Skip to content
2000
image of Bacteriophages in Cancer Treatment

Abstract

Cancer remains one of the most complex diseases globally, driven by genetic and epigenetic alterations that disrupt normal cellular processes. This complexity is further amplified by mechanisms such as uncontrolled cell proliferation, inhibition of apoptosis, angiogenesis, immune evasion, and metabolic reprogramming, all of which contribute to tumor growth and metastasis. While advancements in diagnostic technologies, including next-generation sequencing and liquid biopsies, have facilitated early detection and the development of personalized therapeutic strategies, traditional treatments such as chemotherapy, radiotherapy, and immunotherapy continue to face significant limitations, including drug resistance, adverse side effects, and tumor heterogeneity. Recent studies have emphasized the potential of bacteriophages in cancer treatment. As viruses that specifically target bacteria, phages offer unique advantages due to their genetic modifiability, roles in immunotherapy, and capabilities in targeted drug delivery. They can reshape the tumor microenvironment, enhance immune responses, and deliver therapeutic agents directly to cancer cells. Moreover, phages hold promise in addressing antibiotic resistance in cancer patients and improving the efficacy of traditional therapies through combination strategies. However, challenges remain regarding the optimization of phage stability, bioavailability, and tumor-specific targeting. Research and clinical trials on the therapeutic application of phages are critical to unlocking their full potential as innovative approaches to overcome the limitations of current cancer treatments.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947396384250812072136
2025-08-22
2025-10-18
Loading full text...

Full text loading...

References

  1. Koul B. Herbs for cancer treatment. Types of Cancer. Springer 2019 53 150 10.1007/978‑981‑32‑9147‑8_2
    [Google Scholar]
  2. Harrington K.J. The biology of cancer. Medicine (Abingdon) 2016 44 1 1 5 10.1016/j.mpmed.2015.10.005
    [Google Scholar]
  3. Rios Leal J. Zavala V. Garrido F. Biological bases of cancer: A proposal of minimum contents for health schools. Int. J. Med. Surg. Sci. 2021 8 3 1 11 10.32457/ijmss.v8i3.1606
    [Google Scholar]
  4. Jarosz-Biej M. Smolarczyk R. Cichoń T. Kułach N. Tumor microenvironment as a “game changer” in cancer radiotherapy. Int. J. Mol. Sci. 2019 20 13 3212 10.3390/ijms20133212 31261963
    [Google Scholar]
  5. Kandasamy G. Karuppasamy Y. Krishnan U.M. Emerging trends in nano-driven immunotherapy for treatment of cancer. Vaccines 2023 11 2 458 10.3390/vaccines11020458 36851335
    [Google Scholar]
  6. Parija S.C. Bacteriophages. Textbook of Microbiology and Immunology. Singapore Springer Nature Singapore 2023 733 738 10.1007/978‑981‑19‑3315‑8_51
    [Google Scholar]
  7. Abbaszadeh F. Leylabadlo H.E. Alinezhad F. Feizi H. Mobed A. Baghbanijavid S. Baghi H.B. Bacteriophages: Cancer diagnosis, treatment, and future prospects. J. Pharm. Investig. 2021 51 1 23 34 10.1007/s40005‑020‑00503‑x
    [Google Scholar]
  8. Kashyap A.K. Dubey S.K. Molecular mechanisms in cancer development. Understanding Cancer. Cambridge, MA Academic Press 2022 79 90 10.1016/B978‑0‑323‑99883‑3.00016‑0
    [Google Scholar]
  9. Compton C. Compton C. Understanding the hallmark characteristics of cancer. Cancer: The Enemy from Within Springer 2020 49 81 10.1007/978‑3‑030‑40651‑6_3
    [Google Scholar]
  10. Manfioletti G. Fedele M. Epithelial–Mesenchymal Transition (EMT). Int. J. Mol. Sci. 2023 24 14 11386 10.3390/ijms241411386 37511145
    [Google Scholar]
  11. Islam M.K. Stanslas J. Peptide-based and small molecule PD-1 and PD-L1 pharmacological modulators in the treatment of cancer. Pharmacol. Ther. 2021 227 107870 10.1016/j.pharmthera.2021.107870 33895183
    [Google Scholar]
  12. Dell’ Antone P. Energy metabolism in cancer cells: How to explain the Warburg and Crabtree effects? Med. Hypotheses 2012 79 3 388 392 10.1016/j.mehy.2012.06.002
    [Google Scholar]
  13. Mehboob R. Role of epigenetic alterations in the development of cancers. Pakistan BioMed. J. 2022 5 2 01 10.54393/pbmj.v5i2.346
    [Google Scholar]
  14. Bradly R. Research advances in tumor diagnosis and early detection. Asia Pac J Oncol 2024 55 65 10.32948/ajo.2024.09.18
    [Google Scholar]
  15. Tsai C.C. Wang C.Y. Chang H.H. Chang P.T.S. Chang C.H. Chu T.Y. Hsu P.C. Kuo C.Y. Diagnostics and therapy for malignant tumors. Biomedicines 2024 12 12 2659 10.3390/biomedicines12122659 39767566
    [Google Scholar]
  16. Kaur P. Next-generation sequencing in cancer research. Biomedical Translational Research: Technologies for Improving Healthcare. Singapore Springer Nature Singapore 2022 155 166 10.1007/978‑981‑16‑4345‑3_11
    [Google Scholar]
  17. Singh R.K. Blumenberg M. Protein kinases: promising targets for anticancer drug research. Norderstedt, Germany BoD–Books on Demand 2021 10.5772/intechopen.82939
    [Google Scholar]
  18. Guo S. Zhang L. Li N. ANO1: more than just calcium-activated chloride channel in cancer. Front. Oncol. 2022 12 922838 10.3389/fonc.2022.922838 35734591
    [Google Scholar]
  19. Militello G. Bertolaso M. The complexity of tumor heterogeneity: Limitations and challenges of the pharmacogenomics in cancer treatment. Personalized Medicine in the Making: Philosophical Perspectives from Biology to Healthcare. Cham Springer International Publishing 2022 23 45 10.1007/978‑3‑030‑74804‑3_2
    [Google Scholar]
  20. Durmaz C. Erdag B. Overview of current approaches in cancer immunotherapy and personalized opportunities for future aspect. Genetics. Applications 2022 6 2 1 17 10.31383/ga.vol6iss2ga01
    [Google Scholar]
  21. Liu Y.P. Zheng C.C. Huang Y.N. He M.L. Xu W.W. Li B. Molecular mechanisms of chemo-and radiotherapy resistance and the potential implications for cancer treatment. MedComm 2021 2 3 315 340 10.1002/mco2.55 34766149
    [Google Scholar]
  22. Yip H.Y.K. Papa A. Signaling pathways in cancer: therapeutic targets, combinatorial treatments, and new developments. Cells 2021 10 3 659 10.3390/cells10030659 33809714
    [Google Scholar]
  23. Rotte A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J. Exp. Clin. Cancer Res. 2019 38 1 255 10.1186/s13046‑019‑1259‑z 31196207
    [Google Scholar]
  24. Chen Y. Batra H. Dong J. Chen C. Rao V.B. Tao P. Tao P. Genetic engineering of bacteriophages against infectious diseases. Front. Microbiol. 2019 10 954 10.3389/fmicb.2019.00954 31130936
    [Google Scholar]
  25. Kabwe M. Dashper S. Bachrach G. Tucci J. Bacteriophage manipulation of the microbiome associated with tumour microenvironments-can this improve cancer therapeutic response? FEMS Microbiol. Rev. 2021 45 5 fuab017 10.1093/femsre/fuab017 33765142
    [Google Scholar]
  26. Petrov G. Dymova M. Richter V. Bacteriophage-mediated cancer gene therapy. Int. J. Mol. Sci. 2022 23 22 14245 10.3390/ijms232214245 36430720
    [Google Scholar]
  27. Hibstu Z. Belew H. Akelew Y. Mengist H.M. Phage therapy: A different approach to fight bacterial infections. Biologics Targets Ther 2022 173 186
    [Google Scholar]
  28. Le S.T. Kurtböke İ. Bacteriophages as biocontrol agents in aquaculture. Microbiol. Aust. 2019 40 1 37 41 10.1071/MA19003
    [Google Scholar]
  29. Linares R. Arnaud C.A. Degroux S. Schoehn G. Breyton C. Structure, function and assembly of the long, flexible tail of siphophages. Curr. Opin. Virol. 2020 45 34 42 10.1016/j.coviro.2020.06.010 32777752
    [Google Scholar]
  30. Zhang Y. Guo Y. Qiu T. Gao M. Wang X. Bacteriophages: Underestimated vehicles of antibiotic resistance genes in the soil. Front. Microbiol. 2022 13 936267 10.3389/fmicb.2022.936267 35992716
    [Google Scholar]
  31. Joy J.P. Exploring the lytic and lysogenic life cycles of bacteriophages. CourseSource 2021 8 10.24918/cs.2021.6
    [Google Scholar]
  32. Moradpour Z. Ghasemian A. Phage therapy: Current development and future prospects. New and Future Developments in Microbial Biotechnology and Bioengineering. Amsterdam Elsevier 2020 203 217 10.1016/B978‑0‑12‑820528‑0.00014‑4
    [Google Scholar]
  33. Li J. Zheng H. Leung S.S.Y. Potential of bacteriophage therapy in managing Staphylococcus aureus infections during chemotherapy for lung cancer patients. Sci. Rep. 2023 13 1 9534 10.1038/s41598‑023‑36749‑2 37308748
    [Google Scholar]
  34. Champagne-Jorgensen K. Luong T. Darby T. Roach D.R. Immunogenicity of bacteriophages. Trends Microbiol. 2023 31 10 1058 1071 10.1016/j.tim.2023.04.008 37198061
    [Google Scholar]
  35. Dong X Pan P Zheng DW Bao P Zeng X Zhang XZ Bioinorganic hybrid bacteriophage for modulation of intestinal microbiota to remodel tumor-immune microenvironment against colorectal cancer. Sci Adv. 2020 6 20 eaba1590 10.1126/sciadv.aba1590
    [Google Scholar]
  36. Yang T. Zhang Q. Miao Y. Lyu Y. Xu Y. Yang M. Mao C. (2025). Tumor-homing phage nanofibers for nanozyme-enhanced targeted breast cancer therapy. Advanced Materials 37 2 2403756 10.1002/adma.202403756
    [Google Scholar]
  37. Shoae-Hassani A. Keyhanvar P. Seifalian A.M. Mortazavi-Tabatabaei S.A. Ghaderi N. Issazadeh K. Amirmozafari N. Verdi J. λ Phage nanobioparticle expressing apoptin efficiently suppress human breast carcinoma tumor growth in vivo. PLoS One 2013 8 11 e79907 10.1371/journal.pone.0079907 24278212
    [Google Scholar]
  38. Li J. Zheng H. Leung S.S.Y. Potential of bacteriophage therapy in managing Staphylococcus aureus infections during chemotherapy for lung cancer patients. Sci Rep 13, 9534 (2023). 10.1038/s41598‑023‑36749‑2
    [Google Scholar]
  39. Loh B. Gondil V.S. Manohar P. Khan F.M. Yang H. Leptihn S. Encapsulation and delivery of therapeutic phages. Appl. Environ. Microbiol. 2021 87 5 e01979-20 10.1128/AEM.01979‑20 33310718
    [Google Scholar]
  40. Bakhshinejad B. Karimi M. Sadeghizadeh M. Bacteriophages and medical oncology: Targeted gene therapy of cancer. Med. Oncol. 2014 31 8 110 10.1007/s12032‑014‑0110‑9 25012686
    [Google Scholar]
  41. Zuo S. Dai G. Wang L. Wen Y. Huang Z. Yang W. Ma W. Ren X. Suppression of angiogenesis and tumor growth by recombinant T4 phages displaying extracellular domain of vascular endothelial growth factor receptor 2. Arch. Virol. 2019 164 1 69 82 10.1007/s00705‑018‑4026‑0 30259141
    [Google Scholar]
  42. Li M. Shi D. Li Y. Xiao Y. Chen M. Chen L. Du H. Zhang W. Recombination of T4-like phages and its activity against pathogenic Escherichia coli in planktonic and biofilm forms. Virol. Sin. 2020 35 5 651 661 10.1007/s12250‑020‑00233‑2 32451882
    [Google Scholar]
  43. Stecher C. Battin C. Leitner J. Zettl M. Grabmeier-Pfistershammer K. Höller C. Zlabinger G.J. Steinberger P. PD-1 blockade promotes emerging checkpoint inhibitors in enhancing T cell responses to allogeneic dendritic cells. Front. Immunol. 2017 8 572 10.3389/fimmu.2017.00572 28588576
    [Google Scholar]
  44. Balon K. Sheriff A. Jacków J. Łaczmański Ł. Targeting cancer with CRISPR/Cas9-based therapy. Int. J. Mol. Sci. 2022 23 1 573 10.3390/ijms23010573 35008996
    [Google Scholar]
  45. Diderich P. Heinis C. Phage selection of bicyclic peptides binding Her2. Tetrahedron 2014 70 42 7733 7739 10.1016/j.tet.2014.05.106
    [Google Scholar]
  46. Wang J. Lamolinara A. Conti L. Giangrossi M. Cui L. Morelli M.B. Amantini C. Falconi M. Bartolacci C. Andreani C. Orlando F. Provinciali M. Del Pizzo F.D. Russo F. Belletti B. Riccardo F. Bolli E. Quaglino E. Cavallo F. Amici A. Iezzi M. Marchini C. HER2-displaying M13 bacteriophages induce therapeutic immunity against breast cancer. Cancers 2022 14 16 4054 10.3390/cancers14164054 36011047
    [Google Scholar]
  47. Gurung S. Khan F. Gunassekaran G.R. Yoo J.D. Vadevoo S.M.P. Permpoon U. Kim H. Gut virome and colorectal cancer. Cell Host Microbe 2019 25 4 556 564
    [Google Scholar]
  48. Venkataraman S. Shahgolzari M. Yavari A. Hefferon K. Bacteriophages as targeted therapeutic vehicles: Challenges and opportunities. Bioengineering 2025 12 5 469 10.3390/bioengineering12050469 40428088
    [Google Scholar]
  49. Liu C. Shi Q. Huang X. Koo S. Kong N. Tao W. mRNA-based cancer therapeutics. Nat. Rev. Cancer 2023 23 8 526 543 10.1038/s41568‑023‑00586‑2 37311817
    [Google Scholar]
  50. Stewart C.R. Site-specific mutagenesis of Bacillus subtilis phage SPO1. Bacteriophages: Methods and Protocols. New York, NY Springer New York 2018 57 67
    [Google Scholar]
  51. López-Cano C. Site-directed mutagenesis v1. Protocols.io 2024 10.17504/protocols.io.81wgbzxjygpk/v1
    [Google Scholar]
  52. Iravani F. Mojarrad M. Cancer gene therapy to restore P53 function: A new way for an old aim. Cancer Press 2016 2 1 5 7 10.15562/tcp.9
    [Google Scholar]
  53. Cam L. Boucquey A. Coulomb-L’hermine A. Weber A. Horellou P. Gene transfer of constitutively active caspase-3 induces apoptosis in a human hepatoma cell line. J. Gene Med. 2005 7 1 30 38 10.1002/jgm.636 15521050
    [Google Scholar]
  54. Brunetti J. Lelli B. Scali S. Falciani C. Bracci L. Pini A. A novel phage-library-selected peptide inhibits human TNF-α binding to its receptors. Molecules 2014 19 6 7255 7268 10.3390/molecules19067255 24896264
    [Google Scholar]
  55. Reyes-Cortés R. Arguijo-Hernández E.S. Carballo-Ontiveros M.A. Martínez-Peñafiel E. Kameyama L. Random transposon mutagenesis for cell-envelope resistant to phage infection. Bacteriophages: Methods and Protocols. New York, NY Springer 2016 67 75 10.1007/978‑1‑4939‑3676‑2_6
    [Google Scholar]
  56. Mann K.M. Jenkins N.A. Copeland N.G. Mann M.B. Transposon insertional mutagenesis models of cancer. CSH Protoc 2014
    [Google Scholar]
  57. Karthika C. Sureshkumar R. Zehravi M. Akter R. Ali F. Ramproshad S. Mondal B. Tagde P. Ahmed Z. Khan F.S. Rahman M.H. Cavalu S. Multidrug resistance of cancer cells and the vital role of P-glycoprotein. Life 2022 12 6 897 10.3390/life12060897 35743927
    [Google Scholar]
  58. Aggarwal N. Hwang I.Y. Chang M.W. Phage-boosted chemotherapy. Nat. Biomed. Eng. 2019 3 9 680 681 10.1038/s41551‑019‑0450‑z 31501566
    [Google Scholar]
  59. Mirlekar B. Tumor promoting roles of IL-10, TGF-β, IL-4, and IL-35: Its implications in cancer immunotherapy. SAGE Open Med. 2022 10 20503121211069012 10.1177/20503121211069012 35096390
    [Google Scholar]
  60. Beckmann P.J. Largaespada D.A. Transposon insertion mutagenesis in mice for modeling human cancers: critical insights gained and new opportunities. Int. J. Mol. Sci. 2020 21 3 1172 10.3390/ijms21031172 32050713
    [Google Scholar]
  61. Mishra G. Srivastava K. Rais J. Dixit M. Kumari Singh K. Chandra Mishra L. CRISPR-Cas9: A potent gene-editing tool for the treatment of cancer. Curr. Mol. Med. 2024 24 2 191 204 10.2174/1566524023666230213094308 36788695
    [Google Scholar]
  62. Hu X. Singh R. Kelley S. Abstract B014: Phenotypic CRISPR genome-wide screening for the discovery of genetic regulators of allele-specific mutant KRAS. Mol. Cancer Res. 2023 21 5_Supplement B014 10.1158/1557‑3125.RAS23‑B014
    [Google Scholar]
  63. Suwan K. Tsafa E. Przystal J. Asavarut P. Hajitou A. 672. Hybrid AAV/phage vector enhances chemotherapy efficacy against cancer. Mol. Ther. 2016 24 S265 S266 10.1016/S1525‑0016(16)33480‑3
    [Google Scholar]
  64. Chung S.H. Sin T.N. Dang B. Ngo T. Lo T. Lent-Schochet D. Meleppat R.K. Zawadzki R.J. Yiu G. CRISPR-based VEGF suppression using paired guide RNAs for treatment of choroidal neovascularization. Mol. Ther. Nucleic Acids 2022 28 613 622 10.1016/j.omtn.2022.04.015 35614998
    [Google Scholar]
  65. Dong X. Pan P. Ye J.J. Zhang Q.L. Zhang X.Z. Hybrid M13 bacteriophage-based vaccine platform for personalized cancer immunotherapy. Biomaterials 2022 289 121763 10.1016/j.biomaterials.2022.121763 36055175
    [Google Scholar]
  66. Rahimi A. Soudi S. Vakilian S. Jamshidi-Adegani F. Sadeghizadeh M. Al-Hashmi S. Bacteriophage M13 modulates the sepsis-related inflammatory responses and organ damage in a CLP model. Shock 2023 Mar 1 59 3 493 504 10.1097/SHK.0000000000002076
    [Google Scholar]
  67. Palma M. Qi B. Advancing phage therapy: A comprehensive review of the safety, efficacy, and future prospects for the targeted treatment of bacterial infections. Infect. Dis. Rep. 2024 16 6 1127 1181 10.3390/idr16060092 39728014
    [Google Scholar]
  68. Li K. Chen Y. Li S. Nguyen H.G. Niu Z. You S. Mello C.M. Lu X. Wang Q. Chemical modification of M13 bacteriophage and its application in cancer cell imaging. Bioconjug. Chem. 2010 21 7 1369 1377 10.1021/bc900405q 20499838
    [Google Scholar]
  69. Wang H. Yang Y. Xu Y. Chen Y. Zhang W. Liu T. Chen G. Wang K. Phage-based delivery systems: Engineering, applications, and challenges in nanomedicines. J. Nanobiotechnology 2024 22 1 365 10.1186/s12951‑024‑02576‑4 38918839
    [Google Scholar]
  70. Cui L. Watanabe S. Miyanaga K. Kiga K. Sasahara T. Aiba Y. Tan X.E. Veeranarayanan S. Thitiananpakorn K. Nguyen H.M. Wannigama D.L. A comprehensive review on phage therapy and phage-based drug development. Antibiotics 2024 13 9 870 10.3390/antibiotics13090870 39335043
    [Google Scholar]
  71. Emencheta S.C. Onugwu A.L. Kalu C.F. Ezinkwo P.N. Eze O.C. Vila M.M.D.C. Balcão V.M. Attama A.A. Onuigbo E.B. Bacteriophages as nanocarriers for targeted drug delivery and enhanced therapeutic effects. Mater. Adv. 2024 5 3 986 1016 10.1039/D3MA00817G
    [Google Scholar]
  72. Ju Z. Sun W. Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles. Drug Deliv. 2017 24 1 1898 1908 10.1080/10717544.2017.1410259 29191048
    [Google Scholar]
  73. Kao Y.C. TransPhage vectors for antibody-dependent cytotoxicity. Nat. Biomed. Eng. 2023 7 5 512 522
    [Google Scholar]
  74. Davda J. Declerck P. Hu-Lieskovan S. Hickling T.P. Jacobs I.A. Chou J. Salek-Ardakani S. Kraynov E. Immunogenicity of immunomodulatory, antibody-based, oncology therapeutics. J. Immunother. Cancer 2019 7 1 105 10.1186/s40425‑019‑0586‑0 30992085
    [Google Scholar]
  75. Krishna M. Nadler S.G. Immunogenicity to biotherapeutics – the role of anti-drug immune complexes. Front. Immunol. 2016 7 21 10.3389/fimmu.2016.00021 26870037
    [Google Scholar]
  76. Lv S. Wang Y. Jiang K. Guo X. Zhang J. Zhou F. Li Q. Jiang Y. Yang C. Teng T. Genetic engineering and biosynthesis technology: keys to unlocking the chains of phage therapy. Viruses 2023 15 8 1736 10.3390/v15081736 37632078
    [Google Scholar]
  77. Bennett P.M. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br. J. Pharmacol. 2008 153 S1 Suppl. 1 S347 S357 10.1038/sj.bjp.0707607 18193080
    [Google Scholar]
  78. Debroas D. Siguret C. Viruses as key reservoirs of antibiotic resistance genes in the environment. ISME J. 2019 13 11 2856 2867 10.1038/s41396‑019‑0478‑9 31358910
    [Google Scholar]
  79. Nilsson A.S. Phage therapy—constraints and possibilities. Ups. J. Med. Sci. 2014 119 2 192 198 10.3109/03009734.2014.902878 24678769
    [Google Scholar]
  80. Fadaie M. Dianat-Moghadam H. Ghafouri E. Naderi S. Darvishali M.H. Ghovvati M. Khanahmad H. Boshtam M. Makvandi P. Unraveling the potential of M13 phages in biomedicine: Advancing drug nanodelivery and gene therapy. Environ. Res. 2023 238 Pt 1 117132 10.1016/j.envres.2023.117132 37714365
    [Google Scholar]
  81. Maghsoodi A. Chatterjee A. Andricioaei I. Perkins N.C. How the phage T4 injection machinery works including energetics, forces, and dynamic pathway. Proc. Natl. Acad. Sci. USA 2019 116 50 25097 25105 10.1073/pnas.1909298116 31767752
    [Google Scholar]
  82. Muscolini M. Hiscott J. Tassone E. A genome-wide CRISPR-Cas9 loss-of-function screening to identify host restriction factors modulating oncolytic virotherapy. HDAC/HAT Function Assessment and Inhibitor Development: Methods and Protocols. New York, NY Springer US 2022 379 399
    [Google Scholar]
  83. Zhou S. Liu Z. Song J. Chen Y. Disarm the bacteria: What temperate phages can do. Curr. Issues Mol. Biol. 2023 45 2 1149 1167 10.3390/cimb45020076 36826021
    [Google Scholar]
  84. Wang M Wan Q Wang C Jing Q Nie Y Zhang X Combined use of TLR4 and TLR7/8 agonists to improve the efficacy of immune checkpoint inhibitors in “hot” tumor treatment and the establishment of long-term immune protection. Research Square 2023
    [Google Scholar]
  85. Atshan SS Hamat RA Al-Jaberi MA Chen JS Huang SW Lin CY Phage therapy as an alternative treatment modality for resistant Staphylococcus aureus infections. Antibiotics 2023 12 286 10.3390/antibiotics12020286
    [Google Scholar]
  86. Fage C. Lemire N. Moineau S. Delivery of CRISPR-Cas systems using phage-based vectors. Curr. Opin. Biotechnol. 2021 68 174 180 10.1016/j.copbio.2020.11.012 33360715
    [Google Scholar]
  87. Zheng D.W. Dong X. Pan P. Chen K.W. Fan J.X. Cheng S.X. Zhang X.Z. Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy. Nat. Biomed. Eng. 2019 3 9 717 728 10.1038/s41551‑019‑0423‑2 31332342
    [Google Scholar]
  88. Lee J. Choi M.K. Song I.S. Recent advances in doxorubicin formulation to enhance pharmacokinetics and tumor targeting. Pharmaceuticals (Basel) 2023 16 6 802 10.3390/ph16060802 37375753
    [Google Scholar]
  89. Dominas C. Deans K. Packard R. Jonas O. Preparation and sterilization of an implantable drug-delivery microdevice for clinical use. MethodsX 2021 8 101382 10.1016/j.mex.2021.101382 34430278
    [Google Scholar]
  90. Skurnik M. Pajunen M. Kiljunen S. Biotechnological challenges of phage therapy. Biotechnol. Lett. 2007 29 7 995 1003 10.1007/s10529‑007‑9346‑1 17364214
    [Google Scholar]
  91. Wang Y. Tang Y. Zhao X. Huang G. Gong J. Yang S. Li H. Wan W. Jia C. Chen G. Zhang X. A multifunctional non-viral vector for the delivery of MTH1-targeted CRISPR/Cas9 system for non-small cell lung cancer therapy. Acta Biomater. 2022 153 481 493 10.1016/j.actbio.2022.09.046 36162766
    [Google Scholar]
  92. Zhang T. Berghaus M. Li Y. Song Q. Stollenwerk M. Persson J. Shea K. Sellergren B. Lv Y. PSMA-targeting imprinted nanogels for prostate tumor localization and imaging. Adv. Healthc. Mater. 2024 2024 e2401929 10.1002/adhm.202401929 39690809
    [Google Scholar]
  93. Bartolacci C. Andreani C. Curcio C. Occhipinti S. Massaccesi L. Giovarelli M. Galeazzi R. Iezzi M. Tilio M. Gambini V. Wang J. Marchini C. Amici A. Phage-based Anti-HER2 vaccination can circumvent immune tolerance against breast cancer. Cancer Immunol. Res. 2018 6 12 1486 1498 10.1158/2326‑6066.CIR‑18‑0179 30327365
    [Google Scholar]
  94. Dong J. Liu W. Jiang A. Zhang K. Chen M. A novel peptide, selected from phage display library of random peptides, can efficiently target into human breast cancer cell. Sci. Bull. (Beijing) 2008 53 6 860 867 10.1007/s11434‑008‑0162‑3
    [Google Scholar]
  95. Shadidi M. Sioud M. Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. FASEB J. 2003 17 2 256 258 10.1096/fj.02‑0280fje 12490548
    [Google Scholar]
  96. Murgas P. Bustamante N. Araya N. Cruz-Gómez S. Durán E. Gaete D. Oyarce C. López E. Herrada A.A. Ferreira N. Pieringer H. Lladser A. A filamentous bacteriophage targeted to carcinoembryonic antigen induces tumor regression in mouse models of colorectal cancer. Cancer Immunol. Immunother. 2018 67 2 183 193 10.1007/s00262‑017‑2076‑x 29026949
    [Google Scholar]
  97. Dymova M.A. Utkin Y.A. Dmitrieva M.D. Kuligina E.V. Richter V.A. Modification of a tumor-targeting bacteriophage for potential diagnostic applications. Molecules 2021 26 21 6564 10.3390/molecules26216564 34770973
    [Google Scholar]
  98. Tsafa E. Al-Bahrani M. Bentayebi K. Przystal J. Suwan K. Hajitou A. The natural dietary genistein boosts bacteriophage-mediated cancer cell killing by improving phage-targeted tumor cell transduction. Oncotarget 2016 7 32 52135 52149 10.18632/oncotarget.10662 27437775
    [Google Scholar]
  99. Suh G.A. Lodise T.P. Tamma P.D. Knisely J.M. Alexander J. Aslam S. Barton K.D. Bizzell E. Totten K.M.C. Campbell J.L. Chan B.K. Cunningham S.A. Goodman K.E. Greenwood-Quaintance K.E. Harris A.D. Hesse S. Maresso A. Nussenblatt V. Pride D. Rybak M.J. Sund Z. van Duin D. Van Tyne D. Patel R. Antibacterial Resistance Leadership Group Considerations for the use of phage therapy in clinical practice. Antimicrob. Agents Chemother. 2022 66 3 e02071-21 10.1128/aac.02071‑21 35041506
    [Google Scholar]
  100. Safari Z. Sadeghizadeh M. Asgaritarghi G. Bardania H. Sadeghizadeh D. Soudi S. M13 phage coated surface elicits an anti-inflammatory response in BALB/c and C57BL/6 peritoneal macrophages. Int. Immunopharmacol. 2022 107 108654 10.1016/j.intimp.2022.108654 35421683
    [Google Scholar]
  101. Dai Y. Tang Y. Huang W. Zhao Y. Gao X. Gu Y. Multi-modal imaging probe for EpCAM overexpressed in breast cancer. Talanta 2022 250 123715 10.1016/j.talanta.2022.123715 35868149
    [Google Scholar]
  102. Richards K. Malik D.J. Microencapsulation of Bacteriophages Using Membrane Emulsification in Different pH-Triggered Controlled Release Formulations for Oral Administration. Pharmaceuticals (Basel) 2021 14 5 424 10.3390/ph14050424 34063218
    [Google Scholar]
  103. Wu M. Brown W.L. Stockley P.G. Cell-specific delivery of bacteriophage-encapsidated ricin A chain. Bioconjug. Chem. 1995 6 5 587 595 10.1021/bc00035a013 8974458
    [Google Scholar]
  104. Terrén I. Orrantia A. Vitallé J. Zenarruzabeitia O. Borrego F. NK cell metabolism and tumor microenvironment. Front. Immunol. 2019 10 2278 10.3389/fimmu.2019.02278 31616440
    [Google Scholar]
  105. Dąbrowska K. Skaradziński G. Kurzępa A. Owczarek B. Żaczek M. Weber-Dąbrowska B. Wietrzyk J. Maciejewska M. Budynek P. Górski A. The effects of staphylococcal bacteriophage lysates on cancer cells in vitro. Clin. Exp. Med. 2010 10 1 81 85 10.1007/s10238‑009‑0066‑9 19779963
    [Google Scholar]
  106. Tsafa E. Bentayebi K. Topanurak S. Yata T. Przystal J. Fongmoon D. Hajji N. Waramit S. Suwan K. Hajitou A. Doxorubicin Improves cancer cell targeting by filamentous phage gene delivery vectors. Int. J. Mol. Sci. 2020 21 21 7867 10.3390/ijms21217867 33114050
    [Google Scholar]
  107. Yata T. Lee E.L.Q. Suwan K. Syed N. Asavarut P. Hajitou A. Modulation of extracellular matrix in cancer is associated with enhanced tumor cell targeting by bacteriophage vectors. Mol. Cancer 2015 14 1 110 10.1186/s12943‑015‑0383‑4 26037383
    [Google Scholar]
  108. Zhang L. Mu C. Zhang T. Yang D. Wang C. Chen Q. Tang L. Fan L. Liu C. Shen J. Li H. Development of targeted therapy therapeutics to sensitize triple-negative breast cancer chemosensitivity utilizing bacteriophage phi29 derived packaging RNA. J. Nanobiotechnology 2021 19 1 13 10.1186/s12951‑020‑00758‑4 33413427
    [Google Scholar]
  109. Xiu B. Chi Y. Liu L. Chi W. Zhang Q. Chen J. Guo R. Si J. Li L. Xue J. Shao Z.M. Wu Z.H. Huang S. Wu J. LINC02273 drives breast cancer metastasis by epigenetically increasing AGR2 transcription. Mol. Cancer 2019 18 1 187 10.1186/s12943‑019‑1115‑y 31856843
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947396384250812072136
Loading
/content/journals/cctr/10.2174/0115733947396384250812072136
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test