Skip to content
2000
image of Innovation and Implication of CRISPR-Mediated T-cell Engineering in Cancer Immunotherapy: A New Insight

Abstract

Recent advances in CRISPR–Cas9–based genome editing have revolutionized cancer immunotherapy by enabling precise and efficient T-cell engineering. This review focuses on how CRISPR-mediated modifications enhance T-cell functionality, highlighting key applications, such as CAR-T cells and TCR-engineered T-cell therapies. By selectively targeting immune-regulating genes, CRISPR empowers T cells to recognize and eliminate tumor cells with greater specificity and reduce off-target effects. This precision opens the door to personalized treatment strategies, allowing T cells to be tailored to each patient’s unique tumor profile. Furthermore, the ability to rapidly and systematically edit multiple gene targets has accelerated the development of more potent and durable T-cell therapies, overcoming some of the current limitations in cancer immunotherapy. Overall, CRISPR’s transformative potential of CRISPR provides a platform for next-generation patient-centric cancer treatments, paving the way for improved clinical outcomes and expanded therapeutic options.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947375292250526055904
2025-06-03
2025-08-13
Loading full text...

Full text loading...

References

  1. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  2. Vitale I. Shema E. Loi S. Galluzzi L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 2021 27 2 212 224 10.1038/s41591‑021‑01233‑9 33574607
    [Google Scholar]
  3. Ashique S. Upadhyay A. Kumar N. Chauhan S. Mishra N. Metabolic syndromes responsible for cervical cancer and advancement of nanocarriers for efficient targeted drug delivery- A review. Adv. Cancer Biol. Metastasis. 2022 4 100041 10.1016/j.adcanc.2022.100041
    [Google Scholar]
  4. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  5. Huang J. Ngai C.H. Deng Y. Tin M.S. Lok V. Zhang L. Yuan J. Xu W. Zheng Z.J. Wong M.C.S. Cancer incidence and mortality in asian countries: A trend analysis. Cancer Contr. 2022 29 10732748221095955 10.1177/10732748221095955 35770775
    [Google Scholar]
  6. Dyba T. Randi G. Bray F. Martos C. Giusti F. Nicholson N. Gavin A. Flego M. Neamtiu L. Dimitrova N. Negrão Carvalho R. Ferlay J. Bettio M. The European cancer burden in 2020: Incidence and mortality estimates for 40 countries and 25 major cancers. Eur. J. Cancer 2021 157 308 347 10.1016/j.ejca.2021.07.039 34560371
    [Google Scholar]
  7. Sharma R. Aashima Nanda M. Fronterre C. Sewagudde P. Ssentongo A.E. Yenney K. Arhin N.D. Oh J. Amponsah-Manu F. Ssentongo P. Mapping cancer in Africa: A comprehensive and comparable characterization of 34 cancer types using estimates From GLOBOCAN 2020. Front. Public Health 2022 10 839835 10.3389/fpubh.2022.839835 35548083
    [Google Scholar]
  8. Riaz M. Zubair M. Iqbal M.K. Bukhari S.M.A. Sultan H.M. Exploring the platelet and cancer cell interaction in metastasis targeting: Platelets and cancer cell interaction. J. Curr. Oncol. Med. Sci. 2024 4 834 844
    [Google Scholar]
  9. Zhang X. Powell K. Li L. Breast cancer stem cells: Biomarkers, identification and isolation methods, regulating mechanisms, cellular origin, and beyond. Cancers 2020 12 12 3765 10.3390/cancers12123765 33327542
    [Google Scholar]
  10. Ghaffari S. Khalili N. Rezaei N. CRISPR/Cas9 revitalizes adoptive T-cell therapy for cancer immunotherapy. J. Exp. Clin. Cancer Res. 2021 40 1 269 10.1186/s13046‑021‑02076‑5 34446084
    [Google Scholar]
  11. Guo S.B. Hu L.S. Huang W.J. Zhou Z.Z. Luo H.Y. Tian X.P. Comparative investigation of neoadjuvant immunotherapy versus adjuvant immunotherapy in perioperative patients with cancer: A global-scale, cross-sectional, and large-sample informatics study. Int. J. Surg. 2024 110 8 4660 4671 10.1097/JS9.0000000000001479 38652128
    [Google Scholar]
  12. Debela D.T. Muzazu S.G.Y. Heraro K.D. Ndalama M.T. Mesele B.W. Haile D.C. Kitui S.K. Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021 9 20503121211034366 10.1177/20503121211034366 34408877
    [Google Scholar]
  13. Was H. Borkowska A. Bagues A. Tu L. Liu J.Y.H. Lu Z. Rudd J.A. Nurgali K. Abalo R. Mechanisms of chemotherapy-induced neurotoxicity. Front. Pharmacol. 2022 13 750507 10.3389/fphar.2022.750507 35418856
    [Google Scholar]
  14. van den Boogaard W.M.C. Komninos D.S.J. Vermeij W.P. Chemotherapy side-effects. Cancers 2022 14 3 627 10.3390/cancers14030627 35158895
    [Google Scholar]
  15. Huang L. Zhao S. Fang F. Xu T. Lan M. Zhang J. Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy. Biomaterials 2021 268 120557 10.1016/j.biomaterials.2020.120557 33260095
    [Google Scholar]
  16. Nurgali K. Jagoe R.T. Abalo R. Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Front. Pharmacol. 2018 9 245 10.3389/fphar.2018.00245 29623040
    [Google Scholar]
  17. Armenian S.H. Gibson C.J. Rockne R.C. Ness K.K. Premature aging in young cancer survivors. J. Natl. Cancer Inst. 2019 111 3 226 232 10.1093/jnci/djy229 30715446
    [Google Scholar]
  18. Nonnekens J. Hoeijmakers J.H.J. After surviving cancer, what about late life effects of the cure? EMBO Mol. Med. 2017 9 1 4 6 10.15252/emmm.201607062 27852619
    [Google Scholar]
  19. Wang S. Prizment A. Thyagarajan B. Blaes A. Cancer treatment-induced accelerated aging in cancer survivors: Biology and assessment. Cancers 2021 13 3 427 10.3390/cancers13030427 33498754
    [Google Scholar]
  20. Mohan G. T P A.H. A J J. K M S.D. Narayanasamy A. Vellingiri B. Recent advances in radiotherapy and its associated side effects in cancer—A review. J. Basic Appl. Zool. 2019 80 1 14 10.1186/s41936‑019‑0083‑5
    [Google Scholar]
  21. Dhoundiyal S. Srivastava S. Kumar S. Singh G. Ashique S. Pal R. Mishra N. Taghizadeh-Hesary F. Radiopharmaceuticals: Navigating the frontier of precision medicine and therapeutic innovation. Eur. J. Med. Res. 2024 29 1 26 10.1186/s40001‑023‑01627‑0 38183131
    [Google Scholar]
  22. Xi M. Liu S.L. Zhao L. Shen J.X. Zhang L. Zhang P. Liu M.Z. Prognostic factors and survival in patients with radiation-related second malignant neoplasms following radiotherapy for nasopharyngeal carcinoma. PLoS One 2013 8 12 e84586 10.1371/journal.pone.0084586 24367679
    [Google Scholar]
  23. Cruz F. Bellver J. Live birth after embryo transfer in an unresponsive thin endometrium. Gynecol. Endocrinol. 2014 30 7 481 484 10.3109/09513590.2014.900747 24650368
    [Google Scholar]
  24. Ingole S. Vasdev N. Tekade M. Gupta T. Pawar B. Mhatre M. Toxic effects of cancer therapies. Public health and toxicology issues drug research. Elsevier 2024 Vol. 2 353 379 10.1016/B978‑0‑443‑15842‑1.00004‑1
    [Google Scholar]
  25. Sharma P. Wagner K. Wolchok J.D. Allison J.P. Novel cancer immunotherapy agents with survival benefit: Recent successes and next steps. Nat. Rev. Cancer 2011 11 11 805 812 10.1038/nrc3153 22020206
    [Google Scholar]
  26. Mahoney K.M. Rennert P.D. Freeman G.J. Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 2015 14 8 561 584 10.1038/nrd4591 26228759
    [Google Scholar]
  27. Topalian S.L. Weiner G.J. Pardoll D.M. Cancer immunotherapy comes of age. J. Clin. Oncol. 2011 29 36 4828 4836 10.1200/JCO.2011.38.0899 22042955
    [Google Scholar]
  28. Stadtmauer E.A. Fraietta J.A. Davis M.M. Cohen A.D. Weber K.L. Lancaster E. Mangan P.A. Kulikovskaya I. Gupta M. Chen F. Tian L. Gonzalez V.E. Xu J. Jung I. Melenhorst J.J. Plesa G. Shea J. Matlawski T. Cervini A. Gaymon A.L. Desjardins S. Lamontagne A. Salas-Mckee J. Fesnak A. Siegel D.L. Levine B.L. Jadlowsky J.K. Young R.M. Chew A. Hwang W.T. Hexner E.O. Carreno B.M. Nobles C.L. Bushman F.D. Parker K.R. Qi Y. Satpathy A.T. Chang H.Y. Zhao Y. Lacey S.F. June C.H. CRISPR-engineered T cells in patients with refractory cancer. Science 2020 367 6481 eaba7365 10.1126/science.aba7365 32029687
    [Google Scholar]
  29. Shi H. Qi X. Ma B. Cao Y. Wang L. Sun L. Niu H. The status, limitation and improvement of adoptive cellular immunotherapy in advanced urologic malignancies. Chin. J. Cancer Res. 2015 27 2 128 137 10.3978/j.issn.1000‑9604.2014.12.15 25937774
    [Google Scholar]
  30. Hinrichs C.S. Rosenberg S.A. Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol. Rev. 2014 257 1 56 71 10.1111/imr.12132 24329789
    [Google Scholar]
  31. Cui Z. Liu H. Zhang H. Huang Z. Tian R. Li L. Fan W. Chen Y. Chen L. Zhang S. Das B.C. Severinov K. Hitzeroth I.I. Debata P.R. Jin Z. Liu J. Huang Z. Xie W. Xie H. Lang B. Ma J. Weng H. Tian X. Hu Z. The comparison of ZFNs, TALENs, and SpCas9 by GUIDE-seq in HPV-targeted gene therapy. Mol. Ther. Nucleic Acids 2021 26 1466 1478 10.1016/j.omtn.2021.08.008 34938601
    [Google Scholar]
  32. Gaj T. Gersbach C.A. Barbas C.F. III ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013 31 7 397 405 10.1016/j.tibtech.2013.04.004 23664777
    [Google Scholar]
  33. Lino C.A. Harper J.C. Carney J.P. Timlin J.A. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv. 2018 25 1 1234 1257 10.1080/10717544.2018.1474964 29801422
    [Google Scholar]
  34. Shazma Zubair M CRISPR-Cas9: A promising therapeutic approach for diabetes mellitus. IJGPN 2024 2 43 56 10.26689/ijgpn.v2i2.7433
    [Google Scholar]
  35. Janik E. Niemcewicz M. Ceremuga M. Krzowski L. Saluk-Bijak J. Bijak M. Various aspects of a gene editing system—CRISPR–Cas9. Int. J. Mol. Sci. 2020 21 24 9604 10.3390/ijms21249604 33339441
    [Google Scholar]
  36. Cong L. Ran F.A. Cox D. Lin S. Barretto R. Habib N. Hsu P.D. Wu X. Jiang W. Marraffini L.A. Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science 2013 339 6121 819 823 10.1126/science.1231143 23287718
    [Google Scholar]
  37. Xu L. Wang J. Liu Y. Xie L. Su B. Mou D. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N Engl J Med 2019 381 13 1240 1247 10.1056/NEJMoa1817426 31509667
    [Google Scholar]
  38. Liu Z. Shi M. Ren Y. Xu H. Weng S. Ning W. Ge X. Liu L. Guo C. Duo M. Li L. Li J. Han X. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy. Mol. Cancer 2023 22 1 35 10.1186/s12943‑023‑01738‑6 36797756
    [Google Scholar]
  39. Barrangou R. Fremaux C. Deveau H. Richards M. Boyaval P. Moineau S. Romero D.A. Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007 315 5819 1709 1712 10.1126/science.1138140 17379808
    [Google Scholar]
  40. van der Oost J. Westra E.R. Jackson R.N. Wiedenheft B. Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nat. Rev. Microbiol. 2014 12 7 479 492 10.1038/nrmicro3279 24909109
    [Google Scholar]
  41. Doudna J.A. Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014 346 6213 1258096 10.1126/science.1258096 25430774
    [Google Scholar]
  42. Jinek M. Chylinski K. Fonfara I. Hauer M. Doudna J.A. Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012 337 6096 816 821 10.1126/science.1225829 22745249
    [Google Scholar]
  43. Nishimasu H. Ran F.A. Hsu P.D. Konermann S. Shehata S.I. Dohmae N. Ishitani R. Zhang F. Nureki O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 2014 156 5 935 949 10.1016/j.cell.2014.02.001 24529477
    [Google Scholar]
  44. CRISPR 101: A desktop resource. 2016 Available from: https://www.ecole-adn.fr/uploads/2017/03/CRISPR_101_eBook_-REF-CS.pdf
  45. Strutt S.C. Torrez R.M. Kaya E. Negrete O.A. Doudna J.A. RNA-dependent RNA targeting by CRISPR-Cas9. eLife 2018 7 e32724 10.7554/eLife.32724 29303478
    [Google Scholar]
  46. Kochenderfer J.N. Wilson W.H. Janik J.E. Dudley M.E. Stetler-Stevenson M. Feldman S.A. Maric I. Raffeld M. Nathan D.A.N. Lanier B.J. Morgan R.A. Rosenberg S.A. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 2010 116 20 4099 4102 10.1182/blood‑2010‑04‑281931 20668228
    [Google Scholar]
  47. Watanabe K. Nishikawa H. Engineering strategies for broad application of TCR-T- and CAR-T-cell therapies. Int. Immunol. 2021 33 11 551 562 10.1093/intimm/dxab052 34374779
    [Google Scholar]
  48. Mohanty R. Chowdhury C. Arega S. Sen P. Ganguly P. Ganguly N. CAR T cell therapy: A new era for cancer treatment (Review). Oncol. Rep. 2019 42 6 2183 2195 10.3892/or.2019.7335 31578576
    [Google Scholar]
  49. Crespo J. Sun H. Welling T.H. Tian Z. Zou W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr. Opin. Immunol. 2013 25 2 214 221 10.1016/j.coi.2012.12.003 23298609
    [Google Scholar]
  50. Schönbeck U. Mach F. Libby P. CD154 (CD40 ligand). Int. J. Biochem. Cell Biol. 2000 32 7 687 693 10.1016/S1357‑2725(00)00016‑9 10856699
    [Google Scholar]
  51. Curran K.J. Seinstra B.A. Nikhamin Y. Yeh R. Usachenko Y. van Leeuwen D.G. Purdon T. Pegram H.J. Brentjens R.J. Enhancing antitumor efficacy of chimeric antigen receptor T cells through constitutive CD40L expression. Mol. Ther. 2015 23 4 769 778 10.1038/mt.2015.4 25582824
    [Google Scholar]
  52. Kuhn N.F. Purdon T.J. van Leeuwen D.G. Lopez A.V. Curran K.J. Daniyan A.F. Brentjens R.J. CD40 ligand-modified chimeric antigen receptor T cells enhance antitumor function by eliciting an endogenous antitumor response. Cancer Cell 2019 35 3 473 488.e6 10.1016/j.ccell.2019.02.006 30889381
    [Google Scholar]
  53. Ouaaz F. Arron J. Zheng Y. Choi Y. Beg A.A. Dendritic cell development and survival require distinct NF-kappaB subunits. Immunity 2002 16 2 257 270 10.1016/S1074‑7613(02)00272‑8 11869686
    [Google Scholar]
  54. Chmielewski M. Kopecky C. Hombach A.A. Abken H. IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively Muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res. 2011 71 17 5697 5706 10.1158/0008‑5472.CAN‑11‑0103 21742772
    [Google Scholar]
  55. Galon J. Costes A. Sanchez-Cabo F. Kirilovsky A. Mlecnik B. Lagorce-Pagès C. Tosolini M. Camus M. Berger A. Wind P. Zinzindohoué F. Bruneval P. Cugnenc P.H. Trajanoski Z. Fridman W.H. Pagès F. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006 313 5795 1960 1964 10.1126/science.1129139 17008531
    [Google Scholar]
  56. van Herpen C.M. Looman M. Zonneveld M. Scharenborg N. de Wilde P.C. van de Locht L. Merkx M.A.W. Adema G.J. De Mulder P.H. Intratumoral administration of recombinant human interleukin 12 in head and neck squamous cell carcinoma patients elicits a T-helper 1 profile in the locoregional lymph nodes. Clin. Cancer Res. 2004 10 8 2626 2635 10.1158/1078‑0432.CCR‑03‑0304 15102664
    [Google Scholar]
  57. Zitvogel L. Tesniere A. Kroemer G. Cancer despite immunosurveillance: Immunoselection and immunosubversion. Nat. Rev. Immunol. 2006 6 10 715 727 10.1038/nri1936 16977338
    [Google Scholar]
  58. Hurton L.V. Singh H. Najjar A.M. Switzer K.C. Mi T. Maiti S. Olivares S. Rabinovich B. Huls H. Forget M.A. Datar V. Kebriaei P. Lee D.A. Champlin R.E. Cooper L.J.N. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc. Natl. Acad. Sci. USA 2016 113 48 E7788 E7797 10.1073/pnas.1610544113 27849617
    [Google Scholar]
  59. Klebanoff C.A. Finkelstein S.E. Surman D.R. Lichtman M.K. Gattinoni L. Theoret M.R. Grewal N. Spiess P.J. Antony P.A. Palmer D.C. Tagaya Y. Rosenberg S.A. Waldmann T.A. Restifo N.P. IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8 + T Cells. Proc. Natl. Acad. Sci. USA 2004 101 7 1969 1974 10.1073/pnas.0307298101 14762166
    [Google Scholar]
  60. Marks-Konczalik J. Dubois S. Losi J.M. Sabzevari H. Yamada N. Feigenbaum L. Waldmann T.A. Tagaya Y. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc. Natl. Acad. Sci. USA 2000 97 21 11445 11450 10.1073/pnas.200363097 11016962
    [Google Scholar]
  61. Razeghian E. Nasution M.K.M. Rahman H.S. Gardanova Z.R. Abdelbasset W.K. Aravindhan S. Bokov D.O. Suksatan W. Nakhaei P. Shariatzadeh S. Marofi F. Yazdanifar M. Shamlou S. Motavalli R. Khiavi F.M. A deep insight into CRISPR/Cas9 application in CAR-T cell-based tumor immunotherapies. Stem Cell Res. Ther. 2021 12 1 428 10.1186/s13287‑021‑02510‑7 34321099
    [Google Scholar]
  62. Jin L. Tao H. Karachi A. Long Y. Hou A.Y. Na M. Dyson K.A. Grippin A.J. Deleyrolle L.P. Zhang W. Rajon D.A. Wang Q.J. Yang J.C. Kresak J.L. Sayour E.J. Rahman M. Bova F.J. Lin Z. Mitchell D.A. Huang J. CXCR1- or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors. Nat. Commun. 2019 10 1 4016 10.1038/s41467‑019‑11869‑4 31488817
    [Google Scholar]
  63. Kremer V. Ligtenberg M.A. Zendehdel R. Seitz C. Duivenvoorden A. Wennerberg E. Colón E. Scherman-Plogell A.H. Lundqvist A. Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma. J. Immunother. Cancer 2017 5 1 73 10.1186/s40425‑017‑0275‑9 28923105
    [Google Scholar]
  64. Jang D.E. Lee J.Y. Lee J.H. Koo O.J. Bae H.S. Jung M.H. Bae J.H. Hwang W.S. Chang Y.J. Lee Y.H. Lee H.W. Yeom S.C. Multiple sgRNAs with overlapping sequences enhance CRISPR/Cas9-mediated knock-in efficiency. Exp. Mol. Med. 2018 50 4 1 9 10.1038/s12276‑018‑0037‑x 29622782
    [Google Scholar]
  65. Liang X. Potter J. Kumar S. Ravinder N. Chesnut J.D. Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA. J. Biotechnol. 2017 241 136 146 10.1016/j.jbiotec.2016.11.011 27845164
    [Google Scholar]
  66. Vasquez K.M. Marburger K. Intody Z. Wilson J.H. Manipulating the mammalian genome by homologous recombination. Proc. Natl. Acad. Sci. USA 2001 98 15 8403 8410 10.1073/pnas.111009698 11459982
    [Google Scholar]
  67. Fife B.T. Bluestone J.A. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol. Rev. 2008 224 1 166 182 10.1111/j.1600‑065X.2008.00662.x 18759926
    [Google Scholar]
  68. Franzin R. Netti G.S. Spadaccino F. Porta C. Gesualdo L. Stallone G. Castellano G. Ranieri E. The use of immune checkpoint inhibitors in oncology and the occurrence of AKI: Where do we stand? Front. Immunol. 2020 11 574271 10.3389/fimmu.2020.574271 33162990
    [Google Scholar]
  69. Mamonkin M. Heslop H.E. Exhausting alloreactivity of donor-derived CAR T cells. Nat. Med. 2017 23 2 147 148 10.1038/nm.4276 28170385
    [Google Scholar]
  70. Patel S.P. Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol. Cancer Ther. 2015 14 4 847 856 10.1158/1535‑7163.MCT‑14‑0983 25695955
    [Google Scholar]
  71. Akinleye A. Rasool Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J. Hematol. Oncol. 2019 12 1 92 10.1186/s13045‑019‑0779‑5 31488176
    [Google Scholar]
  72. Gong J. Chehrazi-Raffle A. Reddi S. Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: A comprehensive review of registration trials and future considerations. J. Immunother. Cancer 2018 6 1 8 10.1186/s40425‑018‑0316‑z 29357948
    [Google Scholar]
  73. Chong E.A. Melenhorst J.J. Lacey S.F. Ambrose D.E. Gonzalez V. Levine B.L. June C.H. Schuster S.J. PD-1 blockade modulates chimeric antigen receptor (CAR)–modified T cells: Refueling the CAR. Blood 2017 129 8 1039 1041 10.1182/blood‑2016‑09‑738245 28031179
    [Google Scholar]
  74. Postow M.A. Sidlow R. Hellmann M.D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 2018 378 2 158 168 10.1056/NEJMra1703481 29320654
    [Google Scholar]
  75. Zhou X. Empowering chimeric antigen receptor T-cell therapy with CRISPR. Biotechniques 2020 68 4 169 171 10.2144/btn‑2019‑0107 31973565
    [Google Scholar]
  76. Torikai H. Cooper L.J.N. Translational implications for off-the-shelf immune cells expressing chimeric antigen receptors. Mol. Ther. 2016 24 7 1178 1186 10.1038/mt.2016.106 27203439
    [Google Scholar]
  77. Poirot L. Philip B. Schiffer-Mannioui C. Le Clerre D. Chion-Sotinel I. Derniame S. Multiplex genome-edited T-cell manufacturing platform for "off-the-shelf" adoptive T-cell immunotherapies. Cancer Res 2015 75 18 3853 3864 10.1158/0008‑5472.CAN‑14‑3321 26183927
    [Google Scholar]
  78. Provasi E. Genovese P. Lombardo A. Magnani Z. Liu P.Q. Reik A. Chu V. Paschon D.E. Zhang L. Kuball J. Camisa B. Bondanza A. Casorati G. Ponzoni M. Ciceri F. Bordignon C. Greenberg P.D. Holmes M.C. Gregory P.D. Naldini L. Bonini C. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat. Med. 2012 18 5 807 815 10.1038/nm.2700 22466705
    [Google Scholar]
  79. Riolobos L. Hirata R.K. Turtle C.J. Wang P.R. Gornalusse G.G. Zavajlevski M. Riddell S.R. Russell D.W. HLA engineering of human pluripotent stem cells. Mol. Ther. 2013 21 6 1232 1241 10.1038/mt.2013.59 23629003
    [Google Scholar]
  80. Liu X. Zhang Y. Cheng C. Cheng A.W. Zhang X. Li N. Xia C. Wei X. Liu X. Wang H. CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res. 2017 27 1 154 157 10.1038/cr.2016.142 27910851
    [Google Scholar]
  81. Depil S. Duchateau P. Grupp S.A. Mufti G. Poirot L. ‘Off-the-shelf’ allogeneic CAR T cells: Development and challenges. Nat. Rev. Drug Discov. 2020 19 3 185 199 10.1038/s41573‑019‑0051‑2 31900462
    [Google Scholar]
  82. Robbins P.F. Morgan R.A. Feldman S.A. Yang J.C. Sherry R.M. Dudley M.E. Wunderlich J.R. Nahvi A.V. Helman L.J. Mackall C.L. Kammula U.S. Hughes M.S. Restifo N.P. Raffeld M. Lee C.C.R. Levy C.L. Li Y.F. El-Gamil M. Schwarz S.L. Laurencot C. Rosenberg S.A. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 2011 29 7 917 924 10.1200/JCO.2010.32.2537 21282551
    [Google Scholar]
  83. Attaf M. Legut M. Cole D.K. Sewell A.K. The T cell antigen receptor: The Swiss army knife of the immune system. Clin. Exp. Immunol. 2015 181 1 1 18 10.1111/cei.12622 25753381
    [Google Scholar]
  84. Draper L.M. Kwong M.L.M. Gros A. Stevanović S. Tran E. Kerkar S. Raffeld M. Rosenberg S.A. Hinrichs C.S. Targeting of HPV-16+ epithelial cancer cells by TCR gene engineered T cells directed against E6. Clin. Cancer Res. 2015 21 19 4431 4439 10.1158/1078‑0432.CCR‑14‑3341 26429982
    [Google Scholar]
  85. Jahn L. Hombrink P. Hagedoorn R.S. Kester M.G.D. van der Steen D.M. Rodriguez T. Pentcheva-Hoang T. de Ru A.H. Schoonakker M.P. Meeuwsen M.H. Griffioen M. van Veelen P.A. Falkenburg J.H.F. Heemskerk M.H.M. TCR-based therapy for multiple myeloma and other B-cell malignancies targeting intracellular transcription factor BOB1. Blood 2017 129 10 1284 1295 10.1182/blood‑2016‑09‑737536 28053195
    [Google Scholar]
  86. van der Lee D.I. Reijmers R.M. Honders M.W. Hagedoorn R.S. de Jong R.C.M. Kester M.G.D. van der Steen D.M. de Ru A.H. Kweekel C. Bijen H.M. Jedema I. Veelken H. van Veelen P.A. Heemskerk M.H.M. Falkenburg J.H.F. Griffioen M. Mutated nucleophosmin 1 as immunotherapy target in acute myeloid leukemia. J. Clin. Invest. 2019 129 2 774 785 10.1172/JCI97482 30640174
    [Google Scholar]
  87. Sabatino M. Hu J. Sommariva M. Gautam S. Fellowes V. Hocker J.D. Dougherty S. Qin H. Klebanoff C.A. Fry T.J. Gress R.E. Kochenderfer J.N. Stroncek D.F. Ji Y. Gattinoni L. Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies. Blood 2016 128 4 519 528 10.1182/blood‑2015‑11‑683847 27226436
    [Google Scholar]
  88. Legut M. Cole D.K. Sewell A.K. The promise of γδ T cells and the γδ T cell receptor for cancer immunotherapy. Cell. Mol. Immunol. 2015 12 6 656 668 10.1038/cmi.2015.28 25864915
    [Google Scholar]
  89. van Loenen M.M. de Boer R. Amir A.L. Hagedoorn R.S. Volbeda G.L. Willemze R. van Rood J.J. Falkenburg J.H.F. Heemskerk M.H.M. Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proc. Natl. Acad. Sci. USA 2010 107 24 10972 10977 10.1073/pnas.1005802107 20534461
    [Google Scholar]
  90. Osborn M.J. Webber B.R. Knipping F. Lonetree C. Tennis N. DeFeo A.P. McElroy A.N. Starker C.G. Lee C. Merkel S. Lund T.C. Kelly-Spratt K.S. Jensen M.C. Voytas D.F. von Kalle C. Schmidt M. Gabriel R. Hippen K.L. Miller J.S. Scharenberg A.M. Tolar J. Blazar B.R. Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL nucleases. Mol. Ther. 2016 24 3 570 581 10.1038/mt.2015.197 26502778
    [Google Scholar]
  91. Legut M. Dolton G. Mian A.A. Ottmann O.G. Sewell A.K. CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood 2018 131 3 311 322 10.1182/blood‑2017‑05‑787598 29122757
    [Google Scholar]
  92. Eyquem J. Mansilla-Soto J. Giavridis T. van der Stegen S.J.C. Hamieh M. Cunanan K.M. Odak A. Gönen M. Sadelain M. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 2017 543 7643 113 117 10.1038/nature21405 28225754
    [Google Scholar]
  93. Roth T.L. Puig-Saus C. Yu R. Shifrut E. Carnevale J. Li P.J. Hiatt J. Saco J. Krystofinski P. Li H. Tobin V. Nguyen D.N. Lee M.R. Putnam A.L. Ferris A.L. Chen J.W. Schickel J.N. Pellerin L. Carmody D. Alkorta-Aranburu G. del Gaudio D. Matsumoto H. Morell M. Mao Y. Cho M. Quadros R.M. Gurumurthy C.B. Smith B. Haugwitz M. Hughes S.H. Weissman J.S. Schumann K. Esensten J.H. May A.P. Ashworth A. Kupfer G.M. Greeley S.A.W. Bacchetta R. Meffre E. Roncarolo M.G. Romberg N. Herold K.C. Ribas A. Leonetti M.D. Marson A. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 2018 559 7714 405 409 10.1038/s41586‑018‑0326‑5 29995861
    [Google Scholar]
  94. Dong M.B. Wang G. Chow R.D. Ye L. Zhu L. Dai X. Park J.J. Kim H.R. Errami Y. Guzman C.D. Zhou X. Chen K.Y. Renauer P.A. Du Y. Shen J. Lam S.Z. Zhou J.J. Lannin D.R. Herbst R.S. Chen S. Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells. Cell 2019 178 5 1189 1204.e23 10.1016/j.cell.2019.07.044 31442407
    [Google Scholar]
  95. Klepsch V. Pommermayr M. Humer D. Brigo N. Hermann-Kleiter N. Baier G. Targeting the orphan nuclear receptor NR2F6 in T cells primes tumors for immune checkpoint therapy. Cell Commun. Signal. 2020 18 1 8 10.1186/s12964‑019‑0454‑z 31937317
    [Google Scholar]
  96. Singer M. Wang C. Cong L. Marjanovic N.D. Kowalczyk M.S. Zhang H. Nyman J. Sakuishi K. Kurtulus S. Gennert D. Xia J. Kwon J.Y.H. Nevin J. Herbst R.H. Yanai I. Rozenblatt-Rosen O. Kuchroo V.K. Regev A. Anderson A.C. A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T cells. Cell 2016 166 6 1500 1511.e9 10.1016/j.cell.2016.08.052 27610572
    [Google Scholar]
  97. Salerno F. Wolkers M.C. T-cells require post-transcriptional regulation for accurate immune responses. Biochem. Soc. Trans. 2015 43 6 1201 1207 10.1042/BST20150154 26614661
    [Google Scholar]
  98. Freen-van Heeren J.J. Popović B. Guislain A. Wolkers M.C. Human T cells employ conserved AU-rich elements to fine-tune IFN-γ production. Eur. J. Immunol. 2020 50 7 949 958 10.1002/eji.201948458 32112565
    [Google Scholar]
  99. Anderson W. Thorpe J. Long S.A. Rawlings D.J. Efficient CRISPR/Cas9 disruption of autoimmune-associated genes reveals key signaling programs in primary human T cells. J. Immunol. 2019 203 12 3166 3178 10.4049/jimmunol.1900848 31722988
    [Google Scholar]
  100. Ashmore-Harris C. Fruhwirth G.O. The clinical potential of gene editing as a tool to engineer cell-based therapeutics. Clin. Transl. Med. 2020 9 1 e15 10.1186/s40169‑020‑0268‑z 32034584
    [Google Scholar]
  101. Drake M.J. Bates P. Application of gene-editing technologies to HIV-1. Curr. Opin. HIV AIDS 2015 10 2 123 127 10.1097/COH.0000000000000139 25612322
    [Google Scholar]
  102. Lu Y. Xue J. Deng T. Zhou X. Yu K. Deng L. Huang M. Yi X. Liang M. Wang Y. Shen H. Tong R. Wang W. Li L. Song J. Li J. Su X. Ding Z. Gong Y. Zhu J. Wang Y. Zou B. Zhang Y. Li Y. Zhou L. Liu Y. Yu M. Wang Y. Zhang X. Yin L. Xia X. Zeng Y. Zhou Q. Ying B. Chen C. Wei Y. Li W. Mok T. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat. Med. 2020 26 5 732 740 10.1038/s41591‑020‑0840‑5 32341578
    [Google Scholar]
  103. Rohaan M.W. van den Berg J.H. Kvistborg P. Haanen J.B.A.G. Adoptive transfer of tumor-infiltrating lymphocytes in melanoma: A viable treatment option. J. Immunother. Cancer 2018 6 1 102 10.1186/s40425‑018‑0391‑1 30285902
    [Google Scholar]
  104. Palmer D.C. Guittard G.C. Franco Z. Crompton J.G. Eil R.L. Patel S.J. Ji Y. Van Panhuys N. Klebanoff C.A. Sukumar M. Clever D. Chichura A. Roychoudhuri R. Varma R. Wang E. Gattinoni L. Marincola F.M. Balagopalan L. Samelson L.E. Restifo N.P. Cish actively silences TCR signaling in CD8+ T cells to maintain tumor tolerance. J. Exp. Med. 2015 212 12 2095 2113 10.1084/jem.20150304 26527801
    [Google Scholar]
  105. June C.H. O’Connor R.S. Kawalekar O.U. Ghassemi S. Milone M.C. CAR T cell immunotherapy for human cancer. Science 2018 359 6382 1361 1365 10.1126/science.aar6711 29567707
    [Google Scholar]
  106. Zhang X.H. Tee L.Y. Wang X.G. Huang Q.S. Yang S.H. Off-target Effects in CRISPR/Cas9-mediated Genome Engineering. Mol. Ther. Nucleic Acids 2015 4 11 e264 10.1038/mtna.2015.37 26575098
    [Google Scholar]
  107. D’Angelo S.P. Melchiori L. Merchant M.S. Bernstein D. Glod J. Kaplan R. Grupp S. Tap W.D. Chagin K. Binder G.K. Basu S. Lowther D.E. Wang R. Bath N. Tipping A. Betts G. Ramachandran I. Navenot J.M. Zhang H. Wells D.K. Van Winkle E. Kari G. Trivedi T. Holdich T. Pandite L. Amado R. Mackall C.L. Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 c259T cells in synovial sarcoma. Cancer Discov. 2018 8 8 944 957 10.1158/2159‑8290.CD‑17‑1417 29891538
    [Google Scholar]
  108. Rapoport A.P. Stadtmauer E.A. Binder-Scholl G.K. Goloubeva O. Vogl D.T. Lacey S.F. Badros A.Z. Garfall A. Weiss B. Finklestein J. Kulikovskaya I. Sinha S.K. Kronsberg S. Gupta M. Bond S. Melchiori L. Brewer J.E. Bennett A.D. Gerry A.B. Pumphrey N.J. Williams D. Tayton- Martin H.K. Ribeiro L. Holdich T. Yanovich S. Hardy N. Yared J. Kerr N. Philip S. Westphal S. Siegel D.L. Levine B.L. Jakobsen B.K. Kalos M. June C.H. NY-ESO-1–specific TCR–engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat. Med. 2015 21 8 914 921 10.1038/nm.3910 26193344
    [Google Scholar]
  109. Baylis F. McLeod M. First-in-human phase 1 CRISPR gene editing cancer trials: Are we ready? Curr. Gene Ther. 2018 17 4 309 319 10.2174/1566523217666171121165935 29173170
    [Google Scholar]
  110. Gomes-Silva D. Srinivasan M. Sharma S. Lee C.M. Wagner D.L. Davis T.H. Rouce R.H. Bao G. Brenner M.K. Mamonkin M. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood 2017 130 3 285 296 10.1182/blood‑2017‑01‑761320 28539325
    [Google Scholar]
  111. Raikar S.S. Fleischer L.C. Moot R. Fedanov A. Paik N.Y. Knight K.A. Doering C.B. Spencer H.T. Development of chimeric antigen receptors targeting T-cell malignancies using two structurally different anti-CD5 antigen binding domains in NK and CRISPR-edited T cell lines. OncoImmunology 2018 7 3 e1407898 10.1080/2162402X.2017.1407898 29399409
    [Google Scholar]
  112. Gong S. Yu H.H. Johnson K.A. Taylor D.W. DNA unwinding is the primary determinant of CRISPR-Cas9 activity. Cell Rep. 2018 22 2 359 371 10.1016/j.celrep.2017.12.041 29320733
    [Google Scholar]
  113. Ahmadi S.E. Soleymani M. Shahriyary F. Amirzargar M.R. Ofoghi M. Fattahi M.D. Safa M. Viral vectors and extracellular vesicles: Innate delivery systems utilized in CRISPR/Cas-mediated cancer therapy. Cancer Gene Ther. 2023 30 7 936 954 10.1038/s41417‑023‑00597‑z 36854897
    [Google Scholar]
  114. Chen F. Alphonse M. Liu Q. Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020 12 3 e1609 10.1002/wnan.1609 31797562
    [Google Scholar]
  115. Kazemian P. Yu S.Y. Thomson S.B. Birkenshaw A. Leavitt B.R. Ross C.J.D. Lipid-nanoparticle-based delivery of CRISPR/Cas9 genome-editing components. Mol. Pharm. 2022 19 6 1669 1686 10.1021/acs.molpharmaceut.1c00916 35594500
    [Google Scholar]
  116. Rosenblum D. Gutkin A. Kedmi R. Ramishetti S. Veiga N. Jacobi A.M. Schubert M.S. Friedmann-Morvinski D. Cohen Z.R. Behlke M.A. Lieberman J. Peer D. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci. Adv. 2020 6 47 eabc9450 10.1126/sciadv.abc9450 33208369
    [Google Scholar]
  117. Ihry R.J. Worringer K.A. Salick M.R. Frias E. Ho D. Theriault K. Kommineni S. Chen J. Sondey M. Ye C. Randhawa R. Kulkarni T. Yang Z. McAllister G. Russ C. Reece-Hoyes J. Forrester W. Hoffman G.R. Dolmetsch R. Kaykas A. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat. Med. 2018 24 7 939 946 10.1038/s41591‑018‑0050‑6 29892062
    [Google Scholar]
  118. Jiang L. Ingelshed K. Shen Y. Boddul S.V. Iyer V.S. Kasza Z. Sedimbi S. Lane D.P. Wermeling F. CRISPR/Cas9-induced DNA damage enriches for mutations in a p53-linked interactome: Implications for CRISPR-based therapies. Cancer Res. 2022 82 1 36 45 10.1158/0008‑5472.CAN‑21‑1692 34750099
    [Google Scholar]
  119. Wienert B. Shin J. Zelin E. Pestal K. Corn J.E. In vitro–transcribed guide RNAs trigger an innate immune response via the RIG-I pathway. PLoS Biol. 2018 16 7 e2005840 10.1371/journal.pbio.2005840 30011268
    [Google Scholar]
  120. Kim S. Koo T. Jee H.G. Cho H.Y. Lee G. Lim D.G. Shin H.S. Kim J.S. CRISPR RNAs trigger innate immune responses in human cells. Genome Res. 2018 28 3 367 373 10.1101/gr.231936.117 29472270
    [Google Scholar]
  121. Charlesworth C.T. Deshpande P.S. Dever D.P. Camarena J. Lemgart V.T. Cromer M.K. Vakulskas C.A. Collingwood M.A. Zhang L. Bode N.M. Behlke M.A. Dejene B. Cieniewicz B. Romano R. Lesch B.J. Gomez-Ospina N. Mantri S. Pavel-Dinu M. Weinberg K.I. Porteus M.H. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 2019 25 2 249 254 10.1038/s41591‑018‑0326‑x 30692695
    [Google Scholar]
  122. Asmamaw Mengstie M. Teshome Azezew M. Asmamaw Dejenie T. Teshome A.A. Tadele Admasu F. Behaile Teklemariam A. Tilahun Mulu A. Mekonnen Agidew M. Adugna D.G. Geremew H. Abebe E.C. Recent advancements in reducing the off-target effect of CRISPR-Cas9 genome editing. Biologics 2024 18 21 28 10.2147/BTT.S429411 38260716
    [Google Scholar]
  123. Shalem O. Sanjana N.E. Hartenian E. Shi X. Scott D.A. Mikkelsen T.S. Heckl D. Ebert B.L. Root D.E. Doench J.G. Zhang F. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014 343 6166 84 87 10.1126/science.1247005 24336571
    [Google Scholar]
  124. Tejero R. Huang Y. Katsyv I. Kluge M. Lin J.Y. Tome-Garcia J. Daviaud N. Wang Y. Zhang B. Tsankova N.M. Friedel C.C. Zou H. Friedel R.H. Gene signatures of quiescent glioblastoma cells reveal mesenchymal shift and interactions with niche microenvironment. EBioMedicine 2019 42 252 269 10.1016/j.ebiom.2019.03.064 30952620
    [Google Scholar]
  125. Dekkers J.F. Whittle J.R. Vaillant F. Chen H.R. Dawson C. Liu K. Geurts M.H. Herold M.J. Clevers H. Lindeman G.J. Visvader J.E. Modeling breast cancer using CRISPR-Cas9–mediated engineering of human breast organoids. J. Natl. Cancer Inst. 2020 112 5 540 544 10.1093/jnci/djz196 31589320
    [Google Scholar]
  126. Wang G. Lu X. Dey P. Deng P. Wu C.C. Jiang S. Fang Z. Zhao K. Konaparthi R. Hua S. Zhang J. Li-Ning-Tapia E.M. Kapoor A. Wu C.J. Patel N.B. Guo Z. Ramamoorthy V. Tieu T.N. Heffernan T. Zhao D. Shang X. Khadka S. Hou P. Hu B. Jin E.J. Yao W. Pan X. Ding Z. Shi Y. Li L. Chang Q. Troncoso P. Logothetis C.J. McArthur M.J. Chin L. Wang Y.A. DePinho R.A. Targeting YAP-dependent MDSC infiltration impairs tumor progression. Cancer Discov. 2016 6 1 80 95 10.1158/2159‑8290.CD‑15‑0224 26701088
    [Google Scholar]
  127. Akbay E.A. Kim J. Autochthonous murine models for the study of smoker and never-smoker associated lung cancers. Transl. Lung Cancer Res. 2018 7 4 464 486 10.21037/tlcr.2018.06.04 30225211
    [Google Scholar]
  128. Lai H. Liu C. Hou L. Lin W. Chen T. Hong A. TRPM8-regulated calcium mobilization plays a critical role in synergistic chemosensitization of Borneol on Doxorubicin. Theranostics 2020 10 22 10154 10170 10.7150/thno.45861 32929340
    [Google Scholar]
  129. A phase I/II trial in patients with metastatic gastrointestinal epithelial cancer administering tumor-infiltrating lymphocytes in which the gene encoding CISH was inactivated using the CRISPR/Cas9 system. 2025 Available from: https://adisinsight.springer.com/trials/700323216
  130. Phase I/II study to evaluate treatment of relapsed or refractory leukemia and lymphoma with universal CRISPR-Cas9 gene-editing CAR-T cells targeting CD19 and CD20 or CD22. 2018 Available from: https://www.medifind.com/articles/clinical-trial/ 5139687
  131. Phase I/II study to determine the safety, tolerability, biological activity and efficacy of universal CRISPR-Cas9 gene-editing CAR-T cells targeting CD19(UCART019) in patients with relapsed or refractory CD19+ Leukemia and Lymphoma. 2017 Available from: https://clinicaltrials.gov/
  132. A phase 1 dose escalation and cohort expansion study of the safety and efficacy of allogeneic CRISPR-Cas9–engineered T cells (CTX110) in patients (Pts) with relapsed or refractory (R/R) B-cell malignancies (CARBON). 2025 Available from: https://ascopubs.org/doi/10.1200/JCO.2021.39.15_suppl.TPS7570
  133. Phase I study to evaluate treatment of CRISPR-Cas9 mediated PD-1 and TCR gene-knocked out chimeric antigen receptor (CAR) T cells in patients with mesothelin positive multiple solid tumors. Patent NCT03545815 2020
  134. Guangxun G. A safety study of autologous T cells engineered to target CD19 and CRISPR gene edited to eliminate endogenous HPK1 (XYF19 CAR-T Cells) for relapsed or refractory haematopoietic malignancies. 2019
  135. Miller M.J. Foy K.C. Kaumaya P.T.P. Cancer immunotherapy: Present status, future perspective, and a new paradigm of peptide immunotherapeutics. Discov. Med. 2013 15 82 166 176 23545045
    [Google Scholar]
  136. Tsiatas M. Mountzios G. Curigliano G. Future perspectives in cancer immunotherapy. Ann. Transl. Med. 2016 4 14 273 10.21037/atm.2016.07.14 27563660
    [Google Scholar]
  137. Hildebrandt M. Peggs K. Uharek L. Bollard C.M. Heslop H.E. Immunotherapy: Opportunities, risks and future perspectives. Cytotherapy 2014 16 4 Suppl. S120 S129 10.1016/j.jcyt.2014.02.001 24629797
    [Google Scholar]
  138. Zhai K. Yousef M.S. Mohammed S. Al-Dewik N.I. Qoronfleh M.W. Optimizing clinical workflow using precision medicine and advanced data analytics. Processes 2023 11 3 939 10.3390/pr11030939
    [Google Scholar]
  139. Zhai K. Masoodi N.A. Zhang L. Yousef M.S. Qoronfleh M.W. healthcare fusion: An innovative framework for health information management. Electron. J. Knowl. Manage. 2022 20 3 179 192 10.34190/ejkm.20.3.2968
    [Google Scholar]
  140. Qoronfleh M.W. Chouchane L. Mifsud B. Al Emadi M. Ismail S. The future of medicine, healthcare innovation through precision medicine: Policy case study of Qatar. Life Sci. Soc. Policy 2020 16 1 12 10.1186/s40504‑020‑00107‑1 33129349
    [Google Scholar]
  141. Al-Dewik N.I. Younes S.N. Essa M.M. Pathak S. Qoronfleh M.W. Making biomarkers relevant to healthcare innovation and precision medicine. Processes 2022 10 6 1107 10.3390/pr10061107
    [Google Scholar]
  142. Qoronfleh M.W. Pathway to excellence in cancer care: Learning from Qatar’s experience. Precis. Med. Sci. 2020 9 2 51 61 10.1002/prm2.12027
    [Google Scholar]
  143. Zhao X. Yang V.B. Menta A.K. Blum J. Wahida A. Subbiah V. AlphaFold’s predictive revolution in precision oncology. AI in Precision Oncology 2024 1 3 160 167 10.1089/aipo.2024.0010
    [Google Scholar]
  144. Guo S.B. Meng Y. Lin L. Zhou Z.Z. Li H.L. Tian X.P. Huang W.J. Artificial intelligence alphafold model for molecular biology and drug discovery: A machine-learning-driven informatics investigation. Mol. Cancer 2024 23 1 223 10.1186/s12943‑024‑02140‑6 39369244
    [Google Scholar]
  145. Guo S.B. Feng X.Z. Huang W.J. Zhou Z.Z. Tian X.P. Global research hotspots, development trends and prospect discoveries of phase separation in cancer: A decade-long informatics investigation. Biomark. Res. 2024 12 1 39 10.1186/s40364‑024‑00587‑9 38627840
    [Google Scholar]
  146. Liu G. Zhang Y. Zhang T. Computational approaches for effective CRISPR guide RNA design and evaluation. Comput. Struct. Biotechnol. J. 2020 18 35 44 10.1016/j.csbj.2019.11.006 31890142
    [Google Scholar]
  147. Skeens E. Sinha S. Ahsan M. D’Ordine A.M. Jogl G. Palermo G. Lisi G.P. High-fidelity, hyper-accurate, and evolved mutants rewire atomic-level communication in CRISPR-Cas9. Sci. Adv. 2024 10 10 eadl1045 10.1126/sciadv.adl1045 38446895
    [Google Scholar]
  148. Wang G.H. Wang C.M. Wu X.J. Chu T. Huang D.W. Li J. The development of SpCas9 variants with high specificity and efficiency based on the HH Theory. Mol. Biol. 2024 58 1 157 159 10.31857/S0026898424010158 38943587
    [Google Scholar]
  149. Lei T. Wang Y. Zhang Y. Yang Y. Cao J. Huang J. Chen J. Chen H. Zhang J. Wang L. Xu X. Gale R.P. Wang L. Leveraging CRISPR gene editing technology to optimize the efficacy, safety and accessibility of CAR T-cell therapy. Leukemia 2024 38 12 2517 2543 10.1038/s41375‑024‑02444‑y 39455854
    [Google Scholar]
  150. Wang Z. Kelley S.O. Microfluidic technologies for enhancing the potency, predictability and affordability of adoptive cell therapies. Nat. Biomed. Eng. 2025 Feb (14) 1 9 10.1038/s41551‑024‑01315‑2 39953325
    [Google Scholar]
  151. Lin P. Lin Y. Mai Z. Zheng Y. Zheng J. Zhou Z. Zhao X. Cui L. Targeting cancer with precision: Strategical insights into TCR-engineered T cell therapies. Theranostics 2025 15 1 300 323 10.7150/thno.104594 39744228
    [Google Scholar]
  152. Morshedzadeh F Ghanei M Lotfi M Ghasemi M Ahmadi M Najari-Hanjani P An update on the application of CRISPR technology in clinical practice. Mol Biotechnol 2024 66 2 179 197 10.1007/s12033‑023‑00724‑z
    [Google Scholar]
  153. Khoshandam M Soltaninejad H Mousazadeh M Hamidieh AA Hosseinkhani SJ Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine. Genes Dis 2024 11 1 268 282
    [Google Scholar]
  154. Laurent M Geoffroy M Pavani G Guiraud S CRISPR-based gene therapies: From preclinical to clinical treatments. Cells 2024 13 10 800
    [Google Scholar]
  155. Sharma G Sharma AR Bhattacharya M Lee S‑S Chakraborty C CRISPR‑Cas9: A preclinical and clinical perspective for the treatment of human diseases. Mol Ther 2021 29 2 571 586
    [Google Scholar]
  156. Wang SW Gao C Zheng YM Yi L Lu JC Huang XY Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol Cancer 2022 21 1 57
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947375292250526055904
Loading
/content/journals/cctr/10.2174/0115733947375292250526055904
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: T-cell engineering ; immunotherapy ; CAR T-cells ; CRISPR ; Cancer immunotherapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test