Skip to content
2000
image of FAPα+CAFs: Targeting the Tumor Microenvironment for Revolutionary Cancer Therapies

Abstract

Introduction

Within the tumor microenvironment (TME), (FAPα+CAFs) referred to as Cancer-Associated Fibroblasts (CAFs) that express Fibroblast Activation Protein α (FAPα) have gained significant attention for their unique diagnostic, prognostic, and therapeutic implications across several types of cancers; including epithelial, breast, pancreatic, ovarian, lung, and colorectal cancers. FAPα is a serine protease in nature, frequently expressed in the stroma of epithelial cancers and is minimally expressed in normal tissues, making it an attractive diagnostic target for cancer-specific interventions.

Methods

Relevant studies published within the past decade were systematically checked Google Scholar, ResearchGate, PubMed, Web of Science, and Scopus mentioning FAPα biology and its potential therapeutic applications in cancer. Additionally, clinical trials were retrieved from ClinicalTrials.gov.

Results

Various drugs targeting FAPα, such as the FAPI series (FAPI-04, FAPI-42, FAPI-46, FAPI-74), RPS-309, and 68Ga-FAP-2286, have shown promising results in cancer imaging, with high tumor uptake and sensitivity, especially in urothelial and pancreatic cancers (tumor uptake exceeding 5% ID/g, 68Ga-FAP-2286 demonstrated 100% tumor rejection in mouse models). Furthermore, 68Ga-FAP-74-PET and 177Lu-LNC1004, when combined with anti-PD-L1 therapy, demonstrated complete tumor elimination in mouse models (tumor inhibition and 100% rejection observed in MC38/NIH3T3-FAP tumor xenografts). Additionally, FAP-targeted agents like FAP5-DM1 (inhibited tumor growth and produced complete remission in xenograft models) and the FAPtau-MT vaccine (three-fold increase in survival time in mice) have been effective in improving immune responses and enhancing T-cell activity against tumors. AntiFAP-mGITRL fusion proteins have shown strong T-cell stimulation, leading to increased IFN-gamma and IL-2 production (100-fold increase in effectiveness in suppressing Tregs). FAP-targeted CAR-T cells have shown potential in improving tumor treatment outcomes by reducing immune suppressor cells (enhanced survival of CD8+ T cells in tumor tissue). The 68Ga/177Lu-LNC1004 exhibited prolonged tumor retention and higher absorption in tumor xenografts. Currently, around 40 clinical trials are ongoing (awaiting final results), exploring a variety of FAPα-targeted therapies, including novel imaging agents, vaccines, and immunotherapies.

Conclusion

FAPα+CAFs expression correlates with poor prognosis in several malignancies, making them a valuable biomarker for cancer progression, as well as an emerging therapeutic target offering a new avenue for innovative cancer therapies. Despite these advancements, the use of novel drug delivery systems and long-term toxicity evaluation studies could redefine the future of FAPα-targeted therapies in cancer care.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947388031250715112019
2025-08-04
2025-09-28
Loading full text...

Full text loading...

References

  1. Ugurlu B. Karaoz E. Comparison of similar cells: Mesenchymal stromal cells and fibroblasts. Acta Histochem. 2020 122 8 151634 10.1016/j.acthis.2020.151634 33059115
    [Google Scholar]
  2. Younesi F.S. Miller A.E. Barker T.H. Rossi F.M.V. Hinz B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat. Rev. Mol. Cell Biol. 2024 25 8 617 638 10.1038/s41580‑024‑00716‑0
    [Google Scholar]
  3. Sarkar M. Nguyen T. Gundre E. Cancer-associated fibroblasts: The chief architect in the tumor microenvironment. Front. Cell Dev. Biol. 2023 11 1089068 10.3389/fcell.2023.1089068 36793444
    [Google Scholar]
  4. Alkasalias T. Moyano-Galceran L. Arsenian-Henriksson M. Lehti K. Fibroblasts in the tumor microenvironment: Shield or spear? Int. J. Mol. Sci. 2018 19 5 1532 10.3390/ijms19051532 29883428
    [Google Scholar]
  5. Kalluri R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 2016 16 9 582 598 10.1038/nrc.2016.73 27550820
    [Google Scholar]
  6. Dhungel N. Dragoi A.M. Exploring the multifaceted role of direct interaction between cancer cells and fibroblasts in cancer progression. Front. Mol. Biosci. 2024 11 1379971 10.3389/fmolb.2024.1379971 38863965
    [Google Scholar]
  7. Zhang W. Wang J. Liu C. Crosstalk and plasticity driving between cancer-associated fibroblasts and tumor microenvironment: Significance of breast cancer metastasis. J. Transl. Med. 2023 21 1 827 10.1186/s12967‑023‑04714‑2 37978384
    [Google Scholar]
  8. Chen X. Song E. Turning foes to friends: Targeting cancer-associated fibroblasts. Nat. Rev. Drug Discov. 2019 18 2 99 115 10.1038/s41573‑018‑0004‑1 30470818
    [Google Scholar]
  9. Huang J. Tsang W.Y. Li Z.H. Guan X.Y. The origin, differentiation, and functions of cancer-associated fibroblasts in gastrointestinal cancer. Cell. Mol. Gastroenterol. Hepatol. 2023 16 4 503 511 10.1016/j.jcmgh.2023.07.001 37451403
    [Google Scholar]
  10. Yamamoto Y. Kasashima H. Fukui Y. Tsujio G. Yashiro M. Maeda K. The heterogeneity of cancer‐associated fibroblast subpopulations: Their origins, biomarkers, and roles in the tumor microenvironment. Cancer Sci. 2023 114 1 16 24 10.1111/cas.15609 36197901
    [Google Scholar]
  11. Rettig W.J. Chesa P.G. Beresford H.R. Differential expression of cell surface antigens and glial fibrillary acidic protein in human astrocytoma subsets. Cancer Res. 1986 46 12 Pt 1 6406 6412 [PMID: 2877731
    [Google Scholar]
  12. Boyd L.N. Andini K.D. Peters G.J. Kazemier G. Giovannetti E. Heterogeneity and plasticity of cancer-associated fibroblasts in the pancreatic tumor microenvironment. In:Seminars iI Cancer Biology. Amsterdam, Netherlands Elsevier 2022 184 196 10.1016/j.semcancer.2021.03.006
    [Google Scholar]
  13. Öhlund D. Handly-Santana A. Biffi G. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 2017 214 3 579 596 10.1084/jem.20162024 28232471
    [Google Scholar]
  14. Lamouille S. Xu J. Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2014 15 3 178 196 10.1038/nrm3758 24556840
    [Google Scholar]
  15. Kobayashi H. Gieniec K.A. Lannagan T.R.M. The origin and contribution of cancer-associated fibroblasts in colorectal carcinogenesis. Gastroenterology 2022 162 3 890 906 10.1053/j.gastro.2021.11.037 34883119
    [Google Scholar]
  16. Fang T. Lv H. Lv G. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat. Commun. 2018 9 1 191 10.1038/s41467‑017‑02583‑0 29335551
    [Google Scholar]
  17. Kojima Y. Acar A. Eaton E.N. Autocrine TGF-β and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc. Natl. Acad. Sci. USA 2010 107 46 20009 20014 10.1073/pnas.1013805107 21041659
    [Google Scholar]
  18. Strell C. Paulsson J. Jin S.B. Impact of epithelial–stromal interactions on peritumoral fibroblasts in ductal carcinoma in situ. J. Natl. Cancer Inst. 2019 111 9 983 995 10.1093/jnci/djy234 30816935
    [Google Scholar]
  19. Tan H.X. Cao Z.B. He T.T. Huang T. Xiang C.L. Liu Y. TGFβ1 is essential for MSCs-CAFs differentiation and promotes HCT116 cells migration and invasion via JAK/STAT3 signaling. OncoTargets Ther. 2019 12 5323 5334 10.2147/OTT.S178618 31308702
    [Google Scholar]
  20. Öhlund D. Elyada E. Tuveson D. Fibroblast heterogeneity in the cancer wound. J. Exp. Med. 2014 211 8 1503 1523 10.1084/jem.20140692 25071162
    [Google Scholar]
  21. Olumi A.F. Grossfeld G.D. Hayward S.W. Carcinoma-associated fibroblasts stimulate tumor progression of initiated human epithelium. Breast Cancer Res. 2000 2 S1 19 10.1186/bcr138
    [Google Scholar]
  22. Henriksson M.L. Edin S. Dahlin A.M. Colorectal cancer cells activate adjacent fibroblasts resulting in FGF1/FGFR3 signaling and increased invasion. Am. J. Pathol. 2011 178 3 1387 1394 10.1016/j.ajpath.2010.12.008 21356388
    [Google Scholar]
  23. Orimo A. Gupta P.B. Sgroi D.C. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005 121 3 335 348 10.1016/j.cell.2005.02.034 15882617
    [Google Scholar]
  24. Shekhar M.P. Werdell J. Santner S.J. Pauley R.J. Tait L. Breast stroma plays a dominant regulatory role in breast epithelial growth and differentiation: Implications for tumor development and progression. Cancer Res. 2001 61 4 1320 1326 [PMID: 11245428
    [Google Scholar]
  25. Hwang R.F. Moore T. Arumugam T. Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res. 2008 68 3 918 926 10.1158/0008‑5472.CAN‑07‑5714 18245495
    [Google Scholar]
  26. Glabman R.A. Choyke P.L. Sato N. Cancer-associated fibroblasts: Tumorigenicity and targeting for cancer therapy. Cancers 2022 14 16 3906 10.3390/cancers14163906 36010899
    [Google Scholar]
  27. Kuperwasser C. Chavarria T. Wu M. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc. Natl. Acad. Sci. USA 2004 101 14 4966 4971 10.1073/pnas.0401064101 15051869
    [Google Scholar]
  28. Cunha G.R. Hayward S.W. Wang Y.Z. Role of stroma in carcinogenesis of the prostate. Differentiation 2002 70 9-10 473 485 10.1046/j.1432‑0436.2002.700902.x 12492490
    [Google Scholar]
  29. Xiao Y. Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol. Ther. 2021 221 107753 10.1016/j.pharmthera.2020.107753 33259885
    [Google Scholar]
  30. Gaggioli C. Hooper S. Hidalgo-Carcedo C. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 2007 9 12 1392 1400 10.1038/ncb1658 18037882
    [Google Scholar]
  31. Elyada E. Bolisetty M. Laise P. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 2019 9 8 1102 1123 10.1158/2159‑8290.CD‑19‑0094 31197017
    [Google Scholar]
  32. Lakins M.A. Ghorani E. Munir H. Martins C.P. Shields J.D. Cancer-associated fibroblasts induce antigen-specific deletion of CD8 + T Cells to protect tumour cells. Nat. Commun. 2018 9 1 948 10.1038/s41467‑018‑03347‑0 29507342
    [Google Scholar]
  33. Spandana K. Bhagya N. Serine protease: Structure, classification, mechanism and role in breast cancer. In:Pathophysiological Aspects of Proteases in Cancer. Amsterdam, Netherlands Elsevier 2025 173 185 10.1016/B978‑0‑443‑30098‑1.00011‑2
    [Google Scholar]
  34. Ashok G. AlAsmari A.F. AlAsmari F. Livingstone P. Anbarasu A. Ramaiah S. Transcriptomic, mutational and structural bioinformatics approaches to explore the therapeutic role of FAP in predominant cancer types. Discov Oncol 2024 15 1 699 10.1007/s12672‑024‑01531‑x 39579201
    [Google Scholar]
  35. Basalova N. Alexandrushkina N. Grigorieva O. Kulebyakina M. Efimenko A. Fibroblast activation protein alpha (FAPα) in fibrosis: Beyond a perspective marker for activated stromal cells? Biomolecules 2023 13 12 1718 10.3390/biom13121718 38136590
    [Google Scholar]
  36. Sun X Cai W Li H Endothelial-like cancer-associated fibroblasts facilitate pancreatic cancer metastasis via vasculogenic mimicry and paracrine signalling. Gut 2025 gutjnl-2024-333638. 10.1136/gutjnl‑2024‑333638 40122596
    [Google Scholar]
  37. Fan M.H. Zhu Q. Li H.H. Fibroblast activation protein (FAP) accelerates collagen degradation and clearance from lungs in mice. J. Biol. Chem. 2016 291 15 8070 8089 10.1074/jbc.M115.701433 26663085
    [Google Scholar]
  38. Sidrak M.M.A. De Feo M.S. Corica F. Fibroblast activation protein inhibitor (FAPI)-based theranostics—where we are at and where we are heading: A systematic review. Int. J. Mol. Sci. 2023 24 4 3863 10.3390/ijms24043863 36835275
    [Google Scholar]
  39. Li X. Chen M. Lu W. Targeting FAPα-expressing tumor-associated mesenchymal stromal cells inhibits triple-negative breast cancer pulmonary metastasis. Cancer Lett. 2021 503 32 42 10.1016/j.canlet.2021.01.013 33482262
    [Google Scholar]
  40. Henrich L.M. Greimelmaier K. Wessolly M. The impact of cancer-associated fibroblasts on the biology and progression of colorectal carcinomas. Genes 2024 15 2 209 10.3390/genes15020209 38397199
    [Google Scholar]
  41. Han X. Zhang W.H. Wang W.Q. Yu X.J. Liu L. Cancer-associated fibroblasts in therapeutic resistance of pancreatic cancer: Present situation, predicaments, and perspectives. Biochim. Biophys. Acta Rev. Cancer 2020 1874 2 188444 10.1016/j.bbcan.2020.188444 33031899
    [Google Scholar]
  42. Puré E. Blomberg R. Pro-tumorigenic roles of fibroblast activation protein in cancer: Back to the basics. Oncogene 2018 37 32 4343 4357 10.1038/s41388‑018‑0275‑3 29720723
    [Google Scholar]
  43. Chen W.T. Kelly T. Seprase complexes in cellular invasiveness. Cancer Metastasis Rev. 2003 22 2/3 259 269 10.1023/A:1023055600919 12785000
    [Google Scholar]
  44. Ruan P. Tao Z. Tan A. Low expression of miR-30a-5p induced the proliferation and invasion of oral cancer via promoting the expression of FAP. Biosci. Rep. 2018 38 1 BSR20171027 10.1042/BSR20171027 29026005
    [Google Scholar]
  45. Gao L.M. Wang F. Zheng Y. Fu Z.Z. Zheng L. Chen L.L. Roles of fibroblast activation protein and hepatocyte growth factor expressions in angiogenesis and metastasis of gastric cancer. Pathol. Oncol. Res. 2019 25 1 369 376 10.1007/s12253‑017‑0359‑3 29134462
    [Google Scholar]
  46. Yang P. Luo Q. Wang X. Comprehensive analysis of fibroblast activation protein expression in interstitial lung diseases. Am. J. Respir. Crit. Care Med. 2023 207 2 160 172 10.1164/rccm.202110‑2414OC 35984444
    [Google Scholar]
  47. Fitzgerald A.A. Weiner L.M. The role of fibroblast activation protein in health and malignancy. Cancer Metastasis Rev. 2020 39 3 783 803 10.1007/s10555‑020‑09909‑3 32601975
    [Google Scholar]
  48. Monsky W.L. Lin C-Y. Aoyama A. A potential marker protease of invasiveness, seprase, is localized on invadopodia of human malignant melanoma cells. Cancer Res. 1994 54 21 5702 5710 [PMID: 7923219
    [Google Scholar]
  49. Ramirez-Montagut T. Blachere N.E. Sviderskaya E.V. FAPα, a surface peptidase expressed during wound healing, is a tumor suppressor. Oncogene 2004 23 32 5435 5446 10.1038/sj.onc.1207730 15133496
    [Google Scholar]
  50. Garin-Chesa P. Old L.J. Rettig W.J. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc. Natl. Acad. Sci. USA 1990 87 18 7235 7239 10.1073/pnas.87.18.7235 2402505
    [Google Scholar]
  51. Xing F Saidou J Watabe K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci 2010; 15 (1) 166 79.2010-01-01 10.2741/3613
    [Google Scholar]
  52. Zhao Z. Li T. Yuan Y. Zhu Y. What is new in cancer-associated fibroblast biomarkers? Cell Commun. Signal. 2023 21 1 96 10.1186/s12964‑023‑01125‑0 37143134
    [Google Scholar]
  53. Aertgeerts K. Levin I. Shi L. Structural and kinetic analysis of the substrate specificity of human fibroblast activation protein α. J. Biol. Chem. 2005 280 20 19441 19444 10.1074/jbc.C500092200 15809306
    [Google Scholar]
  54. Lee K.N. Jackson K.W. Christiansen V.J. Lee C.S. Chun J.G. McKee P.A. Antiplasmin-cleaving enzyme is a soluble form of fibroblast activation protein. Blood 2006 107 4 1397 1404 10.1182/blood‑2005‑08‑3452 16223769
    [Google Scholar]
  55. Kanno Y. Shu E. α2-Antiplasmin as a potential therapeutic target for systemic sclerosis. Life 2022 12 3 396 10.3390/life12030396 35330147
    [Google Scholar]
  56. Singh S. Saleem S. Reed G.L. Alpha2-antiplasmin: The devil you don’t know in cerebrovascular and cardiovascular disease. Front. Cardiovasc. Med. 2020 7 608899 10.3389/fcvm.2020.608899 33426005
    [Google Scholar]
  57. Rosenblum J.S. Kozarich J.W. Prolyl peptidases: A serine protease subfamily with high potential for drug discovery. Curr. Opin. Chem. Biol. 2003 7 4 496 504 10.1016/S1367‑5931(03)00084‑X 12941425
    [Google Scholar]
  58. Jambunathan K. Watson D.S. Endsley A.N. Kodukula K. Galande A.K. Comparative analysis of the substrate preferences of two post‐proline cleaving endopeptidases, prolyl oligopeptidase and fibroblast activation protein α. FEBS Lett. 2012 586 16 2507 2512 10.1016/j.febslet.2012.06.015 22750443
    [Google Scholar]
  59. Koczorowska M.M. Tholen S. Bucher F. Fibroblast activation protein‐α, a stromal cell surface protease, shapes key features of cancer associated fibroblasts through proteome and degradome alterations. Mol. Oncol. 2016 10 1 40 58 10.1016/j.molonc.2015.08.001 26304112
    [Google Scholar]
  60. Imlimthan S. Moon E. Rathke H. New frontiers in cancer imaging and therapy based on radiolabeled fibroblast activation protein inhibitors: A rational review and current progress. Pharmaceuticals 2021 14 10 1023 10.3390/ph14101023 34681246
    [Google Scholar]
  61. Juillerat-Jeanneret L. Tafelmeyer P. Golshayan D. Fibroblast activation protein-α in fibrogenic disorders and cancer: More than a prolyl-specific peptidase? Expert Opin. Ther. Targets 2017 21 10 977 991 10.1080/14728222.2017.1370455 28829211
    [Google Scholar]
  62. Edosada C.Y. Quan C. Tran T. Peptide substrate profiling defines fibroblast activation protein as an endopeptidase of strict Gly 2 ‐Pro 1 ‐cleaving specificity. FEBS Lett. 2006 580 6 1581 1586 10.1016/j.febslet.2006.01.087 16480718
    [Google Scholar]
  63. Lee H.O. Mullins S.R. Franco-Barraza J. Valianou M. Cukierman E. Cheng J.D. FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells. BMC Cancer 2011 11 1 245 10.1186/1471‑2407‑11‑245 21668992
    [Google Scholar]
  64. Shahvali S. Rahiman N. Jaafari M.R. Arabi L. Targeting fibroblast activation protein (FAP): Advances in CAR-T cell, antibody, and vaccine in cancer immunotherapy. Drug Deliv. Transl. Res. 2023 13 7 2041 2056 10.1007/s13346‑023‑01308‑9 36840906
    [Google Scholar]
  65. Collins P.J. McMahon G. O’Brien P. O’Connor B. Purification, identification and characterisation of seprase from bovine serum. Int. J. Biochem. Cell Biol. 2004 36 11 2320 2333 10.1016/j.biocel.2004.05.006 15313476
    [Google Scholar]
  66. Cheng J.D. Valianou M. Canutescu A.A. Abrogation of fibroblast activation protein enzymatic activity attenuates tumor growth. Mol. Cancer Ther. 2005 4 3 351 360 10.1158/1535‑7163.MCT‑04‑0269 15767544
    [Google Scholar]
  67. Lv B. Xie F. Zhao P. Promotion of cellular growth and motility is independent of enzymatic activity of fibroblast activation protein-α. Cancer Genomics Proteomics 2016 13 3 201 208 [PMID: 27107062
    [Google Scholar]
  68. Huang Y. Simms A.E. Mazur A. Fibroblast activation protein-α promotes tumor growth and invasion of breast cancer cells through non-enzymatic functions. Clin. Exp. Metastasis 2011 28 6 567 579 10.1007/s10585‑011‑9392‑x 21604185
    [Google Scholar]
  69. Meadows S.A. Edosada C.Y. Mayeda M. Ala657 and conserved active site residues promote fibroblast activation protein endopeptidase activity via distinct mechanisms of transition state stabilization. Biochemistry 2007 46 15 4598 4605 10.1021/bi062227y 17381073
    [Google Scholar]
  70. Brennen W.N. Isaacs J.T. Denmeade S.R. Rationale behind targeting fibroblast activation protein-expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol. Cancer Ther. 2012 11 2 257 266 10.1158/1535‑7163.MCT‑11‑0340 22323494
    [Google Scholar]
  71. Feig C. Jones J.O. Kraman M. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti–PD-L1 immunotherapy in pancreatic cancer. Proc. Natl. Acad. Sci. USA 2013 110 50 20212 20217 10.1073/pnas.1320318110 24277834
    [Google Scholar]
  72. Yang X. Lin Y. Shi Y. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3–CCL2 signaling. Cancer Res. 2016 76 14 4124 4135 10.1158/0008‑5472.CAN‑15‑2973 27216177
    [Google Scholar]
  73. Augoff K. Hryniewicz-Jankowska A. Tabola R. Invadopodia: Clearing the way for cancer cell invasion. Ann. Transl. Med. 2020 8 14 902 10.21037/atm.2020.02.157 32793746
    [Google Scholar]
  74. Jia J. Martin T.A. Ye L. Jiang W.G. FAP-α (Fibroblast activation protein-α) is involved in the control of human breast cancer cell line growth and motility via the FAK pathway. BMC Cell Biol. 2014 15 1 16 10.1186/1471‑2121‑15‑16 24885257
    [Google Scholar]
  75. Xin L. Gao J. Zheng Z. Fibroblast activation protein-α as a target in the bench-to-bedside diagnosis and treatment of tumors: A narrative review. Front. Oncol. 2021 11 648187 10.3389/fonc.2021.648187 34490078
    [Google Scholar]
  76. Hamson E.J. Keane F.M. Tholen S. Schilling O. Gorrell M.D. Understanding fibroblast activation protein (FAP): Substrates, activities, expression and targeting for cancer therapy. Proteomics Clin. Appl. 2014 8 5-6 454 463 10.1002/prca.201300095 24470260
    [Google Scholar]
  77. Keane F.M. Nadvi N.A. Yao T.W. Gorrell M.D. Neuropeptide Y. Neuropeptide Y. B‐type natriuretic peptide, substance P and peptide YY are novel substrates of fibroblast activation protein‐α. FEBS J. 2011 278 8 1316 1332 10.1111/j.1742‑4658.2011.08051.x 21314817
    [Google Scholar]
  78. Dunshee D.R. Bainbridge T.W. Kljavin N.M. Fibroblast activation protein cleaves and inactivates fibroblast growth factor 21. J. Biol. Chem. 2016 291 11 5986 5996 10.1074/jbc.M115.710582 26797127
    [Google Scholar]
  79. Christiansen V.J. Jackson K.W. Lee K.N. McKee P.A. Effect of fibroblast activation protein and α2-antiplasmin cleaving enzyme on collagen Types I, III, and IV. Arch. Biochem. Biophys. 2007 457 2 177 186 10.1016/j.abb.2006.11.006 17174263
    [Google Scholar]
  80. Lee K.N. Jackson K.W. Christiansen V.J. Chung K.H. McKee P.A. A novel plasma proteinase potentiates α2-antiplasmin inhibition of fibrin digestion. Blood 2004 103 10 3783 3788 10.1182/blood‑2003‑12‑4240 14751930
    [Google Scholar]
  81. Christiansen V.J. Jackson K.W. Lee K.N. Downs T.D. McKee P.A. Targeting inhibition of fibroblast activation protein-α and prolyl oligopeptidase activities on cells common to metastatic tumor microenvironments. Neoplasia 2013 15 4 348 358 10.1593/neo.121850 23555181
    [Google Scholar]
  82. Kennedy A. Dong H. Chen D. Chen W.T. Elevation of seprase expression and promotion of an invasive phenotype by collagenous matrices in ovarian tumor cells. Int. J. Cancer 2009 124 1 27 35 10.1002/ijc.23871 18823010
    [Google Scholar]
  83. Zhang Z. Tao J. Qiu J. From basic research to clinical application: Targeting fibroblast activation protein for cancer diagnosis and treatment. Cell. Oncol. 2024 47 2 361 381 10.1007/s13402‑023‑00872‑z 37726505
    [Google Scholar]
  84. Kawase T. Yasui Y. Nishina S. Fibroblast activation protein-α-expressing fibroblasts promote the progression of pancreatic ductal adenocarcinoma. BMC Gastroenterol. 2015 15 1 109 10.1186/s12876‑015‑0340‑0 26330349
    [Google Scholar]
  85. Li F. Wu X. Sun Z. Cai P. Wu L. Li D. Fibroblast activation protein-α expressing fibroblasts promote lymph node metastasis in esophageal squamous cell carcinoma. OncoTargets Ther. 2020 13 8141 8148 10.2147/OTT.S257529 32884296
    [Google Scholar]
  86. Yang W. Han W. Ye S. Fibroblast activation protein-α promotes ovarian cancer cell proliferation and invasion via extracellular and intracellular signaling mechanisms. Exp. Mol. Pathol. 2013 95 1 105 110 10.1016/j.yexmp.2013.06.007 23778090
    [Google Scholar]
  87. Coto-Llerena M. Ercan C. Kancherla V. High expression of FAP in colorectal cancer is associated with angiogenesis and immunoregulation processes. Front. Oncol. 2020 10 979 10.3389/fonc.2020.00979 32733792
    [Google Scholar]
  88. Kalaei Z. Manafi-Farid R. Rashidi B. The Prognostic and therapeutic value and clinical implications of fibroblast activation protein-α as a novel biomarker in colorectal cancer. Cell Commun. Signal. 2023 21 1 139 10.1186/s12964‑023‑01151‑y 37316886
    [Google Scholar]
  89. Wäster P. Rosdahl I. Gilmore B.F. Seifert O. Ultraviolet exposure of melanoma cells induces fibroblast activation protein-α in fibroblasts: Implications for melanoma invasion. Int. J. Oncol. 2011 39 1 193 202 [PMID: 21491083
    [Google Scholar]
  90. Jia J. Martin T.A. Ye L. Fibroblast activation protein-α promotes the growth and migration of lung cancer cells via the PI3K and sonic hedgehog pathways. Int. J. Mol. Med. 2018 41 1 275 283 [PMID: 29115573
    [Google Scholar]
  91. Kraxner A. Braun F. Cheng W.Y. Investigating the complex interplay between fibroblast activation protein α-positive cancer associated fibroblasts and the tumor microenvironment in the context of cancer immunotherapy. Front. Immunol. 2024 15 1352632 10.3389/fimmu.2024.1352632 39035007
    [Google Scholar]
  92. Aden D. Zaheer S. Ahluwalia H. Ranga S. Cancer‐associated fibroblasts: Is it a key to an intricate lock of tumorigenesis? Cell Biol. Int. 2023 47 5 859 893 10.1002/cbin.12004 36871165
    [Google Scholar]
  93. Cao F. Wang S. Wang H. Tang W. Fibroblast activation protein-α in tumor cells promotes colorectal cancer angiogenesis via the Akt and ERK signaling pathways. Mol. Med. Rep. 2018 17 2 2593 2599 [PMID: 29207091
    [Google Scholar]
  94. Solano-Iturri J.D. Beitia M. Errarte P. Altered expression of fibroblast activation protein-α (FAP) in colorectal adenoma-carcinoma sequence and in lymph node and liver metastases. Aging (Albany NY) 2020 12 11 10337 10358 10.18632/aging.103261 32428869
    [Google Scholar]
  95. Shi J. Hou Z. Yan J. The prognostic significance of fibroblast activation protein-α in human lung adenocarcinoma. Ann. Transl. Med. 2020 8 5 224 10.21037/atm.2020.01.82 32309371
    [Google Scholar]
  96. Aimes R. Zijlstra A. Hooper J. Endothelial cell serine proteases expressed during vascular morphogenesis and angiogenesis. Thromb. Haemost. 2003 89 3 561 572 10.1055/s‑0037‑1613388 12624642
    [Google Scholar]
  97. Zukowska-Grojec Z. Karwatowska-Prokopczuk E. Rose W. Neuropeptide Y. Circ. Res. 1998 83 2 187 195 10.1161/01.RES.83.2.187 9686758
    [Google Scholar]
  98. Okada K. Chen W.T. Iwasa S. Seprase, a membrane-type serine protease, has different expression patterns in intestinal- and diffuse-type gastric cancer. Oncology 2003 65 4 363 370 10.1159/000074650 14707457
    [Google Scholar]
  99. Santos A.M. Jung J. Aziz N. Kissil J.L. Puré E. Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice. J. Clin. Invest. 2009 119 12 3613 3625 10.1172/JCI38988 19920354
    [Google Scholar]
  100. Liu T. Han C. Wang S. Cancer-associated fibroblasts: An emerging target of anti-cancer immunotherapy. J. Hematol. Oncol. 2019 12 1 86 10.1186/s13045‑019‑0770‑1 31462327
    [Google Scholar]
  101. Wang H. Wu Q. Liu Z. Downregulation of FAP suppresses cell proliferation and metastasis through PTEN/PI3K/AKT and Ras-ERK signaling in oral squamous cell carcinoma. Cell Death Dis. 2014 5 4 e1155 e5 10.1038/cddis.2014.122 24722280
    [Google Scholar]
  102. Wang D. DuBois R.N. Immunosuppression associated with chronic inflammation in the tumor microenvironment. Carcinogenesis 2015 36 10 1085 1093 10.1093/carcin/bgv123 26354776
    [Google Scholar]
  103. Li L. Yu R. Cai T. Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment. Int. Immunopharmacol. 2020 88 106939 10.1016/j.intimp.2020.106939 33182039
    [Google Scholar]
  104. Costa A. Kieffer Y. Scholer-Dahirel A. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 2018 33 3 463 479 10.1016/j.ccell.2018.01.011
    [Google Scholar]
  105. Uckun F.M. Overcoming the immunosuppressive tumor microenvironment in multiple myeloma. Cancers 2021 13 9 2018 10.3390/cancers13092018 33922005
    [Google Scholar]
  106. Chen L. Qiu X. Wang X. He J. FAP positive fibroblasts induce immune checkpoint blockade resistance in colorectal cancer via promoting immunosuppression. Biochem. Biophys. Res. Commun. 2017 487 1 8 14 10.1016/j.bbrc.2017.03.039 28302482
    [Google Scholar]
  107. Kraman M. Bambrough P.J. Arnold J.N. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-α. Science 2010 330 6005 827 830 10.1126/science.1195300 21051638
    [Google Scholar]
  108. Wen X. He X. Jiao F. Fibroblast activation protein-α-positive fibroblasts promote gastric cancer progression and resistance to immune checkpoint blockade. Oncol. Res. 2017 25 4 629 640 10.3727/096504016X14768383625385 27983931
    [Google Scholar]
  109. Comito G. Iscaro A. Bacci M. Lactate modulates CD4+ T-cell polarization and induces an immunosuppressive environment, which sustains prostate carcinoma progression via TLR8/miR21 axis. Oncogene 2019 38 19 3681 3695 10.1038/s41388‑019‑0688‑7 30664688
    [Google Scholar]
  110. Herzog B.H. Baer J.M. Borcherding N. Tumor-associated fibrosis impairs immune surveillance and response to immune checkpoint blockade in non–small cell lung cancer. Sci. Transl. Med. 2023 15 699 eadh8005 10.1126/scitranslmed.adh8005 37285399
    [Google Scholar]
  111. Brennen W.N.J. Thorek D.L. Jiang W. Overcoming stromal barriers to immuno-oncological responses via fibroblast activation protein-targeted therapy. Immunotherapy 2021 13 2 155 175 10.2217/imt‑2020‑0066 33148078
    [Google Scholar]
  112. Liu Y. Sun Y. Wang P. FAP-targeted CAR-T suppresses MDSCs recruitment to improve the antitumor efficacy of claudin18.2-targeted CAR-T against pancreatic cancer. J. Transl. Med. 2023 21 1 255 10.1186/s12967‑023‑04080‑z 37046312
    [Google Scholar]
  113. Huang M. Fu M. Wang J. TGF-β1-activated cancer-associated fibroblasts promote breast cancer invasion, metastasis and epithelial-mesenchymal transition by autophagy or overexpression of FAP-α. Biochem. Pharmacol. 2021 188 114527 10.1016/j.bcp.2021.114527 33741330
    [Google Scholar]
  114. Hou C.M. Qu X.M. Zhang J. Fibroblast activation proteins-α suppress tumor immunity by regulating T cells and tumor-associated macrophages. Exp. Mol. Pathol. 2018 104 1 29 37 10.1016/j.yexmp.2017.12.003 29273462
    [Google Scholar]
  115. Zheng J. Hao H. The importance of cancer-associated fibroblasts in targeted therapies and drug resistance in breast cancer. Front. Oncol. 2024 13 1333839 10.3389/fonc.2023.1333839 38273859
    [Google Scholar]
  116. Bueno-Urquiza L.J. Godínez-Rubí M. Villegas-Pineda J.C. Phenotypic heterogeneity of cancer associated fibroblasts in cervical cancer progression: Fap as a central activation marker. Cells 2024 13 7 560 10.3390/cells13070560 38606999
    [Google Scholar]
  117. Zhao Y. Jia Y. Wang J. circNOX4 activates an inflammatory fibroblast niche to promote tumor growth and metastasis in NSCLC via FAP/IL-6 axis. Mol. Cancer 2024 23 1 47 10.1186/s12943‑024‑01957‑5 38459511
    [Google Scholar]
  118. Wang X. Niu R. Yang H. Lin Y. Hou H. Yang H. Fibroblast activation protein promotes progression of hepatocellular carcinoma via regulating the immunity. Cell Biol. Int. 2024 48 5 577 593 10.1002/cbin.12154 38501437
    [Google Scholar]
  119. Levy M.T. McCaughan G.W. Abbott C.A. Fibroblast activation protein: A cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis. Hepatology 1999 29 6 1768 1778 10.1002/hep.510290631 10347120
    [Google Scholar]
  120. Park J.E. Lenter M.C. Zimmermann R.N. Garin-Chesa P. Old L.J. Rettig W.J. Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J. Biol. Chem. 1999 274 51 36505 36512 10.1074/jbc.274.51.36505 10593948
    [Google Scholar]
  121. Schuberth P.C. Hagedorn C. Jensen S.M. Treatment of malignant pleural mesothelioma by fibroblast activation protein-specific re-directed T cells. J. Transl. Med. 2013 11 1 187 10.1186/1479‑5876‑11‑187 23937772
    [Google Scholar]
  122. Niedermeyer J. Garin-Chesa P. Kriz M. Expression of the fibroblast activation protein during mouse embryo development. Int. J. Dev. Biol. 2001 45 2 445 447 [PMID: 11330865
    [Google Scholar]
  123. Bae S. Park C.W. Son H.K. Fibroblast activation protein α identifies mesenchymal stromal cells from human bone marrow. Br. J. Haematol. 2008 142 5 827 830 10.1111/j.1365‑2141.2008.07241.x 18510677
    [Google Scholar]
  124. Tran E. Chinnasamy D. Yu Z. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J. Exp. Med. 2013 210 6 1125 1135 10.1084/jem.20130110 23712432
    [Google Scholar]
  125. Busek P. Hrabal P. Fric P. Sedo A. Co-expression of the homologous proteases fibroblast activation protein and dipeptidyl peptidase-IV in the adult human Langerhans islets. Histochem. Cell Biol. 2015 143 5 497 504 10.1007/s00418‑014‑1292‑0 25361590
    [Google Scholar]
  126. Jacob M. Chang L. Puré E. Fibroblast activation protein in remodeling tissues. Curr. Mol. Med. 2012 12 10 1220 1243 10.2174/156652412803833607 22834826
    [Google Scholar]
  127. Lee K.N. Jackson K.W. Terzyan S. Christiansen V.J. McKee P.A. Using substrate specificity of antiplasmin-cleaving enzyme for fibroblast activation protein inhibitor design. Biochemistry 2009 48 23 5149 5158 10.1021/bi900257m 19402713
    [Google Scholar]
  128. Chowdhury S. Gorrell M. Polak N. Tan S-Y. Weninger W. Fibroblast activation protein is dispensable in the anti-influenza immune response in mice. PLoS One 2017 12 2 e0171194 10.1371/journal.pone.0171194
    [Google Scholar]
  129. Niedermeyer J. Kriz M. Hilberg F. Targeted disruption of mouse fibroblast activation protein. Mol. Cell. Biol. 2000 20 3 1089 1094 10.1128/MCB.20.3.1089‑1094.2000 10629066
    [Google Scholar]
  130. Sánchez-Garrido M.A. Habegger K.M. Clemmensen C. Fibroblast activation protein (FAP) as a novel metabolic target. Mol. Metab. 2016 5 10 1015 1024 10.1016/j.molmet.2016.07.003 27689014
    [Google Scholar]
  131. Zhang M. Xu L. Wang X. Sun B. Ding J. Expression levels of seprase/FAPα and DPPIV/CD26 in epithelial ovarian carcinoma. Oncol. Lett. 2015 10 1 34 42 10.3892/ol.2015.3151 26170973
    [Google Scholar]
  132. Yu H. Yang J. Li Y. Jiao S. The expression of fibroblast activation protein-α in primary breast cancer is associated with poor prognosis. Xibao Yu Fenzi Mianyixue Zazhi 2015 31 3 370 374 [PMID: 25744843
    [Google Scholar]
  133. Ji D. Jia J. Cui X. Li Z. Wu A. FAP promotes metastasis and chemoresistance via regulating YAP1 and macrophages in mucinous colorectal adenocarcinoma. iScience 2023 26 6 106600 10.1016/j.isci.2023.106600 37213233
    [Google Scholar]
  134. Chen L. Chen M. Han Z. Clinical significance of FAP-α on microvessel and lymphatic vessel density in lung squamous cell carcinoma. J. Clin. Pathol. 2018 71 8 721 728 10.1136/jclinpath‑2017‑204872 29559517
    [Google Scholar]
  135. Zhao Z. Zhu Y. FAP, CD10, and GPR77-labeled CAFs cause neoadjuvant chemotherapy resistance by inducing EMT and CSC in gastric cancer. BMC Cancer 2023 23 1 507 10.1186/s12885‑023‑11011‑0 37277751
    [Google Scholar]
  136. Park H. Lee Y. Lee H. The prognostic significance of cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Tumour Biol. 2017 39 10 10.1177/1010428317718403 29025374
    [Google Scholar]
  137. Chandler C. Liu T. Buckanovich R. Coffman L.G. The double edge sword of fibrosis in cancer. Transl. Res. 2019 209 55 67 10.1016/j.trsl.2019.02.006 30871956
    [Google Scholar]
  138. Huber M.A. Schubert R.D. Peter R.U. Fibroblast activation protein: Differential expression and serine protease activity in reactive stromal fibroblasts of melanocytic skin tumors. J. Invest. Dermatol. 2003 120 2 182 188 10.1046/j.1523‑1747.2003.12035.x 12542520
    [Google Scholar]
  139. Zhang Y. Tang H. Cai J. Ovarian cancer-associated fibroblasts contribute to epithelial ovarian carcinoma metastasis by promoting angiogenesis, lymphangiogenesis and tumor cell invasion. Cancer Lett. 2011 303 1 47 55 10.1016/j.canlet.2011.01.011 21310528
    [Google Scholar]
  140. Jiang G.M. Xu W. Du J. The application of the fibroblast activation protein α-targeted immunotherapy strategy. Oncotarget 2016 7 22 33472 33482 10.18632/oncotarget.8098 26985769
    [Google Scholar]
  141. Paulsson J. Micke P. Prognostic relevance of cancer-associated fibroblasts in human cancer. In:Seminars in cancer biology. Elsevier 2014 Vol. 25 61 68 10.1016/j.semcancer.2014.02.006
    [Google Scholar]
  142. Aoyama A. Chen W.T.A. 170-kDa membrane-bound protease is associated with the expression of invasiveness by human malignant melanoma cells. Proc. Natl. Acad. Sci. USA 1990 87 21 8296 8300 10.1073/pnas.87.21.8296 2172980
    [Google Scholar]
  143. Ge Y. Zhan F. Barlogie B. Epstein J. Shaughnessy J. Yaccoby S. Fibroblast activation protein (FAP) is upregulated in myelomatous bone and supports myeloma cell survival. Br. J. Haematol. 2006 133 1 83 92 10.1111/j.1365‑2141.2006.05976.x 16512833
    [Google Scholar]
  144. Joshi R.S. Kanugula S.S. Sudhir S. Pereira M.P. Jain S. Aghi M.K. The role of cancer-associated fibroblasts in tumor progression. Cancers 2021 13 6 1399 10.3390/cancers13061399 33808627
    [Google Scholar]
  145. Chung K.M. Hsu S.C. Chu Y.R. Fibroblast activation protein (FAP) is essential for the migration of bone marrow mesenchymal stem cells through RhoA activation. PLoS One 2014 9 2 88772 10.1371/journal.pone.0088772 24551161
    [Google Scholar]
  146. Bailón-Moscoso N. Romero-Benavides J.C. Ostrosky-Wegman P. Development of anticancer drugs based on the hallmarks of tumor cells. Tumour Biol. 2014 35 5 3981 3995 10.1007/s13277‑014‑1649‑y 24470139
    [Google Scholar]
  147. Davalli P. Marverti G. Lauriola A. D’Arca D. Targeting oxidatively induced DNA damage response in cancer: Opportunities for novel cancer therapies. Oxid. Med. Cell. Longev. 2018 2018 1 2389523 10.1155/2018/2389523 29770165
    [Google Scholar]
  148. Weiss F. Lauffenburger D. Friedl P. Towards targeting of shared mechanisms of cancer metastasis and therapy resistance. Nat. Rev. Cancer 2022 22 3 157 173 10.1038/s41568‑021‑00427‑0 35013601
    [Google Scholar]
  149. Huang R. Zhou P.K. DNA damage repair: Historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct. Target. Ther. 2021 6 1 254 10.1038/s41392‑021‑00648‑7 34238917
    [Google Scholar]
  150. Wu F. Yang J. Liu J. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct. Target. Ther. 2021 6 1 218 10.1038/s41392‑021‑00641‑0 34108441
    [Google Scholar]
  151. Juillerat-Jeanneret L. Tafelmeyer P. Golshayan D. Regulation of fibroblast activation Protein-α expression: Focus on intracellular protein interactions. J. Med. Chem. 2021 64 19 14028 14045 10.1021/acs.jmedchem.1c01010 34523930
    [Google Scholar]
  152. Wu Z. Hua Y. Shen Q. Yu C. Research progress on the role of fibroblast activation protein in diagnosis and treatment of cancer. Nucl. Med. Commun. 2022 43 7 746 755 10.1097/MNM.0000000000001565 35506275
    [Google Scholar]
  153. Welt S. Divgi C.R. Scott A.M. Antibody targeting in metastatic colon cancer: A phase I study of monoclonal antibody F19 against a cell-surface protein of reactive tumor stromal fibroblasts. J. Clin. Oncol. 1994 12 6 1193 1203 10.1200/JCO.1994.12.6.1193 8201382
    [Google Scholar]
  154. Fabre M. Ferrer C. Domínguez-Hormaetxe S. OMTX705, a novel FAP-targeting ADC demonstrates activity in chemotherapy and pembrolizumab-resistant solid tumor models. Clin. Cancer Res. 2020 26 13 3420 3430 10.1158/1078‑0432.CCR‑19‑2238 32161121
    [Google Scholar]
  155. Tanswell P. Garin-Chesa P. Rettig W.J. Population pharmacokinetics of antifibroblast activation protein monoclonal antibody F19 in cancer patients. Br. J. Clin. Pharmacol. 2001 51 2 177 180 10.1111/j.1365‑2125.2001.01335.x 11259992
    [Google Scholar]
  156. Sounni N.E. Noel A. Targeting the tumor microenvironment for cancer therapy. Clin. Chem. 2013 59 1 85 93 10.1373/clinchem.2012.185363 23193058
    [Google Scholar]
  157. Gallant J.P. Hintz H.M. Gunaratne G.S. Mechanistic characterization of cancer-associated fibroblast depletion via an antibody–drug conjugate targeting fibroblast activation protein. Cancer Res Commun 2024 4 6 1481 1494 10.1158/2767‑9764.CRC‑24‑0248 38747612
    [Google Scholar]
  158. Nadal L. Peissert F. Elsayed A. Generation and in vivo validation of an IL-12 fusion protein based on a novel anti-human FAP monoclonal antibody. J. Immunother. Cancer 2022 10 9 005282 10.1136/jitc‑2022‑005282 36104101
    [Google Scholar]
  159. Wang J. Li Q. Li X. A novel FAPα-based Z-Gly-Pro epirubicin prodrug for improving tumor-targeting chemotherapy. Eur. J. Pharmacol. 2017 815 166 172 10.1016/j.ejphar.2017.09.016 28919026
    [Google Scholar]
  160. Huang S. Zhang Y. Zhong J. Pan Y. Cai S. Xu J. Toxicological profile and safety pharmacology of a single dose of fibroblast activation protein-α-based doxorubicin prodrug. Anticancer Drugs 2018 29 3 253 261 10.1097/CAD.0000000000000593 29346131
    [Google Scholar]
  161. Brennen W.N. Rosen D.M. Wang H. Isaacs J.T. Denmeade S.R. Targeting carcinoma-associated fibroblasts within the tumor stroma with a fibroblast activation protein-activated prodrug. J. Natl. Cancer Inst. 2012 104 17 1320 1334 10.1093/jnci/djs336 22911669
    [Google Scholar]
  162. Deng L.J. Wang L.H. Peng C.K. Fibroblast activation protein α activated tripeptide bufadienolide antitumor prodrug with reduced cardiotoxicity. J. Med. Chem. 2017 60 13 5320 5333 10.1021/acs.jmedchem.6b01755 28595013
    [Google Scholar]
  163. Chai X. Sun G. Fang Y. Hu L. Liu X. Zhang X. Tumor-targeting efficacy of a BF211 prodrug through hydrolysis by fibroblast activation protein-α. Acta Pharmacol. Sin. 2018 39 3 415 424 10.1038/aps.2017.121 29119969
    [Google Scholar]
  164. Sun M. Yao S. Fan L. Fibroblast activation protein‐α responsive peptide assembling prodrug nanoparticles for remodeling the immunosuppressive microenvironment and boosting cancer immunotherapy. Small 2022 18 9 2106296 10.1002/smll.202106296 34914185
    [Google Scholar]
  165. Akinboye E.S. Brennen W.N. Rosen D.M. Bakare O. Denmeade S.R. Iterative design of emetine‐based prodrug targeting fibroblast activation protein (FAP) and dipeptidyl peptidase IV DPPIV using a tandem enzymatic activation strategy. Prostate 2016 76 8 703 714 10.1002/pros.23162 26835873
    [Google Scholar]
  166. Shi J.F. Wu P. Li H.X. Wei X.Y. Jiang Z.H. Synthesis and anticancer activity of Boc-Gly-Pro dipeptide-annonaceous acetogenin prodrugs targeting fibroblast activation protein or other hydrolytic enzymes. Med. Chem. Res. 2022 31 4 605 616 10.1007/s00044‑022‑02857‑3
    [Google Scholar]
  167. Saiki Y. Hirota S. Horii A. Attempts to remodel the pathways of gemcitabine metabolism: Recent approaches to overcoming tumours with acquired chemoresistance. Cancer Drug Resist. 2020 3 4 819 831 10.20517/cdr.2020.39 35582220
    [Google Scholar]
  168. Sun J. Yang D. Cui S.H. Enhanced anti-tumor efficiency of gemcitabine prodrug by FAPα-mediated activation. Int. J. Pharm. 2019 559 48 57 10.1016/j.ijpharm.2019.01.032 30677483
    [Google Scholar]
  169. Fan S. Qi M. Qi Q. Targeting FAPα-positive lymph node metastatic tumor cells suppresses colorectal cancer metastasis. Acta Pharm. Sin. B 2024 14 2 682 697 10.1016/j.apsb.2023.11.002 38322324
    [Google Scholar]
  170. Geng F. Guo J. Guo Q.Q. A DNA vaccine expressing an optimized secreted FAPα induces enhanced anti-tumor activity by altering the tumor microenvironment in a murine model of breast cancer. Vaccine 2019 37 31 4382 4391 10.1016/j.vaccine.2019.06.012 31202521
    [Google Scholar]
  171. Gottschalk S. Yu F. Ji M. Kakarla S. Song X.T. A vaccine that co-targets tumor cells and cancer associated fibroblasts results in enhanced antitumor activity by inducing antigen spreading. PLoS One 2013 8 12 82658 10.1371/journal.pone.0082658 24349329
    [Google Scholar]
  172. Ohshio Y. Teramoto K. Hanaoka J. Cancer‐associated fibroblast‐targeted strategy enhances antitumor immune responses in dendritic cell‐based vaccine. Cancer Sci. 2015 106 2 134 142 10.1111/cas.12584 25483888
    [Google Scholar]
  173. Dürr C. Pfeifer D. Claus R. CXCL12 mediates immunosuppression in the lymphoma microenvironment after allogeneic transplantation of hematopoietic cells. Cancer Res. 2010 70 24 10170 10181 10.1158/0008‑5472.CAN‑10‑1943 21159639
    [Google Scholar]
  174. Geng F. Bao X. Dong L. Doxorubicin pretreatment enhances FAPα/survivin co-targeting DNA vaccine anti-tumor activity primarily through decreasing peripheral MDSCs in the 4T1 murine breast cancer model. OncoImmunology 2020 9 1 1747350 10.1080/2162402X.2020.1747350 32363118
    [Google Scholar]
  175. Lee D. Kim D. Kim D. Harnessing the potential of fap-il12mut tmekine for targeted and enhanced antitumor responses. Mol. Cancer Ther. 2025 24 2 176 187 10.1158/1535‑7163.MCT‑24‑0125 39148331
    [Google Scholar]
  176. Abbasi S. Totmaj M.A. Abbasi M. Chimeric antigen receptor T (CAR‐T) cells: Novel cell therapy for hematological malignancies. Cancer Med. 2023 12 7 7844 7858 10.1002/cam4.5551 36583504
    [Google Scholar]
  177. Huang Z. Chavda V.P. Bezbaruah R. Dhamne H. Yang D.H. Zhao H.B. CAR T-Cell therapy for the management of mantle cell lymphoma. Mol. Cancer 2023 22 1 67 10.1186/s12943‑023‑01755‑5 37004047
    [Google Scholar]
  178. Khan A.N. Asija S. Pendhari J. Purwar R. CAR‐T cell therapy in hematological malignancies: Where are we now and where are we heading for? Eur. J. Haematol. 2024 112 1 6 18 10.1111/ejh.14076 37545253
    [Google Scholar]
  179. Wang L.C.S. Lo A. Scholler J. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol. Res. 2014 2 2 154 166 10.1158/2326‑6066.CIR‑13‑0027 24778279
    [Google Scholar]
  180. Liu X. Ranganathan R. Jiang S. A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res. 2016 76 6 1578 1590 10.1158/0008‑5472.CAN‑15‑2524 26979791
    [Google Scholar]
  181. Davoodzadeh Gholami M. kardar GA, Saeedi Y, Heydari S, Garssen J, Falak R. Exhaustion of T lymphocytes in the tumor microenvironment: Significance and effective mechanisms. Cell. Immunol. 2017 322 1 14 10.1016/j.cellimm.2017.10.002 29079339
    [Google Scholar]
  182. Cherkassky L. Morello A. Villena-Vargas J. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Invest. 2016 126 8 3130 3144 10.1172/JCI83092 27454297
    [Google Scholar]
  183. Zhang C. Liu J. Zhong J.F. Zhang X. Engineering CAR-T cells. Biomark. Res. 2017 5 1 22 10.1186/s40364‑017‑0102‑y 28652918
    [Google Scholar]
  184. Gill S. Porter D.L. CAR-modified anti-CD19 T cells for the treatment of B-cell malignancies: Rules of the road. Expert Opin. Biol. Ther. 2014 14 1 37 49 10.1517/14712598.2014.860442 24261468
    [Google Scholar]
  185. Sievers N.M. Dörrie J. Schaft N. CARs: Beyond T cells and T cell-derived signaling domains. Int. J. Mol. Sci. 2020 21 10 3525 10.3390/ijms21103525 32429316
    [Google Scholar]
  186. Huang B. Zheng S. Sudarshan K. Use of a universal targeting CAR T cell to simultaneously kill cancer cells and cancer-associated fibroblasts. Front. Immunol. 2025 16 1539265 10.3389/fimmu.2025.1539265 40034702
    [Google Scholar]
  187. Wehrli M. Guinn S. Birocchi F. Mesothelin CAR T cells secreting anti-FAP/anti-CD3 molecules efficiently target pancreatic adenocarcinoma and its stroma. Clin. Cancer Res. 2024 30 9 1859 1877 10.1158/1078‑0432.CCR‑23‑3841 38393682
    [Google Scholar]
  188. Zhou L. Li Y. Zheng D. Bispecific CAR-T cells targeting FAP and GPC3 have the potential to treat hepatocellular carcinoma. Molecular Therapy Oncology 2024 32 2 200817 10.1016/j.omton.2024.200817
    [Google Scholar]
  189. Yu W. Truong N.T.H. Polara R. Endogenous bystander killing mechanisms enhance the activity of novel FAP‐specific CAR‐T cells against glioblastoma. Clin. Transl. Immunology 2024 13 7 1519 10.1002/cti2.1519 38975278
    [Google Scholar]
  190. Meng S. Hara T. Miura Y. Ishii H. Fibroblast activation protein constitutes a novel target of chimeric antigen receptor T‐cell therapy in solid tumors. Cancer Sci. 2024 115 11 3532 3542 10.1111/cas.16285 39169645
    [Google Scholar]
  191. Hosseini S.M. Mohammadnejad J. Salamat S. Beiram Zadeh Z. Tanhaei M. Ramakrishna S. Theranostic polymeric nanoparticles as a new approach in cancer therapy and diagnosis: A review. Mater. Today Chem. 2023 29 101400 10.1016/j.mtchem.2023.101400
    [Google Scholar]
  192. Becx M.N. Minczeles N.S. Brabander T. de Herder W.W. Nonnekens J. Hofland J. A clinical guide to peptide receptor radionuclide therapy with 177Lu-DOTATATE in neuroendocrine tumor patients. Cancers 2022 14 23 5792 10.3390/cancers14235792 36497273
    [Google Scholar]
  193. Zhao L. Chen J. Pang Y. Fibroblast activation protein-based theranostics in cancer research: A state-of-the-art review. Theranostics 2022 12 4 1557 1569 10.7150/thno.69475 35198057
    [Google Scholar]
  194. Kelly J.M. Jeitner T.M. Ponnala S. A trifunctional theranostic ligand targeting fibroblast activation protein-α (FAPα). Mol. Imaging Biol. 2021 23 5 686 696 10.1007/s11307‑021‑01593‑1 33721173
    [Google Scholar]
  195. Giesel F.L. Kratochwil C. Lindner T. 68Ga-FAPI PET/CT: Biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers. J. Nucl. Med. 2019 60 3 386 392 10.2967/jnumed.118.215913 30072500
    [Google Scholar]
  196. Koshkin V.S. Kumar V. Kline B. Initial experience with 68Ga-FAP-2286 PET imaging in patients with urothelial cancer. J. Nucl. Med. 2024 65 2 199 205 10.2967/jnumed.123.266390 38212070
    [Google Scholar]
  197. Spektor A.M. Gutjahr E. Lang M. Immunohistochemical] FAP expression reflects 68 Ga-FAPI PET imaging properties] of low- and high-grade intraductal papillary mucinous neoplasms and pancreatic ductal adenocarcinoma. J. Nucl. Med. 2024 65 1 52 58 10.2967/jnumed.123.266393 38167622
    [Google Scholar]
  198. Zhao L. Pang Y. Zhou Y. Antitumor efficacy and potential mechanism of FAP-targeted radioligand therapy combined with immune checkpoint blockade. Signal Transduct. Target. Ther. 2024 9 1 142 10.1038/s41392‑024‑01853‑w 38825657
    [Google Scholar]
  199. Liu L. Zhong J. Zhang Z. Preclinical study and first-in-human imaging of [18F]FAP-2286, and comparison with 2-[18F]FDG PET/CT in various cancer patients. Eur. J. Nucl. Med. Mol. Imaging 2024 51 7 2012 2022 10.1007/s00259‑024‑06626‑9 38326656
    [Google Scholar]
  200. Fu A. Wang H. Huo T. A novel chemiluminescence probe for sensitive detection of fibroblast activation protein-alpha in vitro and in living systems. Anal. Chem. 2021 93 16 6501 6507 10.1021/acs.analchem.1c00413 33866786
    [Google Scholar]
  201. Li H. Xia D. Meng L. FAP-targeted delivery of radioiodinated probes: A progressive albumin-driven strategy for tumor theranostics. J. Control. Release 2025 382 113678 10.1016/j.jconrel.2025.113678 40180251
    [Google Scholar]
  202. van der Heide C.D. Ma H. Hoorens M.W.H. In vitro and in vivo analyses of eFAP: A novel FAP-targeting small molecule for radionuclide theranostics and other oncological interventions. EJNMMI Radiopharm. Chem. 2024 9 1 55 10.1186/s41181‑024‑00283‑x 39073475
    [Google Scholar]
  203. Wang R. Huang M. Wang W. Li M. Wang Y. Tian R. Preclinical evaluation of 68 Ga/ 177 lu-labeled FAP-targeted peptide for tumor radiopharmaceutical imaging and therapy. J. Nucl. Med. 2025 66 2 250 256 10.2967/jnumed.124.268689 39848766
    [Google Scholar]
  204. Scott A.M. Wiseman G. Welt S. A Phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin. Cancer Res. 2003 9 5 1639 1647 [PMID: 12738716
    [Google Scholar]
  205. Hofheinz R-D. al-Batran S-E. Hartmann F. Stromal antigen targeting by a humanised monoclonal antibody: An early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie 2003 26 1 44 48 [PMID: 12624517
    [Google Scholar]
  206. Ostermann E. Garin-Chesa P. Heider K.H. Effective immunoconjugate therapy in cancer models targeting a serine protease of tumor fibroblasts. Clin. Cancer Res. 2008 14 14 4584 4592 10.1158/1078‑0432.CCR‑07‑5211 18628473
    [Google Scholar]
  207. Privé B.M. Boussihmad M.A. Timmermans B. Fibroblast activation protein-targeted radionuclide therapy: Background, opportunities, and challenges of first (pre)clinical studies. Eur. J. Nucl. Med. Mol. Imaging 2023 50 7 1906 1918 10.1007/s00259‑023‑06144‑0 36813980
    [Google Scholar]
  208. Loeffler M. Krüger J.A. Niethammer A.G. Reisfeld R.A. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J. Clin. Invest. 2006 116 7 1955 1962 10.1172/JCI26532 16794736
    [Google Scholar]
  209. Burckhart T. Thiel M. Nishikawa H. Tumor-specific crosslinking of GITR as costimulation for immunotherapy. J. Immunother. 2010 33 9 925 934 10.1097/CJI.0b013e3181f3cc87 20948444
    [Google Scholar]
  210. Das S. Valton J. Duchateau P. Poirot L. Stromal depletion by TALEN-edited universal hypoimmunogenic FAP-CAR T cells enables infiltration and anti-tumor cytotoxicity of tumor antigen-targeted CAR-T immunotherapy. Front. Immunol. 2023 14 1172681 10.3389/fimmu.2023.1172681 37251405
    [Google Scholar]
  211. Lee I.K. Noguera-Ortega E. Xiao Z. Monitoring therapeutic response to anti-FAP CAR T cells using [18F] AlF-FAPI-74. Clin. Cancer Res. 2022 28 24 5330 5342 10.1158/1078‑0432.CCR‑22‑1379 35972732
    [Google Scholar]
  212. Choe J.H. Watchmaker P.B. Simic M.S. SynNotch-CAR T] cells overcome challenges of specificity, heterogeneity, and] persistence in treating glioblastoma. Sci. Transl. Med. 2021 13 591 eabe7378 10.1126/scitranslmed.abe7378 33910979
    [Google Scholar]
  213. Haslauer T. Greil R. Zaborsky N. Geisberger R. CAR T-cell therapy in hematological malignancies. Int. J. Mol. Sci. 2021 22 16 8996 10.3390/ijms22168996 34445701
    [Google Scholar]
  214. Miao L. Zhang J. Huang B. Special chimeric antigen receptor (CAR) modifications of T cells: A review. Front. Oncol. 2022 12 832765 10.3389/fonc.2022.832765 35392217
    [Google Scholar]
  215. Nam J. Son S. Park K.S. Zou W. Shea L.D. Moon J.J. Cancer nanomedicine for combination cancer immunotherapy. Nat. Rev. Mater. 2019 4 6 398 414 10.1038/s41578‑019‑0108‑1
    [Google Scholar]
  216. Chao Y. Liu Z. Biomaterials tools to modulate the tumour microenvironment in immunotherapy. Nat Rev Bioeng 2023 1 2 125 138 10.1038/s44222‑022‑00004‑6
    [Google Scholar]
  217. Xie C. Duffy A.G. Brar G. Immune checkpoint blockade in combination with stereotactic body radiotherapy in patients with metastatic pancreatic ductal adenocarcinoma. Clin. Cancer Res. 2020 26 10 2318 2326 10.1158/1078‑0432.CCR‑19‑3624 31996388
    [Google Scholar]
  218. Mukkamala R. Carlson D.J. Miller N.K. Design of a fibroblast activation protein-targeted radiopharmaceutical therapy with] high tumor-to-healthy-tissue ratios. J. Nucl. Med. 2024 65 8 1257 1263 10.2967/jnumed.124.267756 38871387
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947388031250715112019
Loading
/content/journals/cctr/10.2174/0115733947388031250715112019
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test