Skip to content
2000
image of Chemotherapeutics Associated Central Nervous System Toxicity: Mechanistic Insights

Abstract

Introduction

Over the past two decades, cancer has emerged as a major global health concern, affecting a significant portion of the population. While chemotherapeutic agents have revolutionized cancer treatment, they have also introduced a range of adverse effects, with neurotoxicity being a critical complication that can severely limit treatment options.

Objective

This review aims to provide a comprehensive analysis of the mechanisms underlying chemotherapy-induced neurotoxicity and to identify strategies for mitigating its effects.

Method

A comprehensive bibliographic investigation was conducted using scientific databases such as PubMed, Scopus, Web of Science, SciELO, NISCAIR, and Google Scholar. The search included peer-reviewed articles published in English up to December 2024, focusing on the neurotoxic effects of chemotherapy on the central nervous system (CNS). Keywords included “chemotherapy,” “neurotoxicity,” “CNS toxicity,” “oxidative stress,” “neuronal apoptosis,” “hippocampus toxicity,” “cortical toxicity,” “CNS syndromes,” and “neuroinflammation.” Inclusion criteria were studies that reported mechanistic insights, clinical observations, and experimental findings on chemotherapy-induced CNS toxicity. Relevant articles were screened based on title and abstract, followed by a full-text evaluation to extract key data and identify patterns in neurotoxic mechanisms and clinical manifestations.

Results

Patients with underlying conditions such as diabetes, hereditary neuropathies, or previous exposure to neurotoxic agents are particularly susceptible to chemotherapy-induced peripheral and central neurotoxicity. Identified mechanisms include microglial activation, neuronal apoptosis, demyelination, and oxidative stress, especially affecting cortical and hippocampal regions. These processes contribute to cognitive and functional impairments that manifest as transient or progressive neurological symptoms, including cognitive deficits, aphasia, hemiparesis, and dementia. Differentiating these effects from cancer progression remains a clinical challenge and may result in diagnostic delays or treatment errors.

Conclusion

Establishing a clear mechanistic understanding of chemotherapy-induced neurotoxicity is essential for advancing therapeutic strategies that minimize adverse effects. Enhanced knowledge of underlying biological pathways will support the development of neuroprotective interventions and improve patient management outcomes in oncology settings.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947386278250619072923
2025-07-01
2025-09-08
Loading full text...

Full text loading...

References

  1. Anand U. Dey A. Chandel A.K.S. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023 10 4 1367 1401 10.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  2. Huang C.Y. Ju D.T. Chang C.F. Reddy P.M. Velmurugan B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. BioMedicine 2017 7 4 23 10.1051/bmdcn/2017070423 29130458
    [Google Scholar]
  3. Johannesen N. Tørsløv T. Wier L. Are less developed countries more exposed to multinational tax avoidance? Method and evidence from micro-data. World Bank Econ. Rev. 2020 34 3 790 809 10.1093/wber/lhz002
    [Google Scholar]
  4. Qu X. Tang Y. Hua S. Immunological approaches towards cancer and inflammation: a cross talk. Front. Immunol. 2018 9 563 10.3389/fimmu.2018.00563 29662489
    [Google Scholar]
  5. Chib S. Singh S. Manganese and related neurotoxic pathways: A potential therapeutic target in neurodegenerative diseases. Neurotoxicol. Teratol. 2022 94 107124 10.1016/j.ntt.2022.107124 36183913
    [Google Scholar]
  6. Cintrón-García J. Guddati A.K. Management of CNS toxicity of chemotherapy and targeted agents: 2020. Am. J. Cancer Res. 2020 10 8 2617 2620 32905442
    [Google Scholar]
  7. de la Fuente M.I. Alderuccio J.P. Lossos I.S. Central nervous system emergencies in haematological malignancies. Br. J. Haematol. 2020 189 6 1028 1037 10.1111/bjh.16184 31483060
    [Google Scholar]
  8. De Toffol B. Trimble M. Hesdorffer D.C. Pharmacotherapy in patients with epilepsy and psychosis. Epilepsy Behav. 2018 80 343 353 10.1016/j.yebeh.2017.11.029 29429904
    [Google Scholar]
  9. Singh G. Rees J.H. Sander J.W. Seizures and epilepsy in oncological practice: Causes, course, mechanisms and treatment. J. Neurol. Neurosurg. Psychiatry 2006 78 4 342 349 10.1136/jnnp.2006.106211 17369589
    [Google Scholar]
  10. Was H. Borkowska A. Bagues A. Mechanisms of chemotherapy-induced neurotoxicity. Front. Pharmacol. 2022 13 750507 10.3389/fphar.2022.750507 35418856
    [Google Scholar]
  11. Mughal A. Nelson M.T. Hill-Eubanks D. The post‐arteriole transitional zone: A specialized capillary region that regulates blood flow within the CNS microvasculature. J. Physiol. 2023 601 5 889 901 10.1113/JP282246 36751860
    [Google Scholar]
  12. Koch T. Vinje V. Mardal K.A. Estimates of the permeability of extra-cellular pathways through the astrocyte endfoot sheath. Fluids Barriers CNS 2023 20 1 20 10.1186/s12987‑023‑00421‑8 36941607
    [Google Scholar]
  13. Wardill H.R. Mander K.A. Van Sebille Y.Z.A. Cytokine‐mediated blood brain barrier disruption as a conduit for cancer/chemotherapy‐associated neurotoxicity and cognitive dysfunction. Int. J. Cancer 2016 139 12 2635 2645 10.1002/ijc.30252 27367824
    [Google Scholar]
  14. Chib S. Devi S. Chalotra R. Cross talks between CNS and CVS diseases: An alliance to annihilate. Curr. Cardiol. Rev. 2024 20 3 63 76 38441007
    [Google Scholar]
  15. Ren X. St Clair D.K. Butterfield D.A. Dysregulation of cytokine mediated chemotherapy induced cognitive impairment. Pharmacol. Res. 2017 117 267 273 10.1016/j.phrs.2017.01.001 28063894
    [Google Scholar]
  16. Wang X.M. Walitt B. Saligan L. Tiwari A.F.Y. Cheung C.W. Zhang Z.J. Chemobrain: A critical review and causal hypothesis of link between cytokines and epigenetic reprogramming associated with chemotherapy. Cytokine 2015 72 1 86 96 10.1016/j.cyto.2014.12.006 25573802
    [Google Scholar]
  17. Fardell J.E. Zhang J. De Souza R. The impact of sustained and intermittent docetaxel chemotherapy regimens on cognition and neural morphology in healthy mice. Psychopharmacology (Berl.) 2014 231 5 841 852 10.1007/s00213‑013‑3301‑8 24101158
    [Google Scholar]
  18. Branca J.J.V. Maresca M. Morucci G. Oxaliplatin-induced blood brain barrier loosening: A new point of view on chemotherapy-induced neurotoxicity. Oncotarget 2018 9 34 23426 23438 10.18632/oncotarget.25193 29805744
    [Google Scholar]
  19. Shi D.D. Huang Y.H. Lai C.S.W. Chemotherapy-induced cognitive impairment is associated with cytokine dysregulation and disruptions in neuroplasticity. Mol. Neurobiol. 2019 56 3 2234 2243 10.1007/s12035‑018‑1224‑4 30008071
    [Google Scholar]
  20. Groves T.R. Farris R. Anderson J.E. 5-Fluorouracil chemotherapy upregulates cytokines and alters hippocampal dendritic complexity in aged mice. Behav. Brain Res. 2017 316 215 224 10.1016/j.bbr.2016.08.039 27599618
    [Google Scholar]
  21. Vaure C.Ã. Liu Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front. Immunol. 2014 5 316 10.3389/fimmu.2014.00316 25071777
    [Google Scholar]
  22. Wardill H.R. Gibson R.J. Van Sebille Y.Z.A. Irinotecan-induced gastrointestinal dysfunction and pain are mediated by common TLR4-dependent mechanisms. Mol. Cancer Ther. 2016 15 6 1376 1386 10.1158/1535‑7163.MCT‑15‑0990 27197307
    [Google Scholar]
  23. Ley R.E. Peterson D.A. Gordon J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006 124 4 837 848 10.1016/j.cell.2006.02.017 16497592
    [Google Scholar]
  24. Zwielehner J. Lassl C. Hippe B. Changes in human fecal microbiota due to chemotherapy analyzed by TaqMan-PCR, 454 sequencing and PCR-DGGE fingerprinting. PLoS One 2011 6 12 e28654 10.1371/journal.pone.0028654 22194876
    [Google Scholar]
  25. Bajic J.E. Johnston I.N. Howarth G.S. Hutchinson M.R. From the Bottom-Up: Chemotherapy and gut-brain axis dysregulation. Front. Behav. Neurosci. 2018 12 104 10.3389/fnbeh.2018.00104 29872383
    [Google Scholar]
  26. Miller T.L. Wolin M.J. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl. Environ. Microbiol. 1996 62 5 1589 1592 10.1128/aem.62.5.1589‑1592.1996 8633856
    [Google Scholar]
  27. Naseribafrouei A. Hestad K. Avershina E. Sekelja M. Linløkken A. Wilson R. Correlation between the human fecal microbiota and depression. Neurogastroenterol. Motil. 2014 26 8 1155 1162 10.1111/nmo.12378 24888394
    [Google Scholar]
  28. Vogt N.M. Kerby R.L. Dill-McFarland K.A. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 2017 7 1 13537 10.1038/s41598‑017‑13601‑y 29051531
    [Google Scholar]
  29. Keshavarzian A. Green S.J. Engen P.A. Colonic bacterial composition in Parkinson’s disease. Mov. Disord. 2015 30 10 1351 1360 10.1002/mds.26307 26179554
    [Google Scholar]
  30. Chen J. Chia N. Kalari K.R. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci. Rep. 2016 6 1 28484 10.1038/srep28484 27346372
    [Google Scholar]
  31. Ciernikova S. Mego M. Chovanec M. Exploring the potential role of the gut microbiome in chemotherapy-induced neurocognitive disorders and cardiovascular toxicity. Cancers 2021 13 4 782 10.3390/cancers13040782 33668518
    [Google Scholar]
  32. Loman B.R. Jordan K.R. Haynes B. Bailey M.T. Pyter L.M. Chemotherapy-induced neuroinflammation is associated with disrupted colonic and bacterial homeostasis in female mice. Sci. Rep. 2019 9 1 16490 10.1038/s41598‑019‑52893‑0 31712703
    [Google Scholar]
  33. Chib S Dutta BJ Chalotra R Role of flavonoids in mitigating the pathological complexities and treatment hurdles in alzheimer’s disease. Phytother Res 2024 39 2 747 10.1002/ptr.8406 39660432
    [Google Scholar]
  34. Ren X. Boriero D. Chaiswing L. Bondada S. St Clair D.K. Butterfield D.A. Plausible biochemical mechanisms of chemotherapy-induced cognitive impairment (“chemobrain”), a condition that significantly impairs the quality of life of many cancer survivors. Biochim. Biophys. Acta Mol. Basis Dis. 2019 1865 6 1088 1097 10.1016/j.bbadis.2019.02.007 30759363
    [Google Scholar]
  35. Han R. Yang Y.M. Dietrich J. Luebke A. Mayer-Pröschel M. Noble M. Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. J. Biol. 2008 7 12 10.1186/jbiol69 18430259
    [Google Scholar]
  36. Koppelmans V. Breteler M.M.B. Boogerd W. Seynaeve C. Gundy C. Schagen S.B. Neuropsychological performance in survivors of breast cancer more than 20 years after adjuvant chemotherapy. J. Clin. Oncol. 2012 30 10 1080 1086 10.1200/JCO.2011.37.0189 22370315
    [Google Scholar]
  37. Bender C.M. Sereika S.M. Berga S.L. Cognitive impairment associated with adjuvant therapy in breast cancer. Psychooncology: Journal of the Psychological. Social Behavioral Dimension Cancer 2006 15 5 422 430
    [Google Scholar]
  38. Yang M. Kim J. Kim S.H. Kim J.S. Shin T. Moon C. Temporal profiles of synaptic plasticity-related signals in adult mouse hippocampus with methotrexate treatment. Neural Regen. Res. 2012 7 21 1651 1658 25657706
    [Google Scholar]
  39. Walker A.K. Kavelaars A. Heijnen C.J. Dantzer R. Neuroinflammation and comorbidity of pain and depression. Pharmacol. Rev. 2014 66 1 80 101 10.1124/pr.113.008144 24335193
    [Google Scholar]
  40. Brahmbhatt H. MacDiarmid J. Bacterially derived, intact minicells for delivery of therapeutic agents to brain tumors US Patent 9,844,598 2017
  41. Conway B.R. The organization and operation of inferior temporal cortex. Annu. Rev. Vis. Sci. 2018 4 1 381 402 10.1146/annurev‑vision‑091517‑034202 30059648
    [Google Scholar]
  42. Bartynski W.S. Zeigler Z. Spearman M.P. Lin L. Shadduck R.K. Lister J. Etiology of cortical and white matter lesions in cyclosporin-A and FK-506 neurotoxicity. AJNR Am. J. Neuroradiol. 2001 22 10 1901 1914 11733324
    [Google Scholar]
  43. Dalmau J. Gleichman A.J. Hughes E.G. Anti-NMDA-receptor encephalitis: Case series and analysis of the effects of antibodies. Lancet Neurol. 2008 7 12 1091 1098 10.1016/S1474‑4422(08)70224‑2 18851928
    [Google Scholar]
  44. van der Hoop R.G. Vecht C.J. van der Burg M.E.L. Prevention of cisplatin neurotoxicity with an ACTH(4-9) analogue in patients with ovarian cancer. N. Engl. J. Med. 1990 322 2 89 94 10.1056/NEJM199001113220204 2152972
    [Google Scholar]
  45. Verstappen C.C.P. Heimans J.J. Hoekman K. Postma T.J. Neurotoxic complications of chemotherapy in patients with cancer: Clinical signs and optimal management. Drugs 2003 63 15 1549 1563 10.2165/00003495‑200363150‑00003 12887262
    [Google Scholar]
  46. Kovalchuk A. Rodriguez-Juarez R. Ilnytskyy Y. Sex-specific effects of cytotoxic chemotherapy agents cyclophospha-mide and mitomycin C on gene expression, oxidative DNA damage, and epigenetic alterations in the prefrontal cortex and hippocampus – an aging connection. Aging (Albany NY) 2016 8 4 697 708 10.18632/aging.100920 27032448
    [Google Scholar]
  47. Mustafa S. Walker A. Bennett G. Wigmore P.M. 5‐Fluorouracil chemotherapy affects spatial working memory and newborn neurons in the adult rat hippocampus. Eur. J. Neurosci. 2008 28 2 323 330 10.1111/j.1460‑9568.2008.06325.x 18702703
    [Google Scholar]
  48. Chen D. Wu C.F. Shi B. Xu Y.M. Tamoxifen and toremifene cause impairment of learning and memory function in mice. Pharmacol. Biochem. Behav. 2002 71 1-2 269 276 10.1016/S0091‑3057(01)00656‑6 11812532
    [Google Scholar]
  49. Singh S. Kumar A. Protective effect of edaravone on cyclophosphamide induced oxidative stress and neurotoxicity in rats. Curr. Drug Saf. 2019 14 3 209 216 10.2174/1574886314666190506100717 31057112
    [Google Scholar]
  50. Kafami M. Hosseinzadeh M. Nazemi S. Gholami O. Peghhan A. Ameliorative effect of allopurinol on cisplatin-induced memory impairment in male Wistar rat. Iran JPharm 2022 18 1 35 45
    [Google Scholar]
  51. Jantas D. Lason W. Protective effect of memantine against Doxorubicin toxicity in primary neuronal cell cultures: influence a development stage. Neurotox. Res. 2009 15 1 24 37 10.1007/s12640‑009‑9002‑8 19384585
    [Google Scholar]
  52. Lomeli N. Di K. Pearre D.C. Chung T.F. Bota D.A. Mitochondrial-associated impairments of temozolomide on neural stem/progenitor cells and hippocampal neurons. Mitochondrion 2020 52 56 66 10.1016/j.mito.2020.02.001 32045717
    [Google Scholar]
  53. Sekeres M.J. Bradley-Garcia M. Martinez-Canabal A. Winocur G. Chemotherapy-induced cognitive impairment and hippocampal neurogenesis: A review of physiological mechanisms and interventions. Int. J. Mol. Sci. 2021 22 23 12697 10.3390/ijms222312697 34884513
    [Google Scholar]
  54. Ataizi Z.S. Ertilav K. Nazıroğlu M. Mitochondrial oxidative stress-induced brain and hippocampus apoptosis decrease through modulation of caspase activity, Ca2+ influx and inflammatory cytokine molecular pathways in the docetaxel-treated mice by melatonin and selenium treatments. Metab. Brain Dis. 2019 34 4 1077 1089 10.1007/s11011‑019‑00428‑x 31197678
    [Google Scholar]
  55. McDonald J.W. Goldberg M.P. Gwag B.J. Chi S.I. Choi D.W. Cyclosporine induces neuronal apoptosis and selective oligodendrocyte death in cortical cultures. Ann. Neurol. 1996 40 5 750 758 10.1002/ana.410400511 8957016
    [Google Scholar]
  56. Aslankoc R. Ozmen O. Yalcın A. Astaxanthin ameliorates damage to the cerebral cortex, hippocampus and cerebellar cortex caused by methotrexate. Biotech. Histochem. 2022 97 5 382 393 34850645
    [Google Scholar]
  57. Das A. Ranadive N. Kinra M. Nampoothiri M. Arora D. Mudgal J. An overview on chemotherapy-induced cognitive impairment and potential role of antidepressants. Curr. Neuropharmacol. 2020 18 9 838 851 10.2174/1570159X18666200221113842 32091339
    [Google Scholar]
  58. Ferris C.F. Nodine S. Pottala T. Alterations in brain neurocircuitry following treatment with the chemotherapeutic agent paclitaxel in rats. Neurobiol. Pain 2019 6 100034 10.1016/j.ynpai.2019.100034 31223138
    [Google Scholar]
  59. Zhang W. Matsukane R. Egashira N. Neuroprotective effects of ibudilast against tacrolimus induced neurotoxicity. Toxicol. Appl. Pharmacol. 2022 449 116112 10.1016/j.taap.2022.116112 35688184
    [Google Scholar]
  60. Lim K.Y. Kim S.I. Kim H. Toxic leukoencephalopathy with axonal spheroids caused by chemotherapeutic drugs other than methotrexate. BMC Neurol. 2022 22 1 288 10.1186/s12883‑022‑02818‑8 35922754
    [Google Scholar]
  61. Grisold W. Soffietti R. Oberndorfer S. Cavaletti G. Effects of Cancer Treatment on the Nervous System. Newcastle upon Tyne, UK Cambridge Scholars Publishing 2020
    [Google Scholar]
  62. Chouksey D. Singh A. Goyal N. Sodani A. Nitroimidazole-induced reversible neurotoxicity. Indian J Med Specialit 2020 11 4 220 10.4103/INJMS.INJMS_69_20
    [Google Scholar]
  63. Prabhash K. Khaddar S. Patil V.M. Noronha V. Joshi A. Menon N. Delirium and seizures in a patient with head-and-neck squamous cell carcinoma on docetaxel, cisplatin, and 5-fluorouracil. Cancer Res Stat Treat 2019 2 1 105 10.4103/CRST.CRST_35_19
    [Google Scholar]
  64. Lowe K.L. Mackall C.L. Norry E. Amado R. Jakobsen B.K. Binder G. Fludarabine and neurotoxicity in engineered T-cell therapy. Gene Ther. 2018 25 3 176 191 10.1038/s41434‑018‑0019‑6 29789639
    [Google Scholar]
  65. Putri Laksmidewi A.A.A. Mahendra I.N.B. Soejitno A. Vania A. Improving cognitive function with intermittent dose escalation of curcumin extract in chemotherapy-induced cognitive impairment patients: A randomized controlled trial. Adv Trad Medicine 2024 24 3 813 822 10.1007/s13596‑023‑00737‑8
    [Google Scholar]
  66. Shi D.D. Dong C.M. Ho L.C. Resveratrol, a natural polyphenol, prevents chemotherapy-induced cognitive impairment: Involvement of cytokine modulation and neuroprotection. Neurobiol. Dis. 2018 114 164 173 10.1016/j.nbd.2018.03.006 29534932
    [Google Scholar]
  67. Arafa M.H. Atteia H.H. Protective role of epigallocatechin gallate in a rat model of cisplatin-induced cerebral inflammation and oxidative damage: Impact of modulating NF-κB and Nrf2. Neurotox. Res. 2020 37 2 380 396 10.1007/s12640‑019‑00095‑x 31410684
    [Google Scholar]
  68. Shaker F.H. El-Derany M.O. Wahdan S.A. El-Demerdash E. El-Mesallamy H.O. Berberine ameliorates doxorubicin-induced cognitive impairment (chemobrain) in rats. Life Sci. 2021 269 119078 10.1016/j.lfs.2021.119078 33460662
    [Google Scholar]
  69. Taha M. Eldemerdash O.M. Elshaffei I.M. Yousef E.M. Soliman A.S. Senousy M.A. Apigenin attenuates hippocampal microglial activation and restores cognitive function in methotrexate-treated rats: Targeting the miR-15a/ROCK-1/ERK1/2 pathway. Mol. Neurobiol. 2023 60 7 3770 3787 10.1007/s12035‑023‑03299‑7 36943623
    [Google Scholar]
  70. Rizk H.A. Masoud M.A. Maher O.W. Prophylactic effects of ellagic acid and rosmarinic acid on doxorubicin‐induced neurotoxicity in rats. J. Biochem. Mol. Toxicol. 2017 31 12 e21977 10.1002/jbt.21977 28815802
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947386278250619072923
Loading
/content/journals/cctr/10.2174/0115733947386278250619072923
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test