Skip to content
2000
image of Advancing NK Cell Therapies: Expansion and Activation for Next-Generation Immunotherapy

Abstract

Natural Killer (NK) cells, a subset of innate lymphoid cells, have emerged as a promising avenue in cancer immunotherapy due to their ability to recognize and eliminate malignant and virus-infected cells without prior antigen sensitization. Unlike T cells, NK cells function independently of Major Histocompatibility Complex (MHC) restriction, making them effective against tumors that evade adaptive immune responses. However, several challenges, including limited persistence, poor tumor infiltration, and immune suppression, hinder their clinical efficacy, particularly in solid tumors. Recent advancements in NK cell expansion, activation, and genetic engineering have significantly enhanced their therapeutic potential. Strategies such as cytokine-mediated stimulation, artificial scaffolds, and CRISPR-based modifications have improved NK cell persistence and cytotoxicity. Additionally, Chimeric Antigen Receptor (CAR)-modified NK cells offer targeted tumor recognition while minimizing the risk of Graft--Host Disease (GVHD) and Cytokine Release Syndrome (CRS), making them a safer alternative to CAR-T therapy. Despite these advancements, immunosuppressive tumor microenvironments and high manufacturing costs remain key obstacles. Emerging approaches, including metabolic reprogramming, synthetic biology, and combinatorial therapies integrating checkpoint inhibitors and bispecific antibodies, hold promise for overcoming these limitations. Furthermore, the development of off-the-shelf, induced Pluripotent Stem Cell (iPSC)-derived NK therapies is expected to enhance scalability and accessibility. This review highlights the latest progress in NK cell-based immunotherapy, addressing both current challenges and future directions in optimizing NK cell expansion, activation, and genetic engineering for clinical applications.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947383194250701073137
2025-07-14
2025-09-08
Loading full text...

Full text loading...

References

  1. Letafati A. Ardekani O.S. Naderisemiromi M. Unraveling the dynamic mechanisms of natural killer cells in viral infections: Insights and implications. Virol. J. 2024 21 1 18 10.1186/s12985‑024‑02287‑0 38216935
    [Google Scholar]
  2. Wang D. Dou L. Sui L. Xue Y. Xu S. Natural killer cells in cancer immunotherapy. MedComm 2024 5 7 e626 10.1002/mco2.626 38882209
    [Google Scholar]
  3. Peng L. Sferruzza G. Yang L. Zhou L. Chen S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell. Mol. Immunol. 2024 21 10 1089 1108 10.1038/s41423‑024‑01207‑0 39134804
    [Google Scholar]
  4. Gang M. Wong P. Berrien-Elliott M.M. Fehniger T.A. Memory-like natural killer cells for cancer immunotherapy. Semin. Hematol. 2020 57 4 185 193 10.1053/j.seminhematol.2020.11.003 33256911
    [Google Scholar]
  5. Mace E.M. Human natural killer cells: Form, function, and development. J. Allergy Clin. Immunol. 2023 151 2 371 385 10.1016/j.jaci.2022.09.022 36195172
    [Google Scholar]
  6. Jiang H. Jiang J. Balancing act: The complex role of NK cells in immune regulation. Front. Immunol. 2023 14 1275028 10.3389/fimmu.2023.1275028 38022497
    [Google Scholar]
  7. Sahin U. Beksac M. Natural killer cell-mediated cellular therapy of hematological malignancies. Clin. Hematol. Int. 2019 1 3 134 141 10.2991/chi.d.190623.001 34595423
    [Google Scholar]
  8. Liu S. Galat V. Galat Y. Lee Y.K.A. Wainwright D. Wu J. NK cell-based cancer immunotherapy: From basic biology to clinical development. J. Hematol. Oncol. 2021 14 1 7 10.1186/s13045‑020‑01014‑w 33407739
    [Google Scholar]
  9. Portillo A.L. Monteiro J.K. Rojas E.A. Ritchie T.M. Gillgrass A. Ashkar A.A. Charting a killer course to the solid tumor: Strategies to recruit and activate NK cells in the tumor microenvironment. Front. Immunol. 2023 14 1286750 10.3389/fimmu.2023.1286750 38022679
    [Google Scholar]
  10. Melero I. Rouzaut A. Motz G.T. Coukos G. T-cell and NK-cell infiltration into solid tumors: A key limiting factor for efficacious cancer immunotherapy. Cancer Discov. 2014 4 5 522 526 10.1158/2159‑8290.CD‑13‑0985 24795012
    [Google Scholar]
  11. Tarannum M. Romee R. Shapiro R.M. Innovative strategies to improve the clinical application of NK cell-based immunotherapy. Front. Immunol. 2022 13 859177 10.3389/fimmu.2022.859177 35401529
    [Google Scholar]
  12. Domagala J. Lachota M. Klopotowska M. The tumor microenvironment—A metabolic obstacle to NK cells’ activity. Cancers 2020 12 12 3542 10.3390/cancers12123542 33260925
    [Google Scholar]
  13. Baginska J. Viry E. Paggetti J. The critical role of the tumor microenvironment in shaping natural killer cell-mediated anti-tumor immunity. Front. Immunol. 2013 4 490 10.3389/fimmu.2013.00490 24400010
    [Google Scholar]
  14. Jia H. Yang H. Xiong H. Luo K.Q. NK cell exhaustion in the tumor microenvironment. Front. Immunol. 2023 14 1303605 10.3389/fimmu.2023.1303605 38022646
    [Google Scholar]
  15. Pinto S. Pahl J. Schottelius A. Carter P.J. Koch J. Reimagining antibody-dependent cellular cytotoxicity in cancer: The potential of natural killer cell engagers. Trends Immunol. 2022 43 11 932 946 10.1016/j.it.2022.09.007 36306739
    [Google Scholar]
  16. Hosseinalizadeh H. Wang L.S. Mirzaei H. Amoozgar Z. Tian L. Yu J. Emerging combined CAR-NK cell therapies in cancer treatment: Finding a dancing partner. Mol. Ther. 2025 33 6 2406 2425 10.1016/j.ymthe.2024.12.057 39754357
    [Google Scholar]
  17. Li J. Hu H. Lian K. CAR-NK cells in combination therapy against cancer: A potential paradigm. Heliyon 2024 10 5 e27196 10.1016/j.heliyon.2024.e27196 38486782
    [Google Scholar]
  18. Dehghan F. Metanat Y. Askarizadeh M. Ahmadi E. Moradi V. Novel gene manipulation approaches to unlock the existing bottlenecks of CAR-NK cell therapy. Front. Cell Dev. Biol. 2025 12 1511931 10.3389/fcell.2024.1511931 40007761
    [Google Scholar]
  19. Song P. Zhang Q. Xu Z. Shi Y. Jing R. Luo D. CRISPR/Cas-based CAR-T cells: Production and application. Biomark. Res. 2024 12 1 54 10.1186/s40364‑024‑00602‑z 38816881
    [Google Scholar]
  20. Xu Y. Chen C. Guo Y. Hu S. Sun Z. Effect of CRISPR/Cas9-edited PD-1/PD-L1 on tumor immunity and immunotherapy. Front. Immunol. 2022 13 848327 10.3389/fimmu.2022.848327 35300341
    [Google Scholar]
  21. Chehelgerdi M. Chehelgerdi M. Khorramian-Ghahfarokhi M. Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol. Cancer 2024 23 1 9 10.1186/s12943‑023‑01925‑5 38195537
    [Google Scholar]
  22. Xie G. Dong H. Liang Y. Ham J.D. Rizwan R. Chen J. CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine 2020 59 102975 10.1016/j.ebiom.2020.102975 32853984
    [Google Scholar]
  23. Liu S Galat V Lee YKA Wainwright D Wu J NK cellbased cancer immunotherapy: From basic biology to clinical development. J. Hematol. Oncol. 2020 1 1 37 10.3389/fimmu.2024.1384039 38726000
    [Google Scholar]
  24. Jiang D. Zhang J. Mao Z. Shi J. Ma P. Driving natural killer cell-based cancer immunotherapy for cancer treatment: An arduous journey to promising ground. Biomed. Pharmacother. 2023 165 115004 10.1016/j.biopha.2023.115004 37352703
    [Google Scholar]
  25. Kundu S. Gurney M. O’Dwyer M. Generating natural killer cells for adoptive transfer: Expanding horizons. Cytotherapy 2021 23 7 559 566 10.1016/j.jcyt.2020.12.002 33431318
    [Google Scholar]
  26. Tsiklin I.L. Shabunin A.V. Kolsanov A.V. Volova L.T. In vivo bone tissue engineering strategies: Advances and prospects. Polymers 2022 14 15 3222 10.3390/polym14153222 35956735
    [Google Scholar]
  27. Augustine R. Dan P. Hasan A. Stem cell-based approaches in cardiac tissue engineering: controlling the microenvironment for autologous cells. Biomed. Pharmacother. 2021 138 111425 10.1016/j.biopha.2021.111425 33756154
    [Google Scholar]
  28. Ulitzka M. Harwardt J. Lipinski B. Tran H. Hock B. Kolmar H. Potent apoptosis induction by a novel trispecific B7-H3xCD16xTIGIT 2+1 common light chain natural killer cell engager. Molecules 2024 29 5 1140 10.3390/molecules29051140 38474651
    [Google Scholar]
  29. D’Avanzo C. Blaeschke F. Lysandrou M. Ingelfinger F. Zeiser R. Advances in cell therapy: Progress and challenges in hematological and solid tumors. Trends Pharmacol. Sci. 2024 45 12 1119 1134 10.1016/j.tips.2024.10.016 39603960
    [Google Scholar]
  30. Zhang M. Lam K.P. Xu S. Natural killer cell engagers (NKCEs): A new frontier in cancer immunotherapy. Front. Immunol. 2023 14 1207276 10.3389/fimmu.2023.1207276 37638058
    [Google Scholar]
  31. Lamers-Kok N. Panella D. Georgoudaki A.M. Natural killer cells in clinical development as non-engineered, engineered, and combination therapies. J. Hematol. Oncol. 2022 15 1 164 10.1186/s13045‑022‑01382‑5 36348457
    [Google Scholar]
  32. Heipertz E.L. Zynda E.R. Stav-Noraas T.E. Current perspectives on “Off-The-Shelf” allogeneic NK and CAR-NK cell therapies. Front. Immunol. 2021 12 732135 10.3389/fimmu.2021.732135 34925314
    [Google Scholar]
  33. Shrestha N. Dee M.J. Chaturvedi P. A “Prime and Expand” strategy using the multifunctional fusion proteins to generate memory-like NK cells for cell therapy. Cancer Immunol. Immunother. 2024 73 9 179 10.1007/s00262‑024‑03765‑8 38960949
    [Google Scholar]
  34. Boieri M. Ulvmoen A. Sudworth A. IL-12, IL-15, and IL-18 pre-activated NK cells target resistant T cell acute lymphoblastic leukemia and delay leukemia development in vivo. OncoImmunology 2017 6 3 e1274478 10.1080/2162402X.2016.1274478 28405496
    [Google Scholar]
  35. Widowati W.K. Jasaputra D.B. Sumitro S. Effect of interleukins (IL-2, IL-15, IL-18) on receptors activation and cytotoxic activity of natural killer cells in breast cancer cell. Afr. Health Sci. 2020 20 2 822 832 10.4314/ahs.v20i2.36 33163049
    [Google Scholar]
  36. Zhi L. Wang X. Gao Q. Intrinsic and extrinsic factors determining natural killer cell fate: Phenotype and function. Biomed. Pharmacother. 2023 165 115136 10.1016/j.biopha.2023.115136 37453199
    [Google Scholar]
  37. Gurney M. Kundu S. Pandey S. O’Dwyer M. Feeder cells at the interface of natural killer cell activation, expansion and gene editing. Front. Immunol. 2022 13 802906 10.3389/fimmu.2022.802906 35222382
    [Google Scholar]
  38. Lamb M.G. Rangarajan H.G. Tullius B.P. Lee D.A. Natural killer cell therapy for hematologic malignancies: Successes, challenges, and the future. Stem Cell Res. Ther. 2021 12 1 211 10.1186/s13287‑021‑02277‑x 33766099
    [Google Scholar]
  39. Velichinskii R.A. Streltsova M.A. Kust S.A. Sapozhnikov A.M. Kovalenko E.I. The biological role and therapeutic potential of NK cells in hematological and solid tumors. Int. J. Mol. Sci. 2021 22 21 11385 10.3390/ijms222111385 34768814
    [Google Scholar]
  40. Shin E. Bak S.H. Park T. Understanding NK cell biology for harnessing NK cell therapies: Targeting cancer and beyond. Front. Immunol. 2023 14 1192907 10.3389/fimmu.2023.1192907 37539051
    [Google Scholar]
  41. Fang F. Wang W. Chen M. Tian Z. Xiao W. Technical advances in NK cell-based cellular immunotherapy. Cancer Biol. Med. 2019 16 4 647 654 10.20892/j.issn.2095‑3941.2019.0187 31908885
    [Google Scholar]
  42. Clubb J.D. Gao T.A. Chen Y.Y. Synthetic biology in the engineering of CAR-T and CAR-NK cell therapies: Facts and hopes. Clin. Cancer Res. 2023 29 8 1390 1402 10.1158/1078‑0432.CCR‑22‑1491 36454122
    [Google Scholar]
  43. Tumino N. Nava Lauson C.B. Tiberti S. The tumor microenvironment drives NK cell metabolic dysfunction leading to impaired antitumor activity. Int. J. Cancer 2023 152 8 1698 1706 10.1002/ijc.34389 36468179
    [Google Scholar]
  44. Wang W. Liu Y. He Z. Breakthrough of solid tumor treatment: CAR-NK immunotherapy. Cell Death Discov. 2024 10 1 40 10.1038/s41420‑024‑01815‑9 38245520
    [Google Scholar]
  45. Fan Z. Han D. Fan X. Zhao L. Ovarian cancer treatment and natural killer cell-based immunotherapy. Front. Immunol. 2023 14 1308143 10.3389/fimmu.2023.1308143 38187402
    [Google Scholar]
  46. Li J. Chen P. Ma W. The next frontier in immunotherapy: Potential and challenges of CAR-macrophages. Exp. Hematol. Oncol. 2024 13 1 76 10.1186/s40164‑024‑00549‑9 39103972
    [Google Scholar]
  47. Giorgioni L. Ambrosone A. Cometa M.F. Salvati A.L. Nisticò R. Magrelli A. Revolutionizing CAR T-cell therapies: Innovations in genetic engineering and manufacturing to enhance efficacy and accessibility. Int. J. Mol. Sci. 2024 25 19 10365 10.3390/ijms251910365 39408696
    [Google Scholar]
  48. Hibler W. Merlino G. Yu Y. CAR NK cell therapy for the treatment of metastatic melanoma: Potential & prospects. Cells 2023 12 23 2750 10.3390/cells12232750 38067178
    [Google Scholar]
  49. Cutmore L.C. Marshall J.F. Current perspectives on the use of off the shelf CAR-T/NK cells for the treatment of cancer. Cancers 2021 13 8 1926 10.3390/cancers13081926 33923528
    [Google Scholar]
  50. Gajra A. Zalenski A. Sannareddy A. Jeune-Smith Y. Kapinos K. Kansagra A. Barriers to chimeric antigen receptor T-cell (CAR-T) therapies in clinical practice. Pharmaceut. Med. 2022 36 3 163 171 10.1007/s40290‑022‑00428‑w 35672571
    [Google Scholar]
  51. McErlean E.M. McCarthy H.O. Non-viral approaches in CAR-NK cell engineering: connecting natural killer cell biology and gene delivery. J. Nanobiotechnology 2024 22 1 552 10.1186/s12951‑024‑02746‑4 39256765
    [Google Scholar]
  52. Albinger N. Hartmann J. Ullrich E. Current status and perspective of CAR-T and CAR-NK cell therapy trials in Germany. Gene Ther. 2021 28 9 513 527 10.1038/s41434‑021‑00246‑w 33753909
    [Google Scholar]
  53. Basar R. Daher M. Rezvani K. Next-generation cell therapies: The emerging role of CAR-NK cells. Hematology 2020 2020 1 570 578 10.1182/hematology.2020002547 33275752
    [Google Scholar]
  54. Zhang L. Meng Y. Feng X. Han Z. CAR-NK cells for cancer immunotherapy: From bench to bedside. Biomark. Res. 2022 10 1 12 10.1186/s40364‑022‑00364‑6 35303962
    [Google Scholar]
  55. Pang Z. Wang Z. Li F. Feng C. Mu X. Current progress of CAR-NK therapy in cancer treatment. Cancers 2022 14 17 4318 10.3390/cancers14174318 36077853
    [Google Scholar]
  56. S S KD JogaR SrivastavaS et al Regulatory landscape and challenges in CAR-T cell therapy development in the US, EU, Japan, and India. Eur. J. Pharm. Biopharm. 2024 201 114361 10.1016/j.ejpb.2024.114361 38871092
    [Google Scholar]
  57. Meneghel J. Kilbride P. Morris G.J. Cryopreservation as a key element in the successful delivery of cell-based therapies—A review. Front. Med. 2020 7 592242 10.3389/fmed.2020.592242 33324662
    [Google Scholar]
  58. Frankel N.W. Deng H. Yucel G. Precision off-the-shelf natural killer cell therapies for oncology with logic-gated gene circuits. Cell Rep. 2024 43 5 114145 10.1016/j.celrep.2024.114145 38669141
    [Google Scholar]
  59. Gong Y. Klein Wolterink R.G.J. Wang J. Bos G.M.J. Germeraad W.T.V. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J. Hematol. Oncol. 2021 14 1 73 10.1186/s13045‑021‑01083‑5 33933160
    [Google Scholar]
  60. Hong M. Clubb J.D. Chen Y.Y. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell 2020 38 4 473 488 10.1016/j.ccell.2020.07.005 32735779
    [Google Scholar]
  61. Lu SJ Feng Q CAR-NK cells from engineered pluripotent stem cells: Off-the-shelf therapeutics for all patients. Stem Cells Transl Med 2021; 10 (S2) 10 7 (Suppl. 2) 10.1002/sctm.21‑0135 34724715
    [Google Scholar]
  62. Moradi V. Omidkhoda A. Ahmadbeigi N. The paths and challenges of “off-the-shelf” CAR-T cell therapy: An overview of clinical trials. Biomed. Pharmacother. 2023 169 115888 10.1016/j.biopha.2023.115888 37979380
    [Google Scholar]
  63. Qin H. You C. Yan F. Overcoming the challenges in translational development of natural killer cell therapeutics: An opinion paper. Front. Oncol. 2022 12 1062765 10.3389/fonc.2022.1062765 36531041
    [Google Scholar]
  64. Choudhery M.S. Arif T. Mahmood R. Harris D.T. CAR-T-cell-based cancer immunotherapies: Potentials, limitations, and future prospects. J. Clin. Med. 2024 13 11 3202 10.3390/jcm13113202 38892913
    [Google Scholar]
  65. Blazar B.R. MacDonald K.P.A. Hill G.R. Immune regulatory cell infusion for graft-versus-host disease prevention and therapy. Blood 2018 131 24 2651 2660 10.1182/blood‑2017‑11‑785865 29728401
    [Google Scholar]
  66. Zhu X. Xue J. Jiang H. Xue D. CAR-NK cells for gastrointestinal cancer immunotherapy: From bench to bedside. Mol. Cancer 2024 23 1 237 10.1186/s12943‑024‑02151‑3 39443938
    [Google Scholar]
  67. Laskowski T.J. Biederstädt A. Rezvani K. Natural killer cells in antitumour adoptive cell immunotherapy. Nat. Rev. Cancer 2022 22 10 557 575 10.1038/s41568‑022‑00491‑0 35879429
    [Google Scholar]
  68. Furqan F. Shah N.N. Bispecific CAR T-cells for B-cell Malignancies. Expert Opin. Biol. Ther. 2022 22 8 1005 1015 10.1080/14712598.2022.2086043 35653589
    [Google Scholar]
  69. Park J.H. Geyer M.B. Brentjens R.J. CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date. Blood 2016 127 26 3312 3320 10.1182/blood‑2016‑02‑629063 27207800
    [Google Scholar]
  70. Zhong Y. Liu J. Emerging roles of CAR-NK cell therapies in tumor immunotherapy: Current status and future directions. Cell Death Discov. 2024 10 1 318 10.1038/s41420‑024‑02077‑1 38987565
    [Google Scholar]
  71. Elahi R. Heidary A.H. Hadiloo K. Esmaeilzadeh A. Chimeric antigen receptor-engineered natural killer (CAR NK) cells in cancer treatment; Recent advances and future prospects. Stem Cell Rev. Rep. 2021 17 6 2081 2106 10.1007/s12015‑021‑10246‑3 34472037
    [Google Scholar]
  72. Lu P. Ruan D. Huang M. Harnessing the potential of hydrogels for advanced therapeutic applications: Current achievements and future directions. Signal Transduct. Target. Ther. 2024 9 1 166 10.1038/s41392‑024‑01852‑x 38945949
    [Google Scholar]
  73. Chu J. Gao F. Yan M. Natural killer cells: A promising immunotherapy for cancer. J. Transl. Med. 2022 20 1 240 10.1186/s12967‑022‑03437‑0 35606854
    [Google Scholar]
  74. Lee S. Kim T.D. Breakthroughs in cancer immunotherapy: An overview of T cell, NK cell, Mφ, and DC-based treatments. Int. J. Mol. Sci. 2023 24 24 17634 10.3390/ijms242417634 38139461
    [Google Scholar]
  75. Perera Molligoda Arachchige A.S. NK cell-based therapies for HIV infection: Investigating current advances and future possibilities. J. Leukoc. Biol. 2022 111 4 921 931 10.1002/JLB.5RU0821‑412RR 34668588
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947383194250701073137
Loading
/content/journals/cctr/10.2174/0115733947383194250701073137
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test