpesvirus (KSHV or HHV8) – Review. Rom. J. Intern. Med. 2020 58 4 199 208 10.2478/rjim‑2020‑0017 32681788
    [Google Scholar]
  66. Jha H. Banerjee S. Robertson E. The role of gammaherpesviruses in cancer pathogenesis. Pathogens 2016 5 1 18 10.3390/pathogens5010018 26861404
    [Google Scholar]
  67. Jiang S. Li H. Zhang L. Generic Diagramming Platform (GDP): A comprehensive database of high-quality biomedical graphics. Nucleic Acids Res. 2025 53 D1 D1670 D1676 10.1093/nar/gkae973 39470721 PMC11701665
    [Google Scholar]
  68. Granato M. Gilardini Montani M.S. Santarelli R. D’Orazi G. Faggioni A. Cirone M. Apigenin, by activating p53 and inhibiting STAT3, modulates the balance between pro-apoptotic and pro-survival pathways to induce PEL cell death. J. Exp. Clin. Cancer Res. 2017 36 1 167 10.1186/s13046‑017‑0632‑z 29179721
    [Google Scholar]
  69. Gonnella R. Zarrella R. Santarelli R. Germano C.A. Gilardini Montani M.S. Cirone M. Mechanisms of sensitivity and resistance of primary effusion lymphoma to Dimethyl Fumarate (DMF). Int. J. Mol. Sci. 2022 23 12 6773 10.3390/ijms23126773 35743211
    [Google Scholar]
  70. Granato M. Gilardini Montani M.S. Filardi M. Faggioni A. Cirone M. Capsaicin triggers immunogenic PEL cell death, stimulates DCs and reverts PEL-induced immune suppression. Oncotarget 2015 6 30 29543 29554 10.18632/oncotarget.4911 26338963
    [Google Scholar]
  71. Gothland A. Leducq V. Grange P. Primaquine as a candidate for HHV-8-Associated primary effusion lymphoma and Kaposi’s Sarcoma treatment. Cancers 2022 14 3 543 10.3390/cancers14030543 35158811
    [Google Scholar]
  72. Wan C. Tai J. Zhang J. Silver nanoparticles selectively induce human oncogenic γ-herpesvirus-related cancer cell death through reactivating viral lytic replication. Cell Death Dis. 2019 10 6 392 10.1038/s41419‑019‑1624‑z 31113937
    [Google Scholar]
  73. Curreli F. Friedman-Kien A.E. Flore O. Glycyrrhizic acid alters Kaposi sarcoma–associated herpesvirus latency, triggering p53-mediated apoptosis in transformed B lymphocytes. J. Clin. Invest. 2005 115 3 642 652 10.1172/JCI200523334 15765147
    [Google Scholar]
  74. Tsai C.Y. Chen C.Y. Chiou Y.H. Epigallocatechin-3-Gallate suppresses Human Herpesvirus 8 replication and induces ROS leading to apoptosis and autophagy in primary effusion lymphoma cells. Int. J. Mol. Sci. 2017 19 1 16 10.3390/ijms19010016 29267216
    [Google Scholar]
  75. Wang Y.F. Chen C.Y. Chung S.F. Chiou Y.H. Lo H.R. Involvement of oxidative stress and caspase activation in paclitaxel-induced apoptosis of primary effusion lymphoma cells. Cancer Chemother. Pharmacol. 2004 54 4 322 330 10.1007/s00280‑004‑0831‑0 15197489
    [Google Scholar]
  76. Bettuzzi T. Lebbe C. Grolleau C. Modern approach to manage patients with Kaposi Sarcoma. J. Med. Virol. 2025 97 3 e70294 10.1002/jmv.70294 40119751
    [Google Scholar]
  77. Tang F.Y. Chen C.Y. Shyu H.W. Resveratrol induces cell death and inhibits human herpesvirus 8 replication in primary effusion lymphoma cells. Chem. Biol. Interact. 2015 242 372 379 10.1016/j.cbi.2015.10.025 26549478
    [Google Scholar]
  78. Li H. Zhong C. Wang Q. Chen W. Yuan Y. Curcumin is an APE1 redox inhibitor and exhibits an antiviral activity against KSHV replication and pathogenesis. Antiviral Res. 2019 167 98 103 10.1016/j.antiviral.2019.04.011 31034848
    [Google Scholar]
  79. Das P. Brahmachari G. Chatterjee K. Choudhuri T. Synthetic antioxidants from a natural source can overtake the oncogenic stress management system and activate the stress sensitized death of KSHV infected cancer cells. Int. J. Mol. Med. 2022 50 3 117 10.3892/ijmm.2022.5173 35856421
    [Google Scholar]
  80. Shigemi Z. Manabe K. Hara N. Methylseleninic acid and sodium selenite induce severe ER stress and subsequent apoptosis through UPR activation in PEL cells. Chem. Biol. Interact. 2017 266 28 37 10.1016/j.cbi.2017.01.027 28161410
    [Google Scholar]
  81. Alam M.M. Kariya R. Boonnate P. Kawaguchi A. Okada S. Induction of apoptosis by Shikonin through ROS-mediated intrinsic and extrinsic apoptotic pathways in primary effusion lymphoma. Transl. Oncol. 2021 14 3 101006 10.1016/j.tranon.2020.101006 33401054
    [Google Scholar]
  82. Guo C. He J. Song X. Pharmacological properties and derivatives of shikonin—A review in recent years. Pharmacol. Res. 2019 149 104463 10.1016/j.phrs.2019.104463 31553936
    [Google Scholar]
  83. Hussain A.R. Ahmed M. Ahmed S. Thymoquinone suppresses growth and induces apoptosis via generation of reactive oxygen species in primary effusion lymphoma. Free Radic. Biol. Med. 2011 50 8 978 987 10.1016/j.freeradbiomed.2010.12.034 21215312
    [Google Scholar]
  84. Hussain A.R. Al-Jomah N.A. Siraj A.K. Sanguinarine-dependent induction of apoptosis in primary effusion lymphoma cells. Cancer Res. 2007 67 8 3888 3897 10.1158/0008‑5472.CAN‑06‑3764 17440103
    [Google Scholar]
  85. Huang L.J. Lan J.X. Wang J.H. Bioactivity and mechanism of action of sanguinarine and its derivatives in the past 10 years. Biomed. Pharmacother. 2024 173 116406 10.1016/j.biopha.2024.116406 38460366
    [Google Scholar]
  86. Abbotts R. Madhusudan S. Human AP endonuclease 1 (APE1): From mechanistic insights to druggable target in cancer. Cancer Treat. Rev. 2010 36 5 425 435 10.1016/j.ctrv.2009.12.006 20056333
    [Google Scholar]
  87. Siqueira P.B. de Sousa Rodrigues M.M. de Amorim Í.S.S. The APE1/REF-1 and the hallmarks of cancer. Mol. Biol. Rep. 2024 51 1 47 10.1007/s11033‑023‑08946‑9 38165468
    [Google Scholar]
  88. Hu J. Wang Y. Yuan Y. Inhibitors of APE1 redox function effectively inhibit γ-herpesvirus replication in vitro and in vivo. Antiviral Res. 2021 185 104985 10.1016/j.antiviral.2020.104985 33271272
    [Google Scholar]
  89. Zhong C. Xu M. Wang Y. Xu J. Yuan Y. An APE1 inhibitor reveals critical roles of the redox function of APE1 in KSHV replication and pathogenic phenotypes. PLoS Pathog. 2017 13 4 e1006289 10.1371/journal.ppat.1006289 28380040
    [Google Scholar]
  90. Klotz L.O. Sánchez-Ramos C. Prieto-Arroyo I. Urbánek P. Steinbrenner H. Monsalve M. Redox regulation of FoxO transcription factors. Redox Biol. 2015 6 51 72 10.1016/j.redox.2015.06.019 26184557
    [Google Scholar]
  91. Rodriguez-Colman M.J. Dansen T.B. Burgering B.M.T. FOXO transcription factors as mediators of stress adaptation. Nat. Rev. Mol. Cell Biol. 2024 25 1 46 64 10.1038/s41580‑023‑00649‑0 37710009
    [Google Scholar]
  92. Myatt S.S. Brosens J.J. Lam E.W.F. Sense and sensitivity: FOXO and ROS in cancer development and treatment. Antioxid. Redox Signal. 2011 14 4 675 687 10.1089/ars.2010.3383 20649462
    [Google Scholar]
  93. Rogges E. Pelliccia S. Savio C. Molecular features of HHV8 monoclonal microlymphoma associated with Kaposi Sarcoma and Multicentric Castleman disease in an HIV-Negative patient. Int. J. Mol. Sci. 2024 25 7 3775 10.3390/ijms25073775 38612584
    [Google Scholar]
  94. Gao R. Li T. Tan B. FoxO1 Suppresses Kaposi’s Sarcoma-Associated herpesvirus lytic replication and controls viral latency. J. Virol. 2019 93 3 e01681 e18 10.1128/JVI.01681‑18 30404794
    [Google Scholar]
  95. Suares A. Mori Sequeiros Garcia M. Paz C. González-Pardo V. Antiproliferative effects of Bortezomib in endothelial cells transformed by viral G protein-coupled receptor associated to Kaposi’s sarcoma. Cell. Signal. 2017 32 124 132 10.1016/j.cellsig.2017.01.025 28161489
    [Google Scholar]
  96. Dai L. Noverr M.C. Parsons C. Kaleeba J.A.R. Qin Z. xCT, not just an amino-acid transporter: A multi-functional regulator of microbial infection and associated diseases. Front. Microbiol. 2015 6 120 10.3389/fmicb.2015.00120 25745420
    [Google Scholar]
  97. Dai L. Cao Y. Chen Y. Kaleeba J.A.R. Zabaleta J. Qin Z. Genomic analysis of xCT-mediated regulatory network: Identification of novel targets against AIDS-associated lymphoma. Oncotarget 2015 6 14 12710 12722 10.18632/oncotarget.3710 25860939
    [Google Scholar]
  98. Kaleeba J.A.R. Berger E.A. Kaposi’s sarcoma-associated herpesvirus fusion-entry receptor: Cystine transporter xCT. Science 2006 311 5769 1921 1924 10.1126/science.1120878 16574866
    [Google Scholar]
  99. Veettil M.V. Sadagopan S. Sharma-Walia N. Kaposi’s sarcoma-associated herpesvirus forms a multimolecular complex of integrins (alphaVbeta5, alphaVbeta3, and alpha3beta1) and CD98-xCT during infection of human dermal microvascular endothelial cells, and CD98-xCT is essential for the postentry stage of infection. J. Virol. 2008 82 24 12126 12144 10.1128/JVI.01146‑08 18829766
    [Google Scholar]
  100. Dai L. Cao Y. Chen Y. Parsons C. Qin Z. Targeting xCT, a cystine-glutamate transporter induces apoptosis and tumor regression for KSHV/HIV-associated lymphoma. J. Hematol. Oncol. 2014 7 1 30 10.1186/1756‑8722‑7‑30 24708874
    [Google Scholar]
  101. Zhang H. Wong J.P. Ni G. Cano P. Dittmer D.P. Damania B. Mitochondrial protein, TBRG4, modulates KSHV and EBV reactivation from latency. PLoS Pathog. 2022 18 11 e1010990 10.1371/journal.ppat.1010990 36417478
    [Google Scholar]
  102. Zhang X. Meng W. Feng J. METTL16 controls Kaposi’s sarcoma-associated herpesvirus replication by regulating S-adenosylmethionine cycle. Cell Death Dis. 2023 14 9 591 10.1038/s41419‑023‑06121‑3 37673880
    [Google Scholar]
  103. Gjyshi O. Roy A. Dutta S. Veettil M.V. Dutta D. Chandran B. Activated Nrf2 Interacts with Kaposi’s Sarcoma-Associated herpesvirus latency protein LANA-1 and host protein KAP1 to mediate global lytic gene repression. J. Virol. 2015 89 15 7874 7892 10.1128/JVI.00895‑15 25995248
    [Google Scholar]
  104. Gjyshi O. Bottero V. Veettil M.V. Kaposi’s sarcoma-associated herpesvirus induces Nrf2 during de novo infection of endothelial cells to create a microenvironment conducive to infection. PLoS Pathog. 2014 10 10 e1004460 10.1371/journal.ppat.1004460 25340789
    [Google Scholar]
  105. Li X. Feng J. Sun R. Oxidative stress induces reactivation of Kaposi’s sarcoma-associated herpesvirus and death of primary effusion lymphoma cells. J. Virol. 2011 85 2 715 724 10.1128/JVI.01742‑10 21068240
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947399339251106102000
Loading
/content/journals/cctr/10.2174/0115733947399339251106102000
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test