Skip to content
2000
image of Recent Advancements in Revolutionizing Cancer Therapy with Liposomal Drug Delivery

Abstract

Introduction

The lipid-bilayer liposomes have emerged as promising candidates for the delivery of drugs in cancer treatment due to their capability to protect medications from gastro-intestinal degradation, high drug encapsulation efficiency, and the potential for chemical modification through conjugation with various polymers and ligands. These features enhance their physiological properties and improve the therapeutic efficacy of anticancer drugs by enabling more precise tumor targeting. Additionally, Liposomes can potentially enhance the efficacy, durability, and localization of these treatments within the body, offering significant benefits for nanomedicine applications.

Objective

The current review aims to summarize the structural properties of liposomes, the mechanism of action by which liposomes inhibit cancerous cells, and the evolution of liposomal nanomedicine to treat different types of cancers over the last 5 years with patented and marketed formulations.

Methods

A thorough literature review is being carried out with an emphasis on breakthroughs in the production of drug-loaded liposomes between the years 2020-2024, which include tumor cell targeting techniques, liposome surface modification, and multi-drug delivery to enhance therapeutic efficacy.

Results

Recent advancements in liposome technology boosted medication release, tumor accumulation, and tumor targeting without endangering healthy tissues. Poor drug release, restricted penetration into tumor cells, and varying clinical results are still issues.

Conclusion

Liposomes' biocompatibility, ease of synthesis, and capacity to encapsulate both hydrophilic and hydrophobic medications make them versatile choices for drug delivery. Future studies should enhance liposome formulations for large-scale production, explore combination therapies, and tackle regulatory challenges.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947379210250530103826
2025-06-10
2025-09-08
Loading full text...

Full text loading...

References

  1. What Is Cancer? 2025 Available from: https://www.cancer.gov/about-cancer/understanding/what-is-cancer
  2. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  3. Kaur R. Bhardwaj A. Gupta S. Cancer treatment therapies: Traditional to modern approaches to combat cancers. Mol. Biol. Rep. 2023 50 11 9663 9676 10.1007/s11033‑023‑08809‑3 37828275
    [Google Scholar]
  4. Begines B. Ortiz T. Pérez-Aranda M. Martínez G. Merinero M. Argüelles-Arias F. Alcudia A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials 2020 10 7 1403 10.3390/nano10071403 32707641
    [Google Scholar]
  5. Wang S. Chen Y. Guo J. Huang Q. Liposomes for tumor targeted therapy: A review. Int. J. Mol. Sci. 2023 24 3 2643 10.3390/ijms24032643 36768966
    [Google Scholar]
  6. Sánchez-López E. Guerra M. Dias-Ferreira J. Lopez-Machado A. Ettcheto M. Cano A. Espina M. Camins A. Garcia M.L. Souto E.B. Current applications of nanoemulsions in cancer therapeutics. Nanomaterials 2019 9 6 821 10.3390/nano9060821 31159219
    [Google Scholar]
  7. Akanda M. Hossain S. Douroumis D. Solid lipid nanoparticles: An effective lipid-based technology for cancer treatment. J. Drug Deliv. Sci. Tech 2023 86 104709 104709 10.1016/j.jddst.2023.104709
    [Google Scholar]
  8. Deamer D.W. From “banghasomes” to liposomes: A memoir of Alec Bangham, 1921-2010. FASEB J. 2010 24 5 1308 1310 10.1096/fj.10‑0503 20430797
    [Google Scholar]
  9. Nsairat H. Khater D. Sayed U. Odeh F. Al Bawab A. Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022 8 5 e09394 10.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  10. Fulton M.D. Najahi-Missaoui W. Liposomes in cancer therapy: How did we start and where are we now. Int. J. Mol. Sci. 2023 24 7 6615 10.3390/ijms24076615 37047585
    [Google Scholar]
  11. Sapra P. Tyagi P. Allen T. Ligand-targeted liposomes for cancer treatment. Curr. Drug Deliv. 2005 2 4 369 381 10.2174/156720105774370159 16305440
    [Google Scholar]
  12. Singh A. Liposomes: Structure, classification, and applications. Available from: https://conductscience.com/liposomes-structure-classification-and-applications/
  13. Fanciullino R. Ciccolini J. Liposome-encapsulated anticancer drugs: Still waiting for the magic bullet? Curr. Med. Chem. 2009 16 33 4361 4373 10.2174/092986709789712916 19835568
    [Google Scholar]
  14. Kannavou M. Liposomes for drug delivery by localized routes of administration. Liposomes in Drug Delivery 2024 Elsevier 329 362 10.1016/B978‑0‑443‑15491‑1.00025‑0
    [Google Scholar]
  15. Malam Y. Loizidou M. Seifalian A.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci. 2009 30 11 592 599 10.1016/j.tips.2009.08.004 19837467
    [Google Scholar]
  16. Eichman P. From the lipid bilayer to the fluid mosaic: A brief history of membrane models. Resource Center Sociol Hist Philos Sci Teach Teachers Netw News 1999 9 2 1
    [Google Scholar]
  17. History of the cell: Discovering the cell. Available from: https://education.nationalgeographic.org/resource/history-cell-discovering-cell/
  18. Membranes: An introduction. 2007 Available from: https://application.wiley-vch.de/books/sample/3527404716_c01.pdf
  19. Oslakovic C. Krisinger M.J. Andersson A. Jauhiainen M. Anionic phospholipids lose their procoagulant properties when incorporated into high density lipoproteins. . J Biol Chem. 2009 284 9 5896 5904 10.1074/jbc.M807286200 19129179
    [Google Scholar]
  20. Nicolson G.L. Ferreira de Mattos G. The Fluid–Mosaic model of cell membranes: A brief introduction, historical features, some general principles, and its adaptation to current information. Biochim. Biophys. Acta Biomembr. 2023 1865 4 184135 10.1016/j.bbamem.2023.184135 36746313
    [Google Scholar]
  21. Nicolson G.L. The fluid—mosaic model of membrane structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40years. Biochim. Biophys. Acta Biomembr. 2014 1838 6 1451 1466 10.1016/j.bbamem.2013.10.019 24189436
    [Google Scholar]
  22. Chen J. Hu S. Sun M. Shi J. Zhang H. Yu H. Yang Z. Recent advances and clinical translation of liposomal delivery systems in cancer therapy. Eur. J. Pharm. Sci. 2024 193 106688 106688 10.1016/j.ejps.2023.106688 38171420
    [Google Scholar]
  23. Etheridge M.L. Campbell S.A. Erdman A.G. Haynes C.L. Wolf S.M. McCullough J. The big picture on nanomedicine: The state of investigational and approved nanomedicine products. Nanomedicine 2013 9 1 1 14 10.1016/j.nano.2012.05.013 22684017
    [Google Scholar]
  24. Karki P. Phospholipid bilayer- structure, types, properties, functions. 2023 Available from: https://microbenotes.com/phospholipid-bilayer-structure-types-properties-functions/
  25. Li J. Wang X. Zhang T. Wang C. Huang Z. Luo X. Deng Y. A review on phospholipids and their main applications in drug delivery systems. Asian. J. Pharm. Sci. 2015 10 2 81 98 10.1016/j.ajps.2014.09.004
    [Google Scholar]
  26. Nakhaei P. Margiana R. Bokov D.O. Abdelbasset W.K. Jadidi Kouhbanani M.A. Varma R.S. Marofi F. Jarahian M. Beheshtkhoo N. RETRACTED: Liposomes: Structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front. Bioeng. Biotechnol. 2021 9 705886 10.3389/fbioe.2021.705886 34568298
    [Google Scholar]
  27. Cipolla D. Wu H. Gonda I. Eastman S. Redelmeier T. Chan H.K. Modifying the release properties of liposomes toward personalized medicine. J. Pharm. Sci. 2014 103 6 1851 1862 10.1002/jps.23969 24715635
    [Google Scholar]
  28. Grazia Calvagno M. Celia C. Paolino D. Cosco D. Iannone M. Castelli F. Doldo P. Fresta M. Effects of lipid composition and preparation conditions on physical-chemical properties, technological parameters and in vitro biological activity of gemcitabine-loaded liposomes. Curr. Drug Deliv. 2007 4 1 89 101 10.2174/156720107779314749 17269921
    [Google Scholar]
  29. Tomnikova A. Orgonikova A. Liposomes: Preparation and characterization with a special focus on the application of capillary electrophoresis. Monatsh. Chem. 2022 153 687 695 10.1007/s00706‑022‑02966‑0
    [Google Scholar]
  30. Guimarães D. Cavaco-Paulo A. Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021 601 120571 10.1016/j.ijpharm.2021.120571 33812967
    [Google Scholar]
  31. Kumar Manish Singh Arpita Pandey Swarnima Liposomes: Type, preapration and evaluation. Int. J. Indig. Herbs Drugs. 2021 6 1 17 22 10.46956/ijihd.vi.118
    [Google Scholar]
  32. Wang T. Zhou D. Advances in phospholipid quantification methods. Curr. Opin. Food Sci. 2017 16 15 20 10.1016/j.cofs.2017.06.007
    [Google Scholar]
  33. Jain N.K. Controlled and Novel Drug Delivery CBS Publishers and Distributor Pvt. Ltd. 2010
    [Google Scholar]
  34. Solomon D. Gupta N. Mulla N.S. Shukla S. Guerrero Y.A. Gupta V. Role of in vitro release methods in liposomal formulation development: Challenges and regulatory perspective. AAPS J. 2017 19 6 1669 1681 10.1208/s12248‑017‑0142‑0 28924630
    [Google Scholar]
  35. Deshpande P.P. Biswas S. Torchilin V.P. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond.) 2013 8 9 1509 1528 10.2217/nnm.13.118 23914966
    [Google Scholar]
  36. Maeda H. Sawa T. Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J. Control. Release 2001 74 1-3 47 61 10.1016/S0168‑3659(01)00309‑1 11489482
    [Google Scholar]
  37. Zamboni W.C. Concept and clinical evaluation of carrier-mediated anticancer agents. Oncologist 2008 13 3 248 260 10.1634/theoncologist.2007‑0180 18378535
    [Google Scholar]
  38. Allen T.M. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer 2002 2 10 750 763 10.1038/nrc903 12360278
    [Google Scholar]
  39. Liechty W.B. Peppas N.A. Expert opinion: Responsive polymer nanoparticles in cancer therapy. Eur. J. Pharm. Biopharm. 2012 80 2 241 246 10.1016/j.ejpb.2011.08.004 21888972
    [Google Scholar]
  40. Low P.S. Henne W.A. Doorneweerd D.D. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc. Chem. Res. 2008 41 1 120 129 10.1021/ar7000815 17655275
    [Google Scholar]
  41. Ying X. Wen H. Lu W.L. Du J. Guo J. Tian W. Men Y. Zhang Y. Li R.J. Yang T.Y. Shang D.W. Lou J.N. Zhang L.R. Zhang Q. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J. Control. Release 2010 141 2 183 192 10.1016/j.jconrel.2009.09.020 19799948
    [Google Scholar]
  42. Byrne J.D. Betancourt T. Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 2008 60 15 1615 1626 10.1016/j.addr.2008.08.005 18840489
    [Google Scholar]
  43. Bozzuto G. Molinari A. Liposomes as nanomedical devices. Int. J. Nanomedicine 2015 10 975 999 10.2147/IJN.S68861 25678787
    [Google Scholar]
  44. Torchilin V. Antibody-modified liposomes for cancer chemotherapy. Expert Opin. Drug Deliv. 2008 5 9 1003 1025 10.1517/17425247.5.9.1003 18754750
    [Google Scholar]
  45. Ait-Oudhia S. Mager D. Straubinger R. Application of pharmacokinetic and pharmacodynamic analysis to the development of liposomal formulations for oncology. Pharmaceutics 2014 6 1 137 174 10.3390/pharmaceutics6010137 24647104
    [Google Scholar]
  46. Mamot C. Drummond D.C. Hong K. Kirpotin D.B. Park J.W. Liposome-based approaches to overcome anticancer drug resistance. Drug Resist. Updat. 2003 6 5 271 279 10.1016/S1368‑7646(03)00082‑7 14643297
    [Google Scholar]
  47. Kumari L. Choudhari Y. Patel P. Gupta G.D. Singh D. Rosenholm J.M. Bansal K.K. Kurmi B.D. Advancement in solubilization approaches: A step towards bioavailability enhancement of poorly soluble drugs. Life 2023 13 5 1099 10.3390/life13051099 37240744
    [Google Scholar]
  48. Mehrotra S. Pathak K. Controlled release drug delivery systems: Principles and design. Novel Formulations and Future Trends Academic Pres 2024 3 30 10.1016/B978‑0‑323‑91816‑9.00014‑X
    [Google Scholar]
  49. Lamichhane N. Udayakumar T. D’Souza W. Simone C. II Raghavan S. Polf J. Mahmood J. Liposomes: Clinical applications and potential for image-guided drug delivery. Molecules 2018 23 2 288 10.3390/molecules23020288 29385755
    [Google Scholar]
  50. Lee W. Im H.J. Theranostics based on liposome: Looking back and forward. Nucl. Med. Mol. Imaging 2019 53 4 242 246 10.1007/s13139‑019‑00603‑z 31456856
    [Google Scholar]
  51. Singh A. Maheshwari S. Kumar R. Kumar R. Yadav J.P. Telmisartan-loaded liposomes: An innovative weapon against breast cancer. Intelligent Pharmacy 2024 2 565 570 10.1016/j.ipha.2024.01.001
    [Google Scholar]
  52. Huang R. Chen H. Pi D. He X. Yu C. Yu C. Preparation of etoposide liposomes for enhancing antitumor efficacy on small cell lung cancer and reducing hematotoxicity of drugs. Eur. J. Pharm. Biopharm. 2024 198 114239 114239 10.1016/j.ejpb.2024.114239 38452907
    [Google Scholar]
  53. Wang X. Lu H. Luo F. Wang D. Wang A. Wang X. Feng W. Wang X. Su J. Liu M. Xia G. Lipid-like gemcitabine diester-loaded liposomes for improved chemotherapy of pancreatic cancer. J. Control. Release 2024 365 112 131 10.1016/j.jconrel.2023.11.028 37981050
    [Google Scholar]
  54. Tian S. Nie Q. Chen H. Liang L. Hu H. Tang S. Yang J. Liu Y. Yin H. Synthesis, characterization and irradiation enhances anticancer activity of liposome-loaded iridium(III) complexes. J. Inorg. Biochem. 2024 256 112549 10.1016/j.jinorgbio.2024.112549 38579631
    [Google Scholar]
  55. Liu Z. Liu Y. Wu Z. Liu B. Zhao L. Yin T. Zhang Y. He H. Gou J. Tang X. Gao S. Research on the loading and release kinetics of the vincristine sulfate liposomes and its anti-breast cancer activity. Int. J. Pharm. X 2024 7 100258 100258 10.1016/j.ijpx.2024.100258 38912324
    [Google Scholar]
  56. Soudan H.M. Soliman M.E. Hammad S.F. Ghazy M.A. Biocompatible, controlled-release remdesivir-loaded liposomes tackling the telomerase activity of non-small cell lung cancer cells: Preparation, characterization, in vitro biological evaluation, and molecular docking analysis. Curr. Research. Biotechnol. 2024 100256 100256 10.1016/j.crbiot.2024.100256
    [Google Scholar]
  57. Yu H. Liu S. Yuan Z. Huang H. Yan P. Zhu W. Targeted co-delivery of rapamycin and oxaliplatin by liposomes suppresses tumor growth and metastasis of colorectal cancer. Biomed. Pharmacother. 2024 178 117192 117192 10.1016/j.biopha.2024.117192 39098178
    [Google Scholar]
  58. Shnaikat S.G. Shakya A.K. Bardaweel S.K. Formulation, development and evaluation of hyaluronic acid-conjugated liposomal nanoparticles loaded with regorafenib and curcumin and their in vitro evaluation on colorectal cancer cell lines. Saudi Pharm. J. 2024 32 7 102099 102099 10.1016/j.jsps.2024.102099 38817822
    [Google Scholar]
  59. de Jesús Valle M.J. Rondon Mujica A.M. Zarzuelo Castañeda A. Coutinho P. de Abreu Duarte A.C. Sánchez Navarro A. Resveratrol liposomes in buccal formulations, an approach to overcome drawbacks limiting the application of the phytoactive molecule for chemoprevention and treatment of oral cancer. J. Drug Deliv. Sci. Technol. 2024 98 105910 10.1016/j.jddst.2024.105910
    [Google Scholar]
  60. Kumar G. Mullick P. Andugulapati S.B. Eedara A.C. Kumar N. Mutalik S. Nandakumar K. Chamallamudi M.R. Trastuzumab-conjugated liposomes for co-delivery of paclitaxel and anti-abcb1 siRNA in HER2-positive breast cancer: In vitro and in vivo evaluations. J. Drug Deliv. Sci. Technol. 2024 95 105614 10.1016/j.jddst.2024.105614
    [Google Scholar]
  61. Alrashidi A.A. Alavi S.Z. Koohi M. Synergistic strategies for enhanced liver cancer therapy with sorafenib/resveratrol pegylated liposomes in vitro and in vivo. J. Drug Deliv. Sci. Technol. 2024 96 106301 106301 10.1016/j.jddst.2024.106301
    [Google Scholar]
  62. Liu M. Li S. Wang J. Chen M. Zhang Z. Liu Y. Kong L. Li X. Tang L. Methotrexate-modified docetaxel liposome targeting with ginsenoside Rh2 as a membrane stabilizer for the treatment of ovarian cancer. J. Drug Deliv. Sci. Technol. 2024 98 105917 105917 10.1016/j.jddst.2024.105917
    [Google Scholar]
  63. Amenta A. Comi S.C. Kravicz M. Sesana S. Antoniou A. Passarella D. A novel, glutathione-activated prodrug of pimasertib loaded in liposomes for targeted cancer therapy. RSC Med. Chem. 2025 16 168 178 10.1039/D4MD00517A
    [Google Scholar]
  64. Elbeltagi S. Alfassam H.E. Saeedi A.M. Eldin Z.E. Ibrahim E.M.M. Abdel shakor A. Abd El-Aal M. A novel quercetin-loaded NiFe2O4@Liposomes hybrid biocompatible as a potential chemotherapy/hyperthermia agent and cytotoxic effects on breast cancer cells. J. Drug Deliv. Sci. Technol. 2024 91 105203 105203 10.1016/j.jddst.2023.105203
    [Google Scholar]
  65. Zhou X. Zheng Z. Yang J. Chen Y. Li M. Silli E.K. Tang J. Ma Y. Ma G. Zong Y. Yu L. Guo R. Hou G. Tan C. Wang Y. Development of cationic pH-sensitive liposomes with Gemcitabine loading and Fucoidan-coating against pancreatic cancer cells. J. Drug Deliv. Sci. Technol. 2024 100 106035 106035 10.1016/j.jddst.2024.106035
    [Google Scholar]
  66. Tang J. Yang Z. Zhang Y. Huang R. Yu C. Yu C. Preparation of PEGylated nedaplatin liposomes with sustained release behavior for enhancing the antitumor efficacy of non-small cell lung cancer. Int. J. Pharm. 2023 635 122708 10.1016/j.ijpharm.2023.122708 36764415
    [Google Scholar]
  67. Bahrami Parsa M. Tafvizi F. Chaleshi V. Ebadi M. Preparation, characterization, and Co-delivery of cisplatin and doxorubicin-loaded liposomes to enhance anticancer Activities. Heliyon 2023 9 10 e20657 e20657 10.1016/j.heliyon.2023.e20657 37818003
    [Google Scholar]
  68. Honmane S.M. Charde M.S. Choudhari P.B. Jadhav N.R. Development and in vitro evaluation of folate conjugated polydopamine modified carmustine-loaded liposomes for improved anticancer activity. J. Drug Deliv. Sci. Technol. 2023 90 105145 105145 10.1016/j.jddst.2023.105145
    [Google Scholar]
  69. Wang X. Wang M. Cai M. Shao R. Xia G. Zhao W. Miriplatin-loaded liposome, as a novel mitophagy inducer, suppresses pancreatic cancer proliferation through blocking POLG and TFAM-mediated mtDNA replication. Acta Pharm. Sin. B 2023 13 11 4477 4501 10.1016/j.apsb.2023.07.009 37969736
    [Google Scholar]
  70. Kawano K. Furuya A. Matsuda Y. Kimura C. Yamaguchi K. Wakabayashi S. Taniguchi K. Ozaki K. Hattori Y. Preparation of liposomes co-encapsulating doxorubicin and mifepristone for treating multidrug-resistant cancer. J. Drug Deliv. Sci. Technol. 2023 85 104605 104605 10.1016/j.jddst.2023.104605
    [Google Scholar]
  71. Ma X. Sui X. Liu C. Li H. Han C. Xu T. Zhang H. Zhang Y. Cai D. Li Y. Zhu W. Co-delivery of berberine and magnolol targeted liposomes for synergistic anti-lung cancer. Colloids Surf. A Physicochem. Eng. Asp. 2023 673 131773 131773 10.1016/j.colsurfa.2023.131773
    [Google Scholar]
  72. Sun M. Wu J. Lian B. Cui J. Xu N. Xu Z. Nie Y. Yu G. Liu S. Hyaluronic acid-modified liposomes Co-encapsulating curcumin and mifepristone to enhance anti-breast cancer efficacy. J. Drug Deliv. Sci. Technol. 2023 88 104956 104956 10.1016/j.jddst.2023.104956
    [Google Scholar]
  73. He K. Wang T. Chen J. Huang X. Wang Z. Yang Z. Wang K. Zhao W. Jiang J. Zhao L. A pegylated liposome loaded with Raddeanin A for prostate cancer therapy. Int. J. Nanomedicine 2023 18 4007 4021 10.2147/IJN.S420803 37496689
    [Google Scholar]
  74. Hanafy N.A.N. Sheashaa R.F. Moussa E.A. Mahfouz M.E. Potential of curcumin and niacin-loaded targeted chitosan coated liposomes to activate autophagy in hepatocellular carcinoma cells: An in vitro evaluation in HePG2 cell line. Int. J. Biol. Macromol. 2023 245 125572 125572 10.1016/j.ijbiomac.2023.125572 37385311
    [Google Scholar]
  75. Wang X. Wang A. Feng W. Wang D. Guo X. Wang X. Miao Q. Liu M. Xia G. Novel 5-fluorouracil carbonate-loaded liposome: Preparation, in vitro, and in Vivo evaluation as an antitumor agent. Mol. Pharm. 2022 19 7 2061 2076 10.1021/acs.molpharmaceut.1c00820 35731595
    [Google Scholar]
  76. Zhang H. Wang T. He W. Wang J. Li X. Irinotecan-loaded ROS-responsive liposomes containing thioether phosphatidylcholine for improving anticancer activity. J. Drug Deliv. Sci. Technol. 2022 71 103321 10.1016/j.jddst.2022.103321
    [Google Scholar]
  77. Singh P. Singh N. Mishra N. Nisha R. Alka Maurya P. Pal R.R. Singh S. Saraf S.A. Functionalized bosutinib liposomes for target specific delivery in management of estrogen-positive cancer. Colloids Surf. B Biointerfaces 2022 218 112763 10.1016/j.colsurfb.2022.112763 35994989
    [Google Scholar]
  78. Feuser P.E. De Pieri E. Oliveira M.E. Cordeiro A.P. Cercena R. Hermes de Araújo P.H. Dal Bó A.G. Machado-de-Ávila R.A. Cisplatin and paclitaxel-loaded liposomes induced cervical cancer (HeLa) cell death with multiple copies of human papillomavirus by apoptosis and decreased their cytotoxic effect on non-tumor cells. J. Drug Deliv. Sci. Technol. 2022 73 103457 10.1016/j.jddst.2022.103457
    [Google Scholar]
  79. Zhang H. Sheng D. Han Z. Zhang L. Sun G. Yang X. Wang X. Wei L. Lu Y. Hou X. Zhang L. Doxorubicin-liposome combined with clodronate-liposome inhibits hepatocellular carcinoma through the depletion of macrophages and tumor cells. Int. J. Pharm. 2022 629 122346 122346 10.1016/j.ijpharm.2022.122346 36334635
    [Google Scholar]
  80. Zhang L. Lin Z. Chen Y. Gao D. Wang P. Lin Y. Wang Y. Wang F. Han Y. Yuan H. Co-delivery of Docetaxel and Resveratrol by liposomes synergistically boosts antitumor efficiency against prostate cancer. Eur. J. Pharm. Sci. 2022 174 106199 10.1016/j.ejps.2022.106199 35533965
    [Google Scholar]
  81. Gao C. Zhang L. Xu M. Luo Y. Wang B. Kuang M. Liu X. Sun M. Guo Y. Teng L. Wang C. Zhang Y. Xie J. Pulmonary delivery of liposomes co-loaded with SN38 prodrug and curcumin for the treatment of lung cancer. Eur. J. Pharm. Biopharm. 2022 179 156 165 10.1016/j.ejpb.2022.08.021 36064084
    [Google Scholar]
  82. Li M. Li S. Li Y. Li X. Yang G. Li M. Xie Y. Su W. Wu J. Jia L. Li S. Ma W. Li H. Guo N. Yu P. Cationic liposomes co-deliver chemotherapeutics and siRNA for the treatment of breast cancer. Eur. J. Med. Chem. 2022 233 114198 10.1016/j.ejmech.2022.114198 35245829
    [Google Scholar]
  83. Pendhari J. Savla H. Bethala D. Vaidya S. Shinde U. Menon M. Mitochondria targeted liposomes of metformin for improved anticancer activity: Preparation and evaluation. J. Drug Deliv. Sci. Technol. 2022 76 103795 103795 10.1016/j.jddst.2022.103795
    [Google Scholar]
  84. Feng X. Liu H. Pan J. Xiong Y. Zhu X. Yan X. Duan Y. Huang Y. Liposome-encapsulated Tiancimycin a is active against melanoma and metastatic breast tumors: The effect of cRGD modification of the liposomal carrier and tiancimycin a dose on drug activity and toxicity. Mol. Pharm. 2022 19 4 1078 1090 10.1021/acs.molpharmaceut.1c00753 35290067
    [Google Scholar]
  85. Sonju J.J. Dahal A. Singh S.S. Gu X. Johnson W.D. Muthumula C.M.R. Meyer S.A. Jois S.D. A pH-sensitive liposome formulation of a peptidomimetic-Dox conjugate for targeting HER2+cancer. Int. J. Pharm. 2022 612 121364 10.1016/j.ijpharm.2021.121364 34896567
    [Google Scholar]
  86. Maia A.L.C. e Silva A.T.M. César A.L.A. Giuberti C.S. Evangelista F.C.G. Lemos J.A. Sabino A.P. Malachias Â. Fernandes C. de Barros A.L.B. Soares D.C.F. Ramaldes G.A. Preparation and characterization of gadolinium-based thermosensitive liposomes: A potential nanosystem for selective drug delivery to cancer cells. J. Drug Deliv. Sci. Technol. 2021 65 102686 10.1016/j.jddst.2021.102686
    [Google Scholar]
  87. Pakdaman Goli P. Bikhof Torbati M. Parivar K. Akbarzadeh Khiavi A. Yousefi M. Preparation and evaluation of gemcitabin and cisplatin-entrapped Folate-PEGylated liposomes as targeting co-drug delivery system in cancer therapy. J. Drug Deliv. Sci. Technol. 2021 65 102756 10.1016/j.jddst.2021.102756
    [Google Scholar]
  88. El-Senduny F.F. Altouhamy M. Zayed G. Harsha C. Jalaja R. Somappa S.B. Nair M.S. Kunnumakkara A.B. Alsharif F.M. Badria F.A. Azadiradione-loaded liposomes with improved bioavailability and anticancer efficacy against triple negative breast cancer. J. Drug Deliv. Sci. Technol. 2021 65 102665 102665 10.1016/j.jddst.2021.102665
    [Google Scholar]
  89. Nandi U. Onyesom I. Douroumis D. Anti-cancer activity of sirolimus loaded liposomes in prostate cancer cell lines. J. Drug Deliv. Sci. Technol. 2020 102200 10.1016/j.jddst.2020.102200
    [Google Scholar]
  90. Jiménez-López J. Bravo-Caparrós I. Cabeza L. Nieto F.R. Ortiz R. Perazzoli G. Fernández-Segura E. Cañizares F.J. Baeyens J.M. Melguizo C. Prados J. Paclitaxel antitumor effect improvement in lung cancer and prevention of the painful neuropathy using large pegylated cationic liposomes. Biomed. Pharmacother. 2021 133 111059 10.1016/j.biopha.2020.111059 33378963
    [Google Scholar]
  91. Abuzar S.M. Park E.J. Seo Y. Lee J. Baik S.H. Hwang S.J. Preparation and evaluation of intraperitoneal long-acting oxaliplatin-loaded multi-vesicular liposomal depot for colorectal cancer treatment. Pharmaceutics 2020 12 8 736 10.3390/pharmaceutics12080736 32764318
    [Google Scholar]
  92. Das S. Samanta A. Mondal S. Roy D. Nayak A.K. Design and release kinetics of liposomes containing abiraterone acetate for treatment of prostate cancer. Sensors International 2021 2 100077 10.1016/j.sintl.2020.100077
    [Google Scholar]
  93. Nunes S.S. Miranda S.E.M. de Oliveira Silva J. Fernandes R.S. de Alcântara Lemos J. de Aguiar Ferreira C. Townsend D.M. Cassali G.D. Oliveira M.C. Branco de Barros A.L. pH-responsive and folate-coated liposomes encapsulating irinotecan as an alternative to improve efficacy of colorectal cancer treatment. Biomed. Pharmacother. 2021 144 112317 10.1016/j.biopha.2021.112317 34634556
    [Google Scholar]
  94. Gao C. Zhang L. Tang Z. Fang Z. Ye X. Yu W. Preparation, characterization, and anti-colon cancer activity of oridonin-loaded long-circulating liposomes. Pharm. Dev. Technol. 2021 26 10 1073 1078 10.1080/10837450.2021.1982966 34543167
    [Google Scholar]
  95. Novais M.V.M. Gomes E.R. Miranda M.C. Silva J.O. Gomes D.A. Braga F.C. Pádua R.M. Oliveira M.C. Liposomes co-encapsulating doxorubicin and glucoevatromonoside derivative induce synergic cytotoxic response against breast cancer cell lines. Biomed. Pharmacother. 2021 136 111123 10.1016/j.biopha.2020.111123 33486211
    [Google Scholar]
  96. Xu D. Xie J. Feng X. Zhang X. Ren Z. Zheng Y. Yang J. Preparation and evaluation of a Rubropunctatin-loaded liposome anticancer drug carrier. RSC Advances 2020 10 17 10352 10360 10.1039/C9RA10390B 35498569
    [Google Scholar]
  97. Gkionis L. Campbell R.A. Aojula H. Harris L.K. Tirella A. Manufacturing drug co-loaded liposomal formulations targeting breast cancer: Influence of preparative method on liposomes characteristics and in vitro toxicity. Int. J. Pharm. 2020 590 119926 119926 10.1016/j.ijpharm.2020.119926 33010397
    [Google Scholar]
  98. Ağardan N.B.M. Değim Z. Yılmaz Ş. Altıntaş L. Topal T. Tamoxifen/raloxifene loaded liposomes for oral treatment of breast cancer. J. Drug Deliv. Sci. Technol. 2020 57 101612 10.1016/j.jddst.2020.101612
    [Google Scholar]
  99. Karpuz M. Silindir-Gunay M. Ozer A.Y. Ozturk S.C. Yanik H. Tuncel M. Aydin C. Esendagli G. Diagnostic and therapeutic evaluation of folate-targeted paclitaxel and vinorelbine encapsulating theranostic liposomes for non-small cell lung cancer. Eur. J. Pharm. Sci. 2021 156 105576 10.1016/j.ejps.2020.105576 32987115
    [Google Scholar]
  100. Wang J. Liu D. Guan S. Zhu W. Fan L. Zhang Q. Cai D. Hyaluronic acid-modified liposomal honokiol nanocarrier: Enhance anti-metastasis and antitumor efficacy against breast cancer. Carbohydr. Polym. 2020 235 115981 10.1016/j.carbpol.2020.115981 32122511
    [Google Scholar]
  101. Chang EH. Kim S. Rait A. Targeted Liposome US Patent 11951167 2024
    [Google Scholar]
  102. Ouyang K. Guo X. Cai L. Yue T. Liu J. Yang C. Protamine short peptide modified paclitaxel liposome and preparation method thereof. NL Patent 2033676B1, 2024
  103. China National Intellectual Property Administration. Paclitaxel liposome and preparation method thereof. CN 111956614B 2022
  104. Weng W. Liu C. Wang A. Lin C. Liu Q. Wang L. Lin S. Liu Y. Pegylated Lipid, liposome modified by pegylated lipid, pharmaceutical composition containing liposome, and preparation and application of pharmaceutical composition. CN Patent 115197078B 2024
  105. Donald P. Waldemar P. Method of reconstituting liposomal Annamycin. US Patent 11980634B2 2024
  106. Wei X. Jiang B. Irinotecan liposome preparation and preparation and application thereof. CN Patent 109260155B 2021
  107. Xu Y. Xie F. Multicellular targeting liposome. JP Patent 7470418B2 2019
  108. Compositions and Methods for Stabilizing Liposomal Drug Formulation. CA Patent 2584279C 2015
  109. Zolsketil Pegylated Liposomal (Doxorubicin). 2024 Available from: https://www.ema.europa.eu/en/documents/overview/zolsketil-pegylated-liposomal-epar-medicine-overview_en.pdf
  110. Vyxeos liposomal (previously known as Vyxeos): European Medicines Agency. 2024 Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/vyxeos-liposomal
  111. Besponsa - European medicines agency. 2024 Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/besponsa
  112. Onivyde pegylated liposomal (previously known as Onivyde) - European Medicines Agency. 2024 Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/onivyde-pegylated-liposomal
  113. Mepact. 2024 Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/mepact
  114. Myocet liposomal (previously Myocet). 2024 Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/myocet-liposomal
/content/journals/cctr/10.2174/0115733947379210250530103826
Loading
/content/journals/cctr/10.2174/0115733947379210250530103826
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test