Skip to content
2000
image of BRCA1 Mutations and Their Consequences in Multiple Cancers: Molecular Insights and Emerging Therapeutic Strategies

Abstract

Cancer is a global health burden, contributing significantly to the rising mortality rates across various forms of the disease. Identifying the underlying cause of this ailment is crucial to finding a way to save numerous lives worldwide. The a well-recognised tumor suppressor gene located on chromosome 17q12, plays a vital role in numerous cancers, including breast, ovarian, cervical, prostate, lung, colorectal, gastric, and bladder cancers. Mutations in the gene can lead to loss of its tumor-suppressor function, significantly increasing the risk of developing various malignancies. The protein is involved in cell cycle control, ubiquitination, transcription regulation, and DNA repair through homologous recombination. Individuals carrying mutations are at high risk of developing breast and ovarian cancers. Genetic testing has become a crucial tool for the management of cancer as well as prevention strategies. A mutation in can affect overall survival outcomes, and its overexpression may influence poor treatment outcomes in cervical cancer. In prostate cancer, mutations are associated with a more aggressive disease phenotype and poorer survival outcomes. In lung cancer, a mutation could result in homologous recombination deficiency and reduced protein function. Some studies highlighted the pathogenicity of mutations in non-small cell lung cancer. Colorectal, gastric, and bladder cancer also demonstrate significant association with mutations, along with increased risk and poorer survival outcomes. Targeted therapeutic approaches, such as poly (ADP-ribose) polymerase inhibitors (PARPi), have shown promising results in targeting cancers by exploiting the concept of synthetic lethality. As research continues to unravel the complexities of cancers, novel targeted therapies are being developed to enhance treatment outcomes and improve patient prognosis, particularly when combined with chemotherapy agents and radiation therapy. In this review, we discuss the current status of BRCA1 in various types of cancers, as well as the challenges and opportunities in cancer cases.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947394022250929081154
2026-01-05
2026-01-12
Loading full text...

Full text loading...

References

  1. Deo S.V.S. Sharma J. Kumar S. Globocan 2020 report on global cancer burden: Challenges and opportunities for surgical oncologists. Ann. Surg. Oncol. 2022 29 11 6497 6500 10.1245/s10434‑022‑12151‑6 35838905
    [Google Scholar]
  2. Zou J. Li S. Chen Z. A novel oral camptothecin analog, gimatecan, exhibits superior antitumor efficacy than irinotecan toward esophageal squamous cell carcinoma in vitro and in vivo. Cell Death Dis. 2018 9 6 661 10.1038/s41419‑018‑0700‑0 29855512
    [Google Scholar]
  3. Zimmer K. Kocher F. Puccini A. Seeber A. Targeting brca and DNA damage repair genes in gi cancers: Pathophysiology and clinical perspectives. Front. Oncol. 2021 11 662055 10.3389/fonc.2021.662055 34707985
    [Google Scholar]
  4. Zuhair Kassem T. Wunderle M. Kuhlmann L. Ex vivo chromosomal radiosensitivity testing in patients with pathological germline variants in breast cancer high-susceptibility genes breast cancer 1 and breast cancer 2. Curr. Issues Mol. Biol. 2023 45 8 6618 6633 10.3390/cimb45080418 37623237
    [Google Scholar]
  5. Farmer H. McCabe N. Lord C.J. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005 434 7035 917 921 10.1038/nature03445 15829967
    [Google Scholar]
  6. Devico Marciano N. Kroening G. Dayyani F. Brca-mutated pancreatic cancer: From discovery to novel treatment paradigms. Cancers (Basel) 2022 14 10 2453 10.3390/cancers14102453 35626055
    [Google Scholar]
  7. Voutsadakis I.A. Digklia A. The landscape and therapeutic targeting of brca1, brca2 and other DNA damage response genes in pancreatic cancer. Curr. Issues Mol. Biol. 2023 45 3 2105 2120 10.3390/cimb45030135 36975505
    [Google Scholar]
  8. Lai E. Ziranu P. Spanu D. BRCA-mutant pancreatic ductal adenocarcinoma. Br. J. Cancer 2021 125 10 1321 1332 10.1038/s41416‑021‑01469‑9 34262146
    [Google Scholar]
  9. Zhong A.X. Chen Y. Chen P.L. Brca1 the versatile defender: Molecular to environmental perspectives. Int. J. Mol. Sci. 2023 24 18 14276 10.3390/ijms241814276 37762577
    [Google Scholar]
  10. Walsh C.S. Two decades beyond BRCA1/2: Homologous recombination, hereditary cancer risk and a target for ovarian cancer therapy. Gynecol. Oncol. 2015 137 2 343 350 10.1016/j.ygyno.2015.02.017 25725131
    [Google Scholar]
  11. Krais J.J. Johnson N. Brca1 mutations in cancer: Coordinating deficiencies in homologous recombination with tumorigenesis. Cancer Res. 2020 80 21 4601 4609 10.1158/0008‑5472.CAN‑20‑1830 32747362
    [Google Scholar]
  12. Krishnan R. Patel P.S. Hakem R. Brca1 and metastasis: Outcome of defective DNA repair. Cancers (Basel) 2021 14 1 108 10.3390/cancers14010108 35008272
    [Google Scholar]
  13. Zhao W. Wiese C. Kwon Y. Hromas R. Sung P. The brca tumor suppressor network in chromosome damage repair by homologous recombination. Annu. Rev. Biochem. 2019 88 1 221 245 10.1146/annurev‑biochem‑013118‑111058 30917004
    [Google Scholar]
  14. Sahasrabudhe R. Lott P. Bohorquez M. Germline mutations in PALB2, BRCA1, and RAD51C, which regulate dna recombination repair, in patients with gastric cancer. Gastroenterology 2017 152 5 983 986 [Latin American Gastric Cancer Genetics Collaborative Group. 10.1053/j.gastro.2016.12.010 28024868
    [Google Scholar]
  15. Venkitaraman A.R. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 2002 108 2 171 182 10.1016/S0092‑8674(02)00615‑3 11832208
    [Google Scholar]
  16. Zuntini R. Ferrari S. Bonora E. Dealing with brca1/2 unclassified variants in a cancer genetics clinic: Does cosegregation analysis help? Front. Genet. 2018 9 378 10.3389/fgene.2018.00378 30254663
    [Google Scholar]
  17. Zoumpoulidou G. Alvarez-Mendoza C. Mancusi C. Therapeutic vulnerability to PARP1,2 inhibition in RB1-mutant osteosarcoma. Nat. Commun. 2021 12 1 7064 10.1038/s41467‑021‑27291‑8 34862364
    [Google Scholar]
  18. Zong H. Zhang J. Xu Z. Comprehensive analysis of somatic reversion mutations in homologous recombination repair (hrr) genes in a large cohort of chinese pan-cancer patients. J. Cancer 2022 13 4 1119 1129 10.7150/jca.65650 35281878
    [Google Scholar]
  19. Li X. Zou L. BRCAness, DNA gaps, and gain and loss of PARP inhibitor–induced synthetic lethality. J. Clin. Invest. 2024 134 14 e181062 10.1172/JCI181062 39007266
    [Google Scholar]
  20. Launonen I.M. Lyytikäinen N. Casado J. Single-cell tumor-immune microenvironment of BRCA1/2 mutated high-grade serous ovarian cancer. Nat. Commun. 2022 13 1 835 10.1038/s41467‑022‑28389‑3 35149709
    [Google Scholar]
  21. Bryant H.E. Schultz N. Thomas H.D. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005 434 7035 913 917 10.1038/nature03443 15829966
    [Google Scholar]
  22. Orr K.S. Savage K.I. The brca1 and brca2 breast and ovarian cancer susceptibility genes—implications for DNA damage response, DNA repair and cancer therapy. Advances in DNA repair. IntechOpen 2015 10.5772/59996
    [Google Scholar]
  23. Fu X. Tan W. Song Q. Pei H. Li J. Brca1 and breast cancer: Molecular mechanisms and therapeutic strategies. Front. Cell Dev. Biol. 2022 10 813457 10.3389/fcell.2022.813457 35300412
    [Google Scholar]
  24. Tutt A.N.J. Garber J.E. Kaufman B. Adjuvant olaparib for patients with brca1- or brca2-mutated breast cancer. N. Engl. J. Med. 2021 384 25 2394 2405 [OlympiA Clinical Trial Steering Committee and Investigators. 10.1056/NEJMoa2105215 34081848
    [Google Scholar]
  25. Zografos E. Andrikopoulou A. Papatheodoridi A.M. Multi-gene mutation profiling by targeted next-generation sequencing in premenopausal breast cancer. Genes (Basel) 2022 13 8 1362 10.3390/genes13081362 36011273
    [Google Scholar]
  26. Thorat M.A. Balasubramanian R. Breast cancer prevention in high-risk women. Best Pract. Res. Clin. Obstet. Gynaecol. 2020 65 18 31 10.1016/j.bpobgyn.2019.11.006 31862315
    [Google Scholar]
  27. Lambertini M. Blondeaux E. Agostinetto E. Pregnancy after breast cancer in young brca carriers: An international hospital-based cohort study. JAMA 2024 331 1 49 59 10.1001/jama.2023.25463 38059899
    [Google Scholar]
  28. Zwager M.C. Holt-Kedde I. Timmer-Bosscha H. Presence of crown-like structures in breast adipose tissue; differences between healthy controls, BRCA1/2 gene mutation carriers and breast cancer patients. Breast Cancer Res. Treat. 2024 204 1 27 37 10.1007/s10549‑023‑07169‑7 38057686
    [Google Scholar]
  29. Aziz D. Portman N. Fernandez K.J. Synergistic targeting of BRCA1 mutated breast cancers with PARP and CDK2 inhibition. NPJ Breast Cancer 2021 7 1 111 10.1038/s41523‑021‑00312‑x 34465787
    [Google Scholar]
  30. Stevens K.N. Vachon C.M. Couch F.J. Genetic susceptibility to triple-negative breast cancer. Cancer Res. 2013 73 7 2025 2030 10.1158/0008‑5472.CAN‑12‑1699 23536562
    [Google Scholar]
  31. Miracle C.E. McCallister C.L. Denning K.L. High bmi is associated with changes in peritumor breast adipose tissue that increase the invasive activity of triple-negative breast cancer cells. Int. J. Mol. Sci. 2024 25 19 10592 10.3390/ijms251910592 39408921
    [Google Scholar]
  32. Prakash O. Hossain F. Danos D. Lassak A. Scribner R. Miele L. Racial disparities in triple negative breast cancer: A review of the role of biologic and non-biologic factors. Front. Public Health 2020 8 576964 10.3389/fpubh.2020.576964 33415093
    [Google Scholar]
  33. Siddharth S. Sharma D. Racial disparity and triple-negative breast cancer in african-american women: A multifaceted affair between obesity, biology, and socioeconomic determinants. Cancers (Basel) 2018 10 12 514 10.3390/cancers10120514 30558195
    [Google Scholar]
  34. Lee E. Levine E.A. Franco V.I. Combined genetic and nutritional risk models of triple negative breast cancer. Nutr. Cancer 2014 66 6 955 963 10.1080/01635581.2014.932397 25023197
    [Google Scholar]
  35. Rudolph A. Chang-Claude J. Schmidt M.K. Gene–environment interaction and risk of breast cancer. Br. J. Cancer 2016 114 2 125 133 10.1038/bjc.2015.439 26757262
    [Google Scholar]
  36. Sæther N.H. Skuja E. Irmejs A. Platinum-based neoadjuvant chemotherapy in BRCA1-positive breast cancer: a retrospective cohort analysis and literature review. Hered. Cancer Clin. Pract. 2018 16 1 9 10.1186/s13053‑018‑0092‑2 29719582
    [Google Scholar]
  37. Jacobs A.T. Martinez Castaneda-Cruz D. Rose M.M. Connelly L. Targeted therapy for breast cancer: An overview of drug classes and outcomes. Biochem. Pharmacol. 2022 204 115209 10.1016/j.bcp.2022.115209 35973582
    [Google Scholar]
  38. Domchek S.M. Postel-Vinay S. Im S.A. Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): an open-label, multicentre, phase 1/2, basket study. Lancet Oncol. 2020 21 9 1155 1164 10.1016/S1470‑2045(20)30324‑7 32771088
    [Google Scholar]
  39. Walker-Smith T.L. Peck J. Genetic and genomic advances in breast cancer diagnosis and treatment. Nurs. Womens. Health 2019 23 6 518 525 10.1016/j.nwh.2019.09.003 31669147
    [Google Scholar]
  40. Samuel D. Diaz-Barbe A. Pinto A. Schlumbrecht M. George S. Hereditary ovarian carcinoma: Cancer pathogenesis looking beyond brca1 and brca2. Cells 2022 11 3 539 10.3390/cells11030539 35159349
    [Google Scholar]
  41. Pietragalla A. Arcieri M. Marchetti C. Scambia G. Fagotti A. Ovarian cancer predisposition beyond BRCA1 and BRCA2 genes. Int. J. Gynecol. Cancer 2020 30 11 1803 1810 10.1136/ijgc‑2020‑001556 32895312
    [Google Scholar]
  42. Felicio P.S. Grasel R.S. Campacci N. Whole‐exome sequencing of non‐ BRCA1/BRCA2 mutation carrier cases at high‐risk for hereditary breast/ovarian cancer. Hum. Mutat. 2021 42 3 290 299 10.1002/humu.24158 33326660
    [Google Scholar]
  43. Vázquez-García I. Uhlitz F. Ceglia N. Ovarian cancer mutational processes drive site-specific immune evasion. Nature 2022 612 7941 778 786 10.1038/s41586‑022‑05496‑1 36517593
    [Google Scholar]
  44. Zimovjanova M. Bielcikova Z. Miskovicova M. Uptake and effectiveness of risk-reducing surgeries in unaffected female brca1 and brca2 carriers: A single institution experience in the czech republic. Cancers (Basel) 2023 15 4 1072 10.3390/cancers15041072 36831416
    [Google Scholar]
  45. Roy R. Chun J. Powell S.N. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat. Rev. Cancer 2012 12 1 68 78 10.1038/nrc3181 22193408
    [Google Scholar]
  46. Domchek S.M. Friebel T.M. Singer C.F. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA 2010 304 9 967 975 10.1001/jama.2010.1237 20810374
    [Google Scholar]
  47. Zilski N. Speiser D. Bartley J. Quality of life after risk-reducing salpingo-oophorectomy in women with a pathogenic BRCA variant. J. Sex. Med. 2023 21 1 33 39 10.1093/jsxmed/qdad143 37973412
    [Google Scholar]
  48. Chiyoda T. Hart P.C. Eckert M.A. Loss of brca1 in the cells of origin of ovarian cancer induces glycolysis: A window of opportunity for ovarian cancer chemoprevention. Cancer Prev. Res. (Phila.) 2017 10 4 255 266 10.1158/1940‑6207.CAPR‑16‑0281 28264838
    [Google Scholar]
  49. Tao L. Zhou Y. Pan X. Repression of LSD1 potentiates homologous recombination-proficient ovarian cancer to PARP inhibitors through down-regulation of BRCA1/2 and RAD51. Nat. Commun. 2023 14 1 7430 10.1038/s41467‑023‑42850‑x 37973845
    [Google Scholar]
  50. Deng H. Chen M. Guo X. Comprehensive analysis of serum tumor markers and BRCA1/2 germline mutations in Chinese ovarian cancer patients. Mol. Genet. Genomic Med. 2019 7 6 e672 10.1002/mgg3.672 30972954
    [Google Scholar]
  51. Poveda A. Floquet A. Ledermann J.A. Olaparib tablets as maintenance therapy in patients with platinum-sensitive relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a final analysis of a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2021 22 5 620 631 10.1016/S1470‑2045(21)00073‑5 33743851
    [Google Scholar]
  52. Veeck J. Ropero S. Setien F. BRCA1 CpG island hypermethylation predicts sensitivity to poly(adenosine diphosphate)-ribose polymerase inhibitors. J. Clin. Oncol. 2010 28 29 e563 e564 10.1200/JCO.2010.30.1010 20679605
    [Google Scholar]
  53. Zhou C. Smith J.L. Liu J. Role of BRCA1 in cellular resistance to paclitaxel and ionizing radiation in an ovarian cancer cell line carrying a defective BRCA1. Oncogene 2003 22 16 2396 2404 10.1038/sj.onc.1206319 12717416
    [Google Scholar]
  54. You Y. Bi F.F. Jiang Y. BRCA1 affects the resistance and stemness of SKOV3‐derived ovarian cancer stem cells by regulating autophagy. Cancer Med. 2019 8 2 656 668 10.1002/cam4.1975 30636383
    [Google Scholar]
  55. Choi Y.E. Meghani K. Brault M.E. Platinum and parp inhibitor resistance due to overexpression of microrna-622 in brca1-mutant ovarian cancer. Cell Rep. 2016 14 3 429 439 10.1016/j.celrep.2015.12.046 26774475
    [Google Scholar]
  56. Wang Y. Bernhardy A.J. Cruz C. The brca1-delta11q alternative splice isoform bypasses germline mutations and promotes therapeutic resistance to parp inhibition and cisplatin. Cancer Res. 2016 76 9 2778 2790 10.1158/0008‑5472.CAN‑16‑0186 27197267
    [Google Scholar]
  57. Hurley R.M. Wahner Hendrickson A.E. Visscher D.W. 53BP1 as a potential predictor of response in PARP inhibitor-treated homologous recombination-deficient ovarian cancer. Gynecol. Oncol. 2019 153 1 127 134 10.1016/j.ygyno.2019.01.015 30686551
    [Google Scholar]
  58. Kubalanza K. Konecny G.E. Mechanisms of PARP inhibitor resistance in ovarian cancer. Curr. Opin. Obstet. Gynecol. 2020 32 1 36 41 10.1097/GCO.0000000000000600 31815769
    [Google Scholar]
  59. Liu H. Zhang Z. Chen L. Pang J. Wu H. Liang Z. Next-generation sequencing reveals a very low prevalence of deleterious mutations of homologous recombination repair genes and homologous recombination deficiency in ovarian clear cell carcinoma. Front. Oncol. 2022 11 798173 10.3389/fonc.2021.798173 35096598
    [Google Scholar]
  60. Sztupinszki Z. Diossy M. Borcsok J. Comparative assessment of diagnostic homologous recombination deficiency-associated mutational signatures in ovarian cancer. Clin. Cancer Res. 2021 27 20 5681 5687 10.1158/1078‑0432.CCR‑21‑0981 34380641
    [Google Scholar]
  61. Takaya H. Nakai H. Takamatsu S. Mandai M. Matsumura N. Homologous recombination deficiency status-based classification of high-grade serous ovarian carcinoma. Sci. Rep. 2020 10 1 2757 10.1038/s41598‑020‑59671‑3 32066851
    [Google Scholar]
  62. Heeke A.L. Pishvaian M.J. Lynce F. Prevalence of homologous recombination-related gene mutations across multiple cancer types. JCO Precis. Oncol. 2018 2018 2 1 13 10.1200/PO.17.00286 30234181
    [Google Scholar]
  63. Frey M.K. Pothuri B. Homologous recombination deficiency (HRD) testing in ovarian cancer clinical practice: a review of the literature. Gynecol. Oncol. Res. Pract. 2017 4 1 4 10.1186/s40661‑017‑0039‑8 28250960
    [Google Scholar]
  64. Scaglione G.L. Pignata S. Pettinato A. Homologous recombination deficiency (hrd) scoring, by means of two different shallow whole-genome sequencing pipelines (swgs), in ovarian cancer patients: A comparison with myriad mychoice assay. Int. J. Mol. Sci. 2023 24 23 17095 10.3390/ijms242317095 38069422
    [Google Scholar]
  65. Lee J.J. Kang H.J. Kim S.S. Charton C. Kim J. Lee J.K. Unraveling the transcriptomic signatures of homologous recombination deficiency in ovarian cancers. Adv. Biol. 2022 6 12 e2200060 10.1002/adbi.202200060 36116121
    [Google Scholar]
  66. Paik E.S. Chang C.S. Chae Y.L. Prognostic relevance of brca1 expression in survival of patients with cervical cancer. Front. Oncol. 2021 11 770103 10.3389/fonc.2021.770103 34820332
    [Google Scholar]
  67. Qiu L. Feng H. Yu H. Characterization of the genomic landscape in cervical cancer by next generation sequencing. Genes (Basel) 2022 13 2 287 10.3390/genes13020287 35205332
    [Google Scholar]
  68. Oubaddou Y. Ben Ali F. Oubaqui F.E. Qmichou Z. Bakri Y. Ameziane El Hassani R. The tumor suppressor brca1/2, cancer susceptibility and genome instability in gynecological and mammary cancers. Asian Pac. J. Cancer Prev. 2023 24 9 3139 3153 10.31557/APJCP.2023.24.9.3139 37774066
    [Google Scholar]
  69. Kim M. Suh D.H. Lee K.H. Major clinical research advances in gynecologic cancer in 2018. J. Gynecol. Oncol. 2019 30 2 e18 10.3802/jgo.2019.30.e18 30806045
    [Google Scholar]
  70. Xu G.P. Zhao Q. Wang D. The association between BRCA1 gene polymorphism and cancer risk: a meta-analysis. Oncotarget 2018 9 9 8681 8694 10.18632/oncotarget.24064 29492227
    [Google Scholar]
  71. Wei Y. Wei C. Chen L. Genomic correlates of unfavorable outcome in locally advanced cervical cancer treated with neoadjuvant chemoradiation. Cancer Res. Treat. 2022 54 4 1209 1218 10.4143/crt.2021.963 35038823
    [Google Scholar]
  72. Balacescu O. Balacescu L. Tudoran O. Gene expression profiling reveals activation of the FA/BRCA pathway in advanced squamous cervical cancer with intrinsic resistance and therapy failure. BMC Cancer 2014 14 246 10.1186/1471‑2407‑14‑246 24708616
    [Google Scholar]
  73. Wang R. Zhang J. Cui X. Multimolecular characteristics and role of BRCA1 interacting protein C-terminal helicase 1 (BRIP1) in human tumors: a pan-cancer analysis. World J. Surg. Oncol. 2023 21 1 91 10.1186/s12957‑022‑02877‑8 36907870
    [Google Scholar]
  74. Liu Y. Li H. Zhang R. Overexpression of the BRIP1 ameliorates chemosensitivity to cisplatin by inhibiting Rac1 GTPase activity in cervical carcinoma HeLa cells. Gene 2016 578 1 85 91 10.1016/j.gene.2015.12.007 26680099
    [Google Scholar]
  75. Borcoman E. Le Tourneau C. Pembrolizumab in cervical cancer: latest evidence and clinical usefulness. Ther. Adv. Med. Oncol. 2017 9 6 431 439 10.1177/1758834017708742 28607581
    [Google Scholar]
  76. Wen X. Liu S. Cui M. Effect of brca1 on the concurrent chemoradiotherapy resistance of cervical squamous cell carcinoma based on transcriptome sequencing analysis. BioMed Res. Int. 2020 2020 1 3598417 10.1155/2020/3598417 32685473
    [Google Scholar]
  77. Montero-Macias R. Koual M. Crespel C. Complete pathological response to olaparib and bevacizumab in advanced cervical cancer following chemoradiation in a BRCA1 mutation carrier: a case report. J. Med. Case Rep. 2021 15 1 210 10.1186/s13256‑021‑02767‑9 33888155
    [Google Scholar]
  78. George I.A. Chauhan R. Dhawale R.E. Insights into therapy resistance in cervical cancer. Adv. Cancer Biol. Metastasis 2022 6 100074 10.1016/j.adcanc.2022.100074
    [Google Scholar]
  79. Kumar L. Harish P. Malik P.S. Khurana S. Chemotherapy and targeted therapy in the management of cervical cancer. Curr. Probl. Cancer 2018 42 2 120 128 10.1016/j.currproblcancer.2018.01.016 29530393
    [Google Scholar]
  80. Chi K.N. Rathkopf D. Smith M.R. Niraparib and abiraterone acetate for metastatic castration-resistant prostate cancer. J. Clin. Oncol. 2023 41 18 3339 3351 10.1200/JCO.22.01649 36952634
    [Google Scholar]
  81. Nyberg T. Frost D. Barrowdale D. Prostate cancer risks for male brca1 and brca2 mutation carriers: A prospective cohort study. Eur. Urol. 2020 77 1 24 35 10.1016/j.eururo.2019.08.025 31495749
    [Google Scholar]
  82. Rajwa P. Quhal F. Pradere B. Prostate cancer risk, screening and management in patients with germline BRCA1/2 mutations. Nat. Rev. Urol. 2023 20 4 205 216 10.1038/s41585‑022‑00680‑4 36600087
    [Google Scholar]
  83. Momozawa Y. Sasai R. Usui Y. Expansion of cancer risk profile for brca1 and brca2 pathogenic variants. JAMA Oncol. 2022 8 6 871 878 10.1001/jamaoncol.2022.0476 35420638
    [Google Scholar]
  84. Di Lorenzo G. Autorino R. Re: Olaparib for metastatic castration-resistant prostate cancer. Eur. Urol. 2020 78 5 767 768 10.1016/j.eururo.2020.06.011 32624284
    [Google Scholar]
  85. Cheng H.H. Sokolova A.O. Schaeffer E.M. Small E.J. Higano C.S. Germline and somatic mutations in prostate cancer for the clinician. J. Natl. Compr. Canc. Netw. 2019 17 5 515 521 10.6004/jnccn.2019.7307 31085765
    [Google Scholar]
  86. Vietri M.T. D’Elia G. Caliendo G. Hereditary prostate cancer: Genes related, target therapy and prevention. Int. J. Mol. Sci. 2021 22 7 3753 10.3390/ijms22073753 33916521
    [Google Scholar]
  87. Lecarpentier J. Silvestri V. Kuchenbaecker K.B. Prediction of breast and prostate cancer risks in male brca1 and brca2 mutation carriers using polygenic risk scores. J. Clin. Oncol. 2017 35 20 2240 2250 10.1200/JCO.2016.69.4935 28448241
    [Google Scholar]
  88. Abida W. Patnaik A. Campbell D. Rucaparib in men with metastatic castration-resistant prostate cancer harboring a brca1 or brca2 gene alteration. J. Clin. Oncol. 2020 38 32 3763 3772 10.1200/JCO.20.01035 32795228
    [Google Scholar]
  89. Killick E. Morgan R. Launchbury F. Role of Engrailed-2 (EN2) as a prostate cancer detection biomarker in genetically high risk men. Sci. Rep. 2013 3 1 2059 10.1038/srep02059 23792811
    [Google Scholar]
  90. Swami U. Zimmerman R.M. Nussenzveig R.H. Genomic landscape of advanced prostate cancer patients with BRCA1 versus BRCA2 mutations as detected by comprehensive genomic profiling of cell-free DNA. Front. Oncol. 2022 12 966534 10.3389/fonc.2022.966534 36185208
    [Google Scholar]
  91. Marshall C.H. Sokolova A.O. McNatty A.L. Differential response to olaparib treatment among men with metastatic castration-resistant prostate cancer harboring brca1 or brca2 versus atm mutations. Eur. Urol. 2019 76 4 452 458 10.1016/j.eururo.2019.02.002 30797618
    [Google Scholar]
  92. Mateo J. Porta N. Bianchini D. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2020 21 1 162 174 10.1016/S1470‑2045(19)30684‑9 31806540
    [Google Scholar]
  93. Fizazi K. Piulats J.M. Reaume M.N. Rucaparib or physician’s choice in metastatic prostate cancer. N. Engl. J. Med. 2023 388 8 719 732 10.1056/NEJMoa2214676 36795891
    [Google Scholar]
  94. Karzai F. VanderWeele D. Madan R.A. Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J. Immunother. Cancer 2018 6 1 141 10.1186/s40425‑018‑0463‑2 30514390
    [Google Scholar]
  95. Yan B. Xie B. Huang M. Mutations and expressions of breast cancer 1/2 in lung cancer. Thorac. Cancer 2023 14 18 1753 1763 10.1111/1759‑7714.14920 37160413
    [Google Scholar]
  96. Wei B. Zhao J. Li J. Pathogenic germline variants in BRCA1 and TP53 increase lung cancer risk in Chinese. Cancer Med. 2023 12 23 21219 21228 10.1002/cam4.6692 37930190
    [Google Scholar]
  97. Gachechiladze M. Skarda J. The role of BRCA1 in non-small cell lung cancer. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2012 156 3 200 203 10.5507/bp.2012.049 23069884
    [Google Scholar]
  98. Peng W. Li B. Li J. Clinical and genomic features of Chinese lung cancer patients with germline mutations. Nat. Commun. 2022 13 1 1268 10.1038/s41467‑022‑28840‑5 35273153
    [Google Scholar]
  99. Jiang M. Jia K. Wang L. Alterations of DNA damage response pathway: Biomarker and therapeutic strategy for cancer immunotherapy. Acta Pharm. Sin. B 2021 11 10 2983 2994 10.1016/j.apsb.2021.01.003 34729299
    [Google Scholar]
  100. Lee Y.C. Lee Y.C. Li C.Y. Lee Y.L. Chen B.L. Brca1 and brca2 gene mutations and lung cancer risk: A meta-analysis. Medicina (Kaunas) 2020 56 5 212 10.3390/medicina56050212 32349445
    [Google Scholar]
  101. Murciano-Goroff Y.R. Schram A.M. Rosen E.Y. Reversion mutations in germline BRCA1/2-mutant tumors reveal a BRCA-mediated phenotype in non-canonical histologies. Nat. Commun. 2022 13 1 7182 10.1038/s41467‑022‑34109‑8 36418296
    [Google Scholar]
  102. Inno A. Picece V. Bogina G. Niraparib for the treatment of metastatic nsclc in a patient with brca2 germinal mutation: A case report. Clin. Lung Cancer 2024 25 2 175 179 10.1016/j.cllc.2023.10.012 38008640
    [Google Scholar]
  103. Remon J. Besse B. Leary A. Somatic and germline brca 1 and 2 mutations in advanced nsclc from the safir02-lung trial. JTO Clin. Res. Rep. 2020 1 3 100068 10.1016/j.jtocrr.2020.100068 34589950
    [Google Scholar]
  104. Fang W. Cai X. Zhou H. Brca1/2 germline mutations and response to parp inhibitor treatment in lung cancer. American Society of Clinical Oncology 2019 10.1200/JCO.2019.37.15_suppl.e13007
    [Google Scholar]
  105. Barayan R. Ran X. Lok B.H. PARP inhibitors for small cell lung cancer and their potential for integration into current treatment approaches. J. Thorac. Dis. 2020 12 10 6240 6252 10.21037/jtd.2020.03.89 33209463
    [Google Scholar]
  106. Joris S. Denys H. Collignon J. Efficacy of olaparib in advanced cancers with germline or somatic mutations in BRCA1, BRCA2, CHEK2 and ATM, a Belgian Precision tumor-agnostic phase II study. ESMO Open 2023 8 6 102041 10.1016/j.esmoop.2023.102041 37852034
    [Google Scholar]
  107. Ragupathi A. Singh M. Perez A.M. Zhang D. Targeting the BRCA1/2 deficient cancer with PARP inhibitors: Clinical outcomes and mechanistic insights. Front. Cell Dev. Biol. 2023 11 1133472 10.3389/fcell.2023.1133472 37035242
    [Google Scholar]
  108. Diossy M. Sztupinszki Z. Borcsok J. A subset of lung cancer cases shows robust signs of homologous recombination deficiency associated genomic mutational signatures. NPJ Precis. Oncol. 2021 5 1 55 10.1038/s41698‑021‑00199‑8 34145376
    [Google Scholar]
  109. Mekonnen N. Yang H. Shin Y.K. Homologous recombination deficiency in ovarian, breast, colorectal, pancreatic, non-small cell lung and prostate cancers, and the mechanisms of resistance to parp inhibitors. Front. Oncol. 2022 12 880643 10.3389/fonc.2022.880643 35785170
    [Google Scholar]
  110. Yang Y. Xie Y. Xian L. Breast cancer susceptibility gene 1 (BRCA1) predict clinical outcome in platinum- and toxal-based chemotherapy in non-small-cell lung cancer (NSCLC) patients: a system review and meta-analysis. J. Exp. Clin. Cancer Res. 2013 32 1 15 10.1186/1756‑9966‑32‑15 23497550
    [Google Scholar]
  111. Aggarwal C. Thompson J.C. Black T.A. Clinical implications of plasma-based genotyping with the delivery of personalized therapy in metastatic non–small cell lung cancer. JAMA Oncol. 2019 5 2 173 180 10.1001/jamaoncol.2018.4305 30325992
    [Google Scholar]
  112. Samstein R.M. Krishna C. Ma X. Mutations in BRCA1 and BRCA2 differentially affect the tumor microenvironment and response to checkpoint blockade immunotherapy. Nat. Cancer 2020 1 12 1188 1203 10.1038/s43018‑020‑00139‑8 33834176
    [Google Scholar]
  113. Vikas P. Borcherding N. Chennamadhavuni A. Garje R. Therapeutic potential of combining parp inhibitor and immunotherapy in solid tumors. Front. Oncol. 2020 10 570 10.3389/fonc.2020.00570 32457830
    [Google Scholar]
  114. Feng Z. Yang X. Tian M. BRCA genes as candidates for colorectal cancer genetic testing panel: systematic review and meta-analysis. BMC Cancer 2023 23 1 807 10.1186/s12885‑023‑11328‑w 37644384
    [Google Scholar]
  115. Oh M. McBride A. Yun S. Brca1 and brca2 gene mutations and colorectal cancer risk: Systematic review and meta-analysis. J. Natl. Cancer Inst. 2018 110 11 1178 1189 10.1093/jnci/djy148 30380096
    [Google Scholar]
  116. Grinshpun A. Halpern N. Granit R.Z. Phenotypic characteristics of colorectal cancer in BRCA1/2 mutation carriers. Eur. J. Hum. Genet. 2018 26 3 382 386 10.1038/s41431‑017‑0067‑1 29321669
    [Google Scholar]
  117. Soyano A.E. Baldeo C. Kasi P.M. Brca mutation and its association with colorectal cancer. Clin. Colorectal Cancer 2018 17 4 e647 e650 10.1016/j.clcc.2018.06.006 30033118
    [Google Scholar]
  118. Tsaousis G.N. Papadopoulou E. Apessos A. Analysis of hereditary cancer syndromes by using a panel of genes: novel and multiple pathogenic mutations. BMC Cancer 2019 19 1 535 10.1186/s12885‑019‑5756‑4 31159747
    [Google Scholar]
  119. Sopik V. Phelan C. Cybulski C. Narod S.A. BRCA1 andBRCA2 mutations and the risk for colorectal cancer. Clin. Genet. 2015 87 5 411 418 10.1111/cge.12497 25195694
    [Google Scholar]
  120. Phelan C.M. Iqbal J. Lynch H.T. Incidence of colorectal cancer in BRCA1 and BRCA2 mutation carriers: results from a follow-up study. Br. J. Cancer 2014 110 2 530 534 10.1038/bjc.2013.741 24292448
    [Google Scholar]
  121. Cullinane C.M. Creavin B. O’Connell E.P. Risk of colorectal cancer associated with BRCA1 and/or BRCA2 mutation carriers: systematic review and meta-analysis. Br. J. Surg. 2020 107 8 951 959 10.1002/bjs.11603 32297664
    [Google Scholar]
  122. Kupfer S.S. Gupta S. Weitzel J.N. Samadder J. Aga clinical practice update on colorectal and pancreatic cancer risk and screening in brca1 and brca2 carriers. Commentary. Gastroenterology 2020 159 2 760 764 10.1053/j.gastro.2020.03.086 32335146
    [Google Scholar]
  123. Akcay I.M. Celik E. Agaoglu N.B. Germline pathogenic variant spectrum in 25 cancer susceptibility genes in Turkish breast and colorectal cancer patients and elderly controls. Int. J. Cancer 2021 148 2 285 295 10.1002/ijc.33199 32658311
    [Google Scholar]
  124. Garcia J.M. Rodriguez R. Dominguez G. Prognostic significance of the allelic loss of the BRCA1 gene in colorectal cancer. Gut 2003 52 12 1756 1763 10.1136/gut.52.12.1756 14633957
    [Google Scholar]
  125. Fujita M. Liu X. Iwasaki Y. Population-based screening for hereditary colorectal cancer variants in japan. Clin. Gastroenterol. Hepatol. 2022 20 9 2132 2141.e9 10.1016/j.cgh.2020.12.007 33309985
    [Google Scholar]
  126. Tang J. Xi S. Wang G. Prognostic significance of BRCA1-associated protein 1 in colorectal cancer. Med. Oncol. 2013 30 2 541 10.1007/s12032‑013‑0541‑8 23526420
    [Google Scholar]
  127. Qin C. Ji Z. Zhai E. PARP inhibitor olaparib enhances the efficacy of radiotherapy on XRCC2-deficient colorectal cancer cells. Cell Death Dis. 2022 13 5 505 10.1038/s41419‑022‑04967‑7 35643812
    [Google Scholar]
  128. Xu Y. Zhang L. Wang Q. Zheng M. Overexpression of MLF1IP promotes colorectal cancer cell proliferation through BRCA1/AKT/p27 signaling pathway. Cell. Signal. 2022 92 110273 10.1016/j.cellsig.2022.110273 35122991
    [Google Scholar]
  129. Moutinho C. Martinez-Cardús A. Santos C. Epigenetic inactivation of the BRCA1 interactor SRBC and resistance to oxaliplatin in colorectal cancer. J. Natl. Cancer Inst. 2014 106 1 djt322 10.1093/jnci/djt322 24273214
    [Google Scholar]
  130. Chen G. Gong T. Wang Z. Correction to: Colorectal cancer organoid models uncover oxaliplatin-resistant mechanisms at single cell resolution. Cell Oncol. (Dordr.) 2022 45 6 1169 1170 10.1007/s13402‑022‑00728‑y 36136268
    [Google Scholar]
  131. Faraoni I. Graziani G. Role of brca mutations in cancer treatment with poly (adp-ribose) polymerase (parp) inhibitors. Cancers (Basel) 2018 10 12 487 10.3390/cancers10120487 30518089
    [Google Scholar]
  132. Catalano F. Borea R. Puglisi S. Targeting the DNA damage response pathway as a novel therapeutic strategy in colorectal cancer. Cancers (Basel) 2022 14 6 1388 10.3390/cancers14061388 35326540
    [Google Scholar]
  133. Mauri G. Arena S. Siena S. Bardelli A. Sartore-Bianchi A. The DNA damage response pathway as a land of therapeutic opportunities for colorectal cancer. Ann. Oncol. 2020 31 9 1135 1147 10.1016/j.annonc.2020.05.027 32512040
    [Google Scholar]
  134. Wei X. Liu X. Liu H. BRCA1-associated protein induced proliferation and migration of gastric cancer cells through MAPK pathway. Surg. Oncol. 2020 35 191 199 10.1016/j.suronc.2020.08.007 32890957
    [Google Scholar]
  135. Kim H. Hwang I. Min H. Bang Y.J. Kim W. Clinical significance of BRCA1 and BRCA2 mRNA and protein expression in patients with sporadic gastric cancer. Oncol. Lett. 2019 17 5 4383 4392 10.3892/ol.2019.10132 30988810
    [Google Scholar]
  136. Goshin Mikhail Mertsalova TA. Types of Parental Involvement in Education, Socio-Economic Status of the Family and Students' Academic Results. Voprosy obrazovaniya / Educational Studies Moscow 2018 68 90 10.17323/1814‑9545‑2018‑3‑68‑90
    [Google Scholar]
  137. Avanesyan A.A. Sokolenko A.P. Ivantsov A.O. Gastric cancer in brca1 germline mutation carriers: Results of endoscopic screening and molecular analysis of tumor tissues. Pathobiology 2020 87 6 367 374 10.1159/000511323 33161400
    [Google Scholar]
  138. Zhang Z.Z. Liu Y.J.C. Yin X-L. Zhan P. Gu Y. Ni X-Z. Loss of BRCA1 expression leads to worse survival in patients with gastric carcinoma. World J. Gastroenterol. 2013 19 12 1968 1974 10.3748/wjg.v19.i12.1968 23569343
    [Google Scholar]
  139. Kim G. Kim J. Han S.Y. Hwang I. Kim H. Min H. The effects of BRCA1 expression on the chemosensitivity of gastric cancer cells to platinum agents. Oncol. Lett. 2019 17 6 5023 5029 10.3892/ol.2019.10169 31186713
    [Google Scholar]
  140. Buckley K.H. Niccum B.A. Maxwell K.N. Katona B.W. Gastric cancer risk and pathogenesis in brca1 and brca2 carriers. Cancers (Basel) 2022 14 23 5953 10.3390/cancers14235953 36497436
    [Google Scholar]
  141. Oh J.H. Sung C.O. Kim H.D. Chun S.M. Kim J. BRCA-mutated gastric adenocarcinomas are associated with chromosomal instability and responsiveness to platinum-based chemotherapy. J. Pathol. Transl. Med. 2023 57 6 323 331 10.4132/jptm.2023.10.22 37981726
    [Google Scholar]
  142. Maccaroni E. Giampieri R. Lenci E. BRCA mutations and gastrointestinal cancers: When to expect the unexpected? World J. Clin. Oncol. 2021 12 7 565 580 10.5306/wjco.v12.i7.565 34367929
    [Google Scholar]
  143. Chen W. Wang J. Li X. Prognostic significance of BRCA1 expression in gastric cancer. Med. Oncol. 2013 30 1 423 10.1007/s12032‑012‑0423‑5 23292835
    [Google Scholar]
  144. Wang K. Xu L. Pan L. Xu K. Li G. The functional BRCA1 rs799917 genetic polymorphism is associated with gastric cancer risk in a Chinese Han population. Tumour Biol. 2015 36 1 393 397 10.1007/s13277‑014‑2655‑9 25266802
    [Google Scholar]
  145. Sorscher S. Helicobacter pylori and gastric cancer risk in BRCA 1/2 pathogenic germline variant carriers. J. Hum. Genet. 2023 68 10 725 25 10.1038/s10038‑023‑01177‑7 37336912
    [Google Scholar]
  146. Chen H. Hu Y. Zhuang Z. Advancements and obstacles of parp inhibitors in gastric cancer. Cancers (Basel) 2023 15 21 5114 10.3390/cancers15215114 37958290
    [Google Scholar]
  147. Alhusaini A. Cannon A. Maher S.G. Reynolds J.V. Lynam-Lennon N. Therapeutic potential of parp inhibitors in the treatment of gastrointestinal cancers. Biomedicines 2021 9 8 1024 10.3390/biomedicines9081024 34440228
    [Google Scholar]
  148. Tanaka M. Sasaki M. Suzuki T. Nishie H. Kataoka H. Combination of talaporfin photodynamic therapy and Poly (ADP-Ribose) polymerase (PARP) inhibitor in gastric cancer. Biochem. Biophys. Res. Commun. 2021 539 1 7 10.1016/j.bbrc.2020.12.073 33388624
    [Google Scholar]
  149. Bhattacharjee S. Sullivan M.J. Wynn R.R. PARP inhibitors chemopotentiate and synergize with cisplatin to inhibit bladder cancer cell survival and tumor growth. BMC Cancer 2022 22 1 312 10.1186/s12885‑022‑09376‑9 35321693
    [Google Scholar]
  150. Złowocka-Perłowska E. Tołoczko-Grabarek A. Narod S.A. Lubiński J. Germline BRCA1 and BRCA2 mutations and the risk of bladder or kidney cancer in Poland. Hered. Cancer Clin. Pract. 2022 20 1 13 10.1186/s13053‑022‑00220‑6 35395863
    [Google Scholar]
  151. Mossanen M. Nassar A.H. Stokes S.M. Incidence of germline variants in familial bladder cancer and among patients with cancer predisposition syndromes. Clin. Genitourin. Cancer 2022 20 6 568 574 10.1016/j.clgc.2022.08.009 36127252
    [Google Scholar]
  152. Khalifa M.K. Bakr N.M. Ramadan A. Implications of targeted next-generation sequencing for bladder cancer: report of four cases. J. Genet. Eng. Biotechnol. 2021 19 1 91 10.1186/s43141‑021‑00182‑7 34152511
    [Google Scholar]
  153. Nickerson M.L. Dancik G.M. Im K.M. Concurrent alterations in TERT, KDM6A, and the BRCA pathway in bladder cancer. Clin. Cancer Res. 2014 20 18 4935 4948 10.1158/1078‑0432.CCR‑14‑0330 25225064
    [Google Scholar]
  154. Font A. Taron M. Gago J.L. BRCA1 mRNA expression and outcome to neoadjuvant cisplatin-based chemotherapy in bladder cancer. Ann. Oncol. 2011 22 1 139 144 10.1093/annonc/mdq333 20603439
    [Google Scholar]
  155. Sweis R.F. Heiss B. Segal J. Clinical activity of olaparib in urothelial bladder cancer with DNA damage response gene mutations. JCO Precis. Oncol. 2018 2 2 1 7 10.1200/PO.18.00264 35135165
    [Google Scholar]
  156. Figueroa J.D. Malats N. Rothman N. Evaluation of genetic variation in the double-strand break repair pathway and bladder cancer risk. Carcinogenesis 2007 28 8 1788 1793 10.1093/carcin/bgm132 17557904
    [Google Scholar]
  157. Wang Y. Zheng K. Huang Y. PARP inhibitors in gastric cancer: beacon of hope. J. Exp. Clin. Cancer Res. 2021 40 1 211 10.1186/s13046‑021‑02005‑6 34167572
    [Google Scholar]
  158. Vlachostergios P.J. Faltas B.M. Carlo M.I. Nassar A.H. Alaiwi S.A. Sonpavde G. The emerging landscape of germline variants in urothelial carcinoma: Implications for genetic testing. Cancer Treat. Res. Commun. 2020 23 100165 10.1016/j.ctarc.2020.100165 31982787
    [Google Scholar]
  159. Criscuolo D. Morra F. Giannella R. Visconti R. Cerrato A. Celetti A. New combinatorial strategies to improve the PARP inhibitors efficacy in the urothelial bladder Cancer treatment. J. Exp. Clin. Cancer Res. 2019 38 1 91 10.1186/s13046‑019‑1089‑z 30791940
    [Google Scholar]
  160. Limijadi E.K.S. Muniroh M. Prajoko Y.W. Tjandra K.C. Respati D.R.P. The role of germline BRCA1 & BRCA2 mutations in familial pancreatic cancer: A systematic review and meta-analysis. PLoS One 2024 19 5 e0299276 10.1371/journal.pone.0299276 38809921
    [Google Scholar]
  161. Katona B.W. Lubinski J. Pal T. The incidence of pancreatic cancer in women with a BRCA1 or BRCA2 mutation. Cancer 2025 131 1 e35666 10.1002/cncr.35666 39611336
    [Google Scholar]
  162. Shaashua L. Ben-Shmuel A. Pevsner-Fischer M. BRCA mutational status shapes the stromal microenvironment of pancreatic cancer linking clusterin expression in cancer associated fibroblasts with HSF1 signaling. Nat. Commun. 2022 13 1 6513 10.1038/s41467‑022‑34081‑3 36316305
    [Google Scholar]
  163. Koukaki T. Balgkouranidou I. Biziota E. Prognostic significance of BRCA1 and BRCA2 methylation status in circulating cell-free DNA of Pancreatic Cancer patients. J. Cancer 2024 15 9 2573 2579 10.7150/jca.93184 38577595
    [Google Scholar]
  164. Molinaro E. Andrikou K. Casadei-Gardini A. Rovesti G. Brca in gastrointestinal cancers: Current treatments and future perspectives. Cancers (Basel) 2020 12 11 3346 10.3390/cancers12113346 33198203
    [Google Scholar]
  165. Foulkes W.D. Brunet J.S. Stefansson I.M. The prognostic implication of the basal-like (cyclin E high/p27 low/p53+/] glomeruloid-microvascular-proliferation+) phenotype of BRCA1-related breast cancer. Cancer Res. 2004 64 3 830 835 10.1158/0008‑5472.CAN‑03‑2970 14871808
    [Google Scholar]
  166. Li Y. Zhang X. Qiu J. Pang T. Huang L. Zeng Q. Comparisons of p53, KI67 and BRCA1 expressions in patients with different molecular subtypes of breast cancer and their relationships with pathology and prognosis. JBUON 2019 24 6 2361 2368 31983107
    [Google Scholar]
  167. Weberpals J.I. Tu D. Squire J.A. Breast cancer 1 (BRCA1) protein expression as a prognostic marker in sporadic epithelial ovarian carcinoma: an NCIC CTG OV.16 correlative study. Ann. Oncol. 2011 22 11 2403 2410 10.1093/annonc/mdq770 21368065
    [Google Scholar]
  168. Hatano Y. Tamada M. Matsuo M. Hara A. Molecular trajectory of brca1 and brca2 mutations. Front. Oncol. 2020 10 361 10.3389/fonc.2020.00361 32269964
    [Google Scholar]
  169. Prakash R. Zhang Y. Feng W. Jasin M. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb. Perspect. Biol. 2015 7 4 a016600 10.1101/cshperspect.a016600 25833843
    [Google Scholar]
  170. Zhang X. Li R. Brca1-dependent transcriptional regulation: Implication in tissue-specific tumor suppression. Cancers (Basel) 2018 10 12 513 10.3390/cancers10120513 30558184
    [Google Scholar]
  171. Di L.J. Fernandez A.G. De Siervi A. Longo D.L. Gardner K. Transcriptional regulation of BRCA1 expression by a metabolic switch. Nat. Struct. Mol. Biol. 2010 17 12 1406 1413 10.1038/nsmb.1941 21102443
    [Google Scholar]
  172. Anantha R.W. Simhadri S. Foo T.K. Functional and mutational landscapes of BRCA1 for homology-directed repair and therapy resistance. eLife 2017 6 e21350 10.7554/eLife.21350 28398198
    [Google Scholar]
  173. Deng C.X. Brodie S.G. Roles of BRCA1 and its interacting proteins. BioEssays 2000 22 8 728 737 10.1002/1521‑1878(200008)22:8<728:AID‑BIES6>3.0.CO;2‑B 10918303
    [Google Scholar]
  174. Deng C.X. BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res. 2006 34 5 1416 1426 10.1093/nar/gkl010 16522651
    [Google Scholar]
  175. Choi E.K. Lim J.A. Kim J.K. Cyclin B1 stability is increased by interaction with BRCA1, and its overexpression suppresses the progression of BRCA1-associated mammary tumors. Exp. Mol. Med. 2018 50 10 1 16 10.1038/s12276‑018‑0169‑z 30327455
    [Google Scholar]
  176. Cantor S. Drapkin R. Zhang F. The BRCA1-associated protein BACH1 is a DNA helicase targeted by clinically relevant inactivating mutations. Proc. Natl. Acad. Sci. USA 2004 101 8 2357 2362 10.1073/pnas.0308717101 14983014
    [Google Scholar]
  177. Kim H. Chen J. Yu X. Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science 2007 316 5828 1202 1205 10.1126/science.1139621 17525342
    [Google Scholar]
  178. Wang R.H. Zheng Y. Kim H.S. Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol. Cell 2008 32 1 11 20 10.1016/j.molcel.2008.09.011 18851829
    [Google Scholar]
  179. Ventii K.H. Devi N.S. Friedrich K.L. BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization. Cancer Res. 2008 68 17 6953 6962 10.1158/0008‑5472.CAN‑08‑0365 18757409
    [Google Scholar]
  180. Nolan E. Savas P. Policheni A.N. Combined immune checkpoint blockade as a therapeutic strategy for BRCA1 -mutated breast cancer. Sci. Transl. Med. 2017 9 393 eaal4922 10.1126/scitranslmed.aal4922 28592566
    [Google Scholar]
  181. Peyraud F. Italiano A. Combined parp inhibition and immune checkpoint therapy in solid tumors. Cancers (Basel) 2020 12 6 1502 10.3390/cancers12061502 32526888
    [Google Scholar]
  182. McCann K.E. Hurvitz S.A. Advances in the use of PARP inhibitor therapy for breast cancer. Drugs Context 2018 7 1 30 10.7573/dic.212540 30116283
    [Google Scholar]
  183. Mehta A.K. Cheney E.M. Hartl C.A. Targeting immunosuppressive macrophages overcomes PARP inhibitor resistance in BRCA1-associated triple-negative breast cancer. Nat. Cancer 2020 2 1 66 82 10.1038/s43018‑020‑00148‑7 33738458
    [Google Scholar]
  184. Higuchi T. Flies D.B. Marjon N.A. Ctla-4 blockade synergizes therapeutically with parp inhibition in brca1-deficient ovarian cancer. Cancer Immunol. Res. 2015 3 11 1257 1268 10.1158/2326‑6066.CIR‑15‑0044 26138335
    [Google Scholar]
  185. Kim D.S. Camacho C.V. Kraus W.L. Alternate therapeutic pathways for PARP inhibitors and potential mechanisms of resistance. Exp. Mol. Med. 2021 53 1 42 51 10.1038/s12276‑021‑00557‑3 33487630
    [Google Scholar]
  186. Jaspers J.E. Kersbergen A. Boon U. Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. Cancer Discov. 2013 3 1 68 81 10.1158/2159‑8290.CD‑12‑0049 23103855
    [Google Scholar]
  187. Waks A.G. Cohen O. Kochupurakkal B. Reversion and non-reversion mechanisms of resistance to PARP inhibitor or platinum chemotherapy in BRCA1/2-mutant metastatic breast cancer. Ann. Oncol. 2020 31 5 590 598 10.1016/j.annonc.2020.02.008 32245699
    [Google Scholar]
  188. Wang Y. Krais J.J. Bernhardy A.J. RING domain–deficient BRCA1 promotes PARP inhibitor and platinum resistance. J. Clin. Invest. 2016 126 8 3145 3157 10.1172/JCI87033 27454289
    [Google Scholar]
  189. Xie X. Chen C. Wang C. Targeting GPX4-mediated ferroptosis protection sensitizes BRCA1-deficient cancer cells to PARP inhibitors. Redox Biol. 2024 76 103350 10.1016/j.redox.2024.103350 39265497
    [Google Scholar]
  190. Yazinski S.A. Comaills V. Buisson R. ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Genes Dev. 2017 31 3 318 332 10.1101/gad.290957.116 28242626
    [Google Scholar]
  191. Färkkilä A. Rodríguez A. Oikkonen J. Heterogeneity and clonal evolution of acquired parp inhibitor resistance in tp53- and brca1-deficient cells. Cancer Res. 2021 81 10 2774 2787 10.1158/0008‑5472.CAN‑20‑2912 33514515
    [Google Scholar]
  192. Cruz C. Castroviejo-Bermejo M. Gutiérrez-Enríquez S. RAD51 foci as a functional biomarker of homologous recombination repair and PARP inhibitor resistance in germline BRCA-mutated breast cancer. Ann. Oncol. 2018 29 5 1203 1210 10.1093/annonc/mdy099 29635390
    [Google Scholar]
  193. Meghani K. Fuchs W. Detappe A. Multifaceted impact of microrna 493-5p on genome-stabilizing pathways induces platinum and parp inhibitor resistance in brca2-mutated carcinomas. Cell Rep. 2018 23 1 100 111 10.1016/j.celrep.2018.03.038 29617652
    [Google Scholar]
  194. Tobalina L. Armenia J. Irving E. O’Connor M.J. Forment J.V. A meta-analysis of reversion mutations in BRCA genes identifies signatures of DNA end-joining repair mechanisms driving therapy resistance. Ann. Oncol. 2021 32 1 103 112 10.1016/j.annonc.2020.10.470 33091561
    [Google Scholar]
  195. Bhin J. Paes Dias M. Gogola E. Multi-omics analysis reveals distinct non-reversion mechanisms of PARPi resistance in BRCA1- versus BRCA2-deficient mammary tumors. Cell Rep. 2023 42 5 112538 10.1016/j.celrep.2023.112538 37209095
    [Google Scholar]
  196. Classen S. Rahlf E. Jungwirth J. Partial reduction in brca1 gene dose modulates DNA replication stress level and thereby contributes to sensitivity or resistance. Int. J. Mol. Sci. 2022 23 21 13363 10.3390/ijms232113363 36362151
    [Google Scholar]
  197. Biegała Ł. Gajek A. Szymczak-Pajor I. Marczak A. Śliwińska A. Rogalska A. Targeted inhibition of the ATR/CHK1 pathway overcomes resistance to olaparib and dysregulates DNA damage response protein expression in BRCA2MUT ovarian cancer cells. Sci. Rep. 2023 13 1 22659 10.1038/s41598‑023‑50151‑y 38114660
    [Google Scholar]
  198. Bruand M. Barras D. Mina M. Cell-autonomous inflammation of BRCA1-deficient ovarian cancers drives both tumor-intrinsic immunoreactivity and immune resistance via STING. Cell Rep. 2021 36 3 109412 10.1016/j.celrep.2021.109412 34289354
    [Google Scholar]
  199. Paes Dias M. Tripathi V. van der Heijden I. Loss of nuclear DNA ligase III reverts PARP inhibitor resistance in BRCA1/53BP1 double-deficient cells by exposing ssDNA gaps. Mol. Cell 2021 81 22 4692 4708.e9 10.1016/j.molcel.2021.09.005 34555355
    [Google Scholar]
  200. Xu Z. Xie H. Song L. Huang Y. Huang J. BRCA1 and BRCA2 in DNA damage and replication stress response: Insights into their functions, mechanisms, and implications for cancer treatment. DNA Repair (Amst.) 2025 150 103847 10.1016/j.dnarep.2025.103847 40373656
    [Google Scholar]
  201. Bizzaro F. Fuso Nerini I. Taylor M.A. VEGF pathway inhibition potentiates PARP inhibitor efficacy in ovarian cancer independent of BRCA status. J. Hematol. Oncol. 2021 14 1 186 10.1186/s13045‑021‑01196‑x 34742344
    [Google Scholar]
  202. Dilmac S. Ozpolat B. Mechanisms of parp-inhibitor-resistance in brca-mutated breast cancer and new therapeutic approaches. Cancers (Basel) 2023 15 14 3642 10.3390/cancers15143642 37509303
    [Google Scholar]
  203. Tung N.M. Garber J.E. BRCA1/2 testing: therapeutic implications for breast cancer management. Br. J. Cancer 2018 119 2 141 152 10.1038/s41416‑018‑0127‑5 29867226
    [Google Scholar]
  204. Ang B.H. Ho W.K. Wijaya E. Predicting the likelihood of carrying a brca1 or brca2 mutation in asian patients with breast cancer. J. Clin. Oncol. 2022 40 14 1542 1551 10.1200/JCO.21.01647 35143328
    [Google Scholar]
  205. Wong E.S.Y. Shekar S. Chan C.H.T. Predictive factors for brca1 and brca2 genetic testing in an asian clinic-based population. PLoS One 2015 10 7 e0134408 10.1371/journal.pone.0134408 26221963
    [Google Scholar]
  206. Nanda R. Schumm L.P. Cummings S. Genetic testing in an ethnically diverse cohort of high-risk women: a comparative analysis of BRCA1 and BRCA2 mutations in American families of European and African ancestry. JAMA 2005 294 15 1925 1933 10.1001/jama.294.15.1925 16234499
    [Google Scholar]
  207. Nelson H.D. Pappas M. Zakher B. Mitchell J.P. Okinaka-Hu L. Fu R. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: a systematic review to update the U.S. Preventive Services Task Force recommendation. Ann. Intern. Med. 2014 160 4 255 266 10.7326/M13‑1684 24366442
    [Google Scholar]
  208. Nelson H.D. Pappas M. Cantor A. Haney E. Holmes R. Risk assessment, genetic counseling, and genetic testing for brca-related cancer in women: Updated evidence report and systematic review for the us preventive services task force. JAMA 2019 322 7 666 685 10.1001/jama.2019.8430 31429902
    [Google Scholar]
  209. Thirthagiri E. Lee S.Y. Kang P. Evaluation of BRCA1 and BRCA2 mutations and risk-prediction models in a typical Asian country (Malaysia) with a relatively low incidence of breast cancer. Breast Cancer Res. 2008 10 4 R59 10.1186/bcr2118 18627636
    [Google Scholar]
  210. Easton D.F. Deffenbaugh A.M. Pruss D. A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes. Am. J. Hum. Genet. 2007 81 5 873 883 10.1086/521032 17924331
    [Google Scholar]
  211. Gadducci A. Guarneri V. Peccatori F.A. Current strategies for the targeted treatment of high-grade serous epithelial ovarian cancer and relevance of BRCA mutational status. J. Ovarian Res. 2019 12 1 9 10.1186/s13048‑019‑0484‑6 30691488
    [Google Scholar]
  212. Jiang Y. Meng X.Y. Deng N.N. Effect and safety of therapeutic regimens for patients with germline brca mutation-associated breast cancer: A network meta-analysis. Front. Oncol. 2021 11 718761 10.3389/fonc.2021.718761 34490117
    [Google Scholar]
  213. Kowalewski A. Szylberg Ł. Saganek M. Napiontek W. Antosik P. Grzanka D. Emerging strategies in BRCA-positive pancreatic cancer. J. Cancer Res. Clin. Oncol. 2018 144 8 1503 1507 10.1007/s00432‑018‑2666‑9 29777302
    [Google Scholar]
  214. Nolan E. Vaillant F. Branstetter D. RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers. Nat. Med. 2016 22 8 933 939 Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer. (kConFab) 10.1038/nm.4118 27322743
    [Google Scholar]
  215. Divita G. Grunenberger A. Cabrera L. Durany N. Desai N. Abstract 7237: Peptide-mRNA complex mediated restoration of BRCA-1 tumor suppressor function in BRCA-1 mutated cancers as a new therapeutic strategy. Cancer Res. 2024 84 6_Supplement 7237 10.1158/1538‑7445.AM2024‑7237
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947394022250929081154
Loading
/content/journals/cctr/10.2174/0115733947394022250929081154
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: BRCA1 ; PARP ; TNBC ; DNA damage ; tumor suppressor ; therapeutic resistance
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test