Skip to content
2000
image of Research Progress of TRIM56 in Tumours

Abstract

Tripartite Motif Containing 56 (TRIM56) is an important member of the TRIM protein family that has gotten a lot of attention because it plays a big part in how tumours start and grow. Research has shown that TRIM56 promotes the growth of various malignancies, such as Cassibian sarcoma, breast cancer, and glioblastoma, and in some types of cancer with specific predisposing factors, such as ovarian cancer and multiple myeloid. It prevents leukaemia, liver cancer, lung adenocarcinoma, and tumours from growing and proliferating cancer cells. Consequently, TRIM56 may regulate tumour proliferation, metastasis, and other processes in both directions. This study aims to explore the dual role of TRIM56 in tumorigenesis and cancer progression. We have outlined its structure, functional domains, and involvement in key signalling pathways, such as the estragon, NF-κB, and TLR3/TTRIF pathways, which are frequently dysregulated in cancer. Furthermore, we investigate TRIM56's regulatory function in the epithelial-mesenchymal transition (EMT) and its differential impacts on tumour proliferation, metastasis, and suppression across various cancers. This review highlights the potential of TRIM56 as a therapeutic target and prognostic biomarker by synthesizing current evidence, emphasizing the need for additional research into its mechanisms and clinical applications. Although TRIM56's function in tumours has been better understood, research is needed to clarify its precise mechanisms in cancer and explore the possibility of using it as a target for therapeutic interventions.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947374534250410084854
2025-04-24
2025-11-07
Loading full text...

Full text loading...

References

  1. Esposito D. Koliopoulos M.G. Rittinger K. Structural determinants of TRIM protein function. Biochem. Soc. Trans. 2017 45 1 183 191 10.1042/BST20160325 28202672
    [Google Scholar]
  2. Hatakeyama S. TRIM proteins and cancer. Nat. Rev. Cancer 2011 11 11 792 804 10.1038/nrc3139 21979307
    [Google Scholar]
  3. Liu J. Zhang C. Wang X. Hu W. Feng Z. Tumor suppressor p53 cross-talks with TRIM family proteins. Genes Dis. 2021 8 4 463 474 10.1016/j.gendis.2020.07.003 34179310
    [Google Scholar]
  4. Hatakeyama S. TRIM family proteins: Roles in autophagy, immunity, and carcinogenesis. Trends Biochem. Sci. 2017 42 4 297 311 10.1016/j.tibs.2017.01.002 28118948
    [Google Scholar]
  5. Napolitano L.M. Meroni G. TRIM family: Pleiotropy and diversification through homomultimer and heteromultimer formation. IUBMB Life 2012 64 1 64 71 10.1002/iub.580 22131136
    [Google Scholar]
  6. Tocchini C. Ciosk R. TRIM-NHL proteins in development and disease. Semin. Cell Dev. Biol. 2015 47-48 52 59 10.1016/j.semcdb.2015.10.017 26514622
    [Google Scholar]
  7. Deshaies R.J. Joazeiro C.A.P. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 2009 78 1 399 434 10.1146/annurev.biochem.78.101807.093809 19489725
    [Google Scholar]
  8. Shen M. Schmitt S. Buac D. Dou Q.P. Targeting the ubiquitin–proteasome system for cancer therapy. Expert Opin. Ther. Targets 2013 17 9 1091 1108 10.1517/14728222.2013.815728 23822887
    [Google Scholar]
  9. Guo P. Ma X. Zhao W. TRIM31 is upregulated in hepatocellular carcinoma and promotes disease progression by inducing ubiquitination of TSC1–TSC2 complex. Oncogene 2018 37 4 478 488 10.1038/onc.2017.349 28967907
    [Google Scholar]
  10. Geng B Liang M qin L An TRIM 59‐ CDK 6 axis regulates growth and metastasis of lung cancer. J. Cell. Mol. Med. 2019 23 2 1458 1469 10.1111/jcmm.14052 30515965
    [Google Scholar]
  11. Wang Y. Liu C. Xie Z. Lu H. Knockdown of TRIM47 inhibits breast cancer tumorigenesis and progression through the inactivation of PI3K/Akt pathway. Chem. Biol. Interact. 2020 317 108960 10.1016/j.cbi.2020.108960 31981573
    [Google Scholar]
  12. Chen Y. Liu H. Zou J. Exosomal circ_0091741 promotes gastric cancer cell autophagy and chemoresistance via the miR-330-3p/TRIM14/Dvl2/Wnt/β-catenin axis. Hum. Cell 2022 36 1 258 275 10.1007/s13577‑022‑00790‑6 36323918
    [Google Scholar]
  13. Yang J. Ye J. Ma T. Tripartite motif‐containing protein 11 promotes hepatocellular carcinogenesis through ubiquitin‐proteasome–mediated degradation of pleckstrin homology domain leucine‐rich repeats protein phosphatase 1. Hepatology 2022 76 3 612 629 10.1002/hep.32234 34767673
    [Google Scholar]
  14. Tsuchida T. Zou J. Saitoh T. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 2010 33 5 765 776 10.1016/j.immuni.2010.10.013 21074459
    [Google Scholar]
  15. Wang J. Liu B. Wang N. Lee Y.M. Liu C. Li K. TRIM56 is a virus- and interferon-inducible E3 ubiquitin ligase that restricts pestivirus infection. J. Virol. 2011 85 8 3733 3745 10.1128/JVI.02546‑10 21289118
    [Google Scholar]
  16. Ozato K. Shin D.M. Chang T.H. Morse H.C. III TRIM family proteins and their emerging roles in innate immunity. Nat. Rev. Immunol. 2008 8 11 849 860 10.1038/nri2413 18836477
    [Google Scholar]
  17. Chen Y. Zhao J. Li D. TRIM56 suppresses multiple myeloma progression by activating TLR3/TRIF signaling. Yonsei Med. J. 2018 59 1 43 50 10.3349/ymj.2018.59.1.43 29214775
    [Google Scholar]
  18. Fang R. Wang C. Jiang Q. NEMO–IKKβ are essential for IRF3 and NF-κB activation in the cGAS–STING pathway. J. Immunol. 2017 199 9 3222 3233 10.4049/jimmunol.1700699 28939760
    [Google Scholar]
  19. Seo G.J. Kim C. Shin W.J. Sklan E.H. Eoh H. Jung J.U. TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing. Nat. Commun. 2018 9 1 613 10.1038/s41467‑018‑02936‑3 29426904
    [Google Scholar]
  20. Shen Y. Li N.L. Wang J. Liu B. Lester S. Li K. TRIM56 is an essential component of the TLR3 antiviral signaling pathway. J. Biol. Chem. 2012 287 43 36404 36413 10.1074/jbc.M112.397075 22948160
    [Google Scholar]
  21. Lam K.C. Araya R.E. Huang A. Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell 2021 184 21 5338 5356.e21 10.1016/j.cell.2021.09.019 34624222
    [Google Scholar]
  22. Liu Y. Chen Y. Ding C. TRIM56 positively regulates TNFα-induced NF-κB signaling by enhancing the ubiquitination of TAK1. Int. J. Biol. Macromol. 2022 219 571 578 10.1016/j.ijbiomac.2022.08.019 35952808
    [Google Scholar]
  23. Liu B. Li N.L. Shen Y. The C-terminal tail of TRIM56 dictates antiviral restriction of influenza a and b viruses by impeding viral RNA synthesis. J. Virol. 2016 90 9 4369 4382 10.1128/JVI.03172‑15 26889027
    [Google Scholar]
  24. Sung H. Ferlay J. Siegel R.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  25. Coates A.S. Winer E.P. Goldhirsch A. Tailoring therapies—improving the management of early breast cancer: St Gallen international expert consensus on the primary therapy of early breast cancer 2015. Ann. Oncol. 2015 26 8 1533 1546 10.1093/annonc/mdv221 25939896
    [Google Scholar]
  26. Ortega M.A. Fraile-Martínez O. García-Montero C. Physical activity as an imperative support in breast cancer management. Cancers 2020 13 1 55 10.3390/cancers13010055 33379177
    [Google Scholar]
  27. Costa B. Amorim I. Gärtner F. Vale N. Understanding Breast cancer: From conventional therapies to repurposed drugs. Eur. J. Pharm. Sci. 2020 151 105401 10.1016/j.ejps.2020.105401 32504806
    [Google Scholar]
  28. Kucera R. Topolcan O. Fiala O. The role of TPS and TPA in the diagnostics of distant metastases. Anticancer Res. 2016 36 2 773 777 26851038
    [Google Scholar]
  29. Xue M. Zhang K. Mu K. Regulation of estrogen signaling and breast cancer proliferation by an ubiquitin ligase TRIM56. Oncogenesis 2019 8 5 30 10.1038/s41389‑019‑0139‑x 31000690
    [Google Scholar]
  30. Ding X. Xu J. Wang C. Suppression of the SAP18/HDAC1 complex by targeting TRIM56 and Nanog is essential for oncogenic viral FLICE-inhibitory protein-induced acetylation of p65/RelA, NF-κB activation, and promotion of cell invasion and angiogenesis. Cell Death Differ. 2019 26 10 1970 1986 10.1038/s41418‑018‑0268‑3 30670829
    [Google Scholar]
  31. Cavallin L.E. Ma Q. Naipauer J. KSHV-induced ligand mediated activation of PDGF receptor-alpha drives Kaposi’s sarcomagenesis. PLoS Pathog. 2018 14 7 e1007175 10.1371/journal.ppat.1007175 29985958
    [Google Scholar]
  32. Cesarman E. Damania B. Krown S.E. Martin J. Bower M. Whitby D. Kaposi sarcoma. Nat. Rev. Dis. Primers 2019 5 1 9 10.1038/s41572‑019‑0060‑9 30705286
    [Google Scholar]
  33. de Oliveira D.E. Ballon G. Cesarman E. NF-κB signaling modulation by EBV and KSHV. Trends Microbiol. 2010 18 6 248 257 10.1016/j.tim.2010.04.001 20452220
    [Google Scholar]
  34. Roy D. Sin S.H. Damania B. Dittmer D.P. Tumor suppressor genes FHIT and WWOX are deleted in primary effusion lymphoma (PEL) cell lines. Blood 2011 118 7 e32 e39 10.1182/blood‑2010‑12‑323659 21685375
    [Google Scholar]
  35. Gramatzki D. Kickingereder P. Hentschel B. Limited role for extended maintenance temozolomide for newly diagnosed glioblastoma. Neurology 2017 88 15 1422 1430 10.1212/WNL.0000000000003809 28298550
    [Google Scholar]
  36. Messaoudi K. Clavreul A. Lagarce F. Toward an effective strategy in glioblastoma treatment. Part II: RNA interference as a promising way to sensitize glioblastomas to temozolomide. Drug Discov. Today 2015 20 6 772 779 10.1016/j.drudis.2015.02.014 25892456
    [Google Scholar]
  37. Masui K. Kato Y. Sawada T. Mischel P. Shibata N. Molecular and genetic determinants of glioma cell invasion. Int. J. Mol. Sci. 2017 18 12 2609 10.3390/ijms18122609 29207533
    [Google Scholar]
  38. Cheng R. Zhou C. Zhao M. TRIM56-mediated production of type I interferon inhibits intracellular replication of Rickettsia rickettsii. Microbiol. Spectr. 2024 12 4 e03695 e23 10.1128/spectrum.03695‑23 38358243
    [Google Scholar]
  39. Dong Y. Xiong Y. Zhou D. TRIM56 reduces radiosensitization of human glioblastoma by regulating FOXM1-mediated DNA repair. Mol. Neurobiol. 2022 59 9 5312 5325 10.1007/s12035‑022‑02898‑0 35696011
    [Google Scholar]
  40. Yang X. Zhang Y. Xue Z. TRIM56 promotes malignant progression of glioblastoma by stabilizing cIAP1 protein. J. Exp. Clin. Cancer Res. 2022 41 1 336 10.1186/s13046‑022‑02534‑8 36471347
    [Google Scholar]
  41. Lehrich B.M. Delgado E.R. Lipid nanovesicle platforms for hepatocellular carcinoma precision medicine therapeutics: Progress and perspectives. Organogenesis 2024 20 1 2313696 10.1080/15476278.2024.2313696 38357804
    [Google Scholar]
  42. Vogel A. Meyer T. Sapisochin G. Salem R. Saborowski A. Hepatocellular carcinoma. Lancet 2022 400 10360 1345 1362 10.1016/S0140‑6736(22)01200‑4 36084663
    [Google Scholar]
  43. Jemal A. Ward E.M. Johnson C.J. Annual report to the nation on the status of cancer, 1975–2014, Featuring survival. J. Natl. Cancer Inst. 2017 109 9 djx030 10.1093/jnci/djx030 28376154
    [Google Scholar]
  44. Ji F. Liang Y. Fu S. Prognostic value of combined preoperative prognostic nutritional index and body mass index in HCC after hepatectomy. HPB 2017 19 8 695 705 10.1016/j.hpb.2017.04.008 28479010
    [Google Scholar]
  45. Yang Y. Mao F.F. Guo L. Guo W.X. TRIM56 suppresses the malignant development of hepatocellular carcinoma via targeting RBM24 and inactivating the Wnt signaling. Eur. Rev. Med. Pharmacol. Sci. 2021 25 2 722 730 33577026
    [Google Scholar]
  46. Peng Y. Yu J. Liu F. Accumulation of TOX high mobility group box family member 3 promotes the oncogenesis and development of hepatocellular carcinoma through the MAPK signaling pathway. MedComm 2024 5 3 e510 10.1002/mco2.510 38463397
    [Google Scholar]
  47. Hu X. Yuan S. Zhou S. Golgi-protein 73 facilitates vimentin polymerization in hepatocellular carcinoma. Int. J. Biol. Sci. 2023 19 12 3694 3708 10.7150/ijbs.85431 37564210
    [Google Scholar]
  48. Torre L.A. Trabert B. DeSantis C.E. Ovarian cancer statistics, 2018. CA Cancer J. Clin. 2018 68 4 284 296 10.3322/caac.21456 29809280
    [Google Scholar]
  49. Chilimoniuk Z. Rocka A. Stefaniak M. Molecular methods for increasing the effectiveness of ovarian cancer treatment: A systematic review. Future Oncol. 2022 18 13 1627 1650 10.2217/fon‑2021‑0565 35129396
    [Google Scholar]
  50. Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu. Rev. Pathol. 2018 13 1 395 412 10.1146/annurev‑pathol‑020117‑043854 29414248
    [Google Scholar]
  51. Yeung K.T. Yang J. Epithelial–mesenchymal transition in tumor metastasis. Mol. Oncol. 2017 11 1 28 39 10.1002/1878‑0261.12017 28085222
    [Google Scholar]
  52. Zhao L. Zhang P. Su X. Zhang B. The ubiquitin ligase TRIM56 inhibits ovarian cancer progression by targeting vimentin. J. Cell. Physiol. 2018 233 3 2420 2425 10.1002/jcp.26114 28771721
    [Google Scholar]
  53. Zhao L. Wang Z. Zhang P. Yu X. Su X. Poly r(C) Binding protein 1 regulates posttranscriptional expression of the ubiquitin ligase TRIM56 in ovarian cancer. IUBMB Life 2019 71 2 177 182 10.1002/iub.1948 30281912
    [Google Scholar]
  54. Manier S. Liu C.J. Avet-Loiseau H. Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood 2017 129 17 2429 2436 10.1182/blood‑2016‑09‑742296 28213378
    [Google Scholar]
  55. Cowan A.J. Green D.J. Kwok M. Diagnosis and management of multiple myeloma. JAMA 2022 327 5 464 477 10.1001/jama.2022.0003 35103762
    [Google Scholar]
  56. Rajkumar S.V. Multiple myeloma: 2016 update on diagnosis, risk‐stratification, and management. Am. J. Hematol. 2016 91 7 719 734 10.1002/ajh.24402 27291302
    [Google Scholar]
  57. Manier S. Sacco A. Leleu X. Ghobrial I.M. Roccaro A.M. Bone marrow microenvironment in multiple myeloma progression. J. Biomed. Biotechnol. 2012 2012 1 5 10.1155/2012/157496 23093834
    [Google Scholar]
  58. Huang G. Liu X. Zhao X. MiR‐9 promotes multiple myeloma progression by regulating TRIM56/NF‐κB pathway. Cell Biol. Int. 2019 43 11 1223 1233 10.1002/cbin.11104 30637864
    [Google Scholar]
  59. Thakur S.K. Singh D.P. Choudhary J. Lung cancer identification: A review on detection and classification. Cancer Metastasis Rev. 2020 39 3 989 998 10.1007/s10555‑020‑09901‑x 32519151
    [Google Scholar]
  60. Su L. Zhao J. Su H. CircRNAs in lung adenocarcinoma: Diagnosis and therapy. Curr. Gene Ther. 2022 22 1 15 22 34856899
    [Google Scholar]
  61. Le X. Nilsson M. Goldman J. Dual EGFR-VEGF pathway inhibition: A promising strategy for patients with EGFR-mutant NSCLC. J. Thorac. Oncol. 2021 16 2 205 215 10.1016/j.jtho.2020.10.006 33096270
    [Google Scholar]
  62. Yang W. Kang Y. Zhao Q. Herbal formula Yangyinjiedu induces lung cancer cell apoptosis via activation of early growth response 1. J. Cell. Mol. Med. 2019 23 9 6193 6202 10.1111/jcmm.14501 31237749
    [Google Scholar]
  63. Khullar O.V. Liu Y. Gillespie T. Survival after sublobar resection versus lobectomy for clinical stage IA lung cancer. J. Thorac. Oncol. 2015 10 11 1625 1633 10.1097/JTO.0000000000000664 26352534
    [Google Scholar]
  64. Lu K. Sui Y. Fu L. Identification of TRIM56 as a potential biomarker for lung adenocarcinoma. Cancer Manag. Res. 2021 13 2201 2213 10.2147/CMAR.S288111 33707970
    [Google Scholar]
  65. Guan A. Dai Z. Jiang C. PGRMC1 promotes NSCLC stemness phenotypes by disrupting TRIM56-mediated ubiquitination of AHR. Biochim. Biophys. Acta Mol. Basis Dis. 2024 1870 7 167440 10.1016/j.bbadis.2024.167440 39059592
    [Google Scholar]
  66. Gao J. Ao Y.Q. Zhang L.X. Exosomal circZNF451 restrains anti-PD1 treatment in lung adenocarcinoma via polarizing macrophages by complexing with TRIM56 and FXR1. J. Exp. Clin. Cancer Res. 2022 41 1 295 10.1186/s13046‑022‑02505‑z 36209117
    [Google Scholar]
  67. Yi M. Li A. Zhou L. Chu Q. Song Y. Wu K. The global burden and attributable risk factor analysis of acute myeloid leukemia in 195 countries and territories from 1990 to 2017: Estimates based on the global burden of disease study 2017. J. Hematol. Oncol. 2020 13 1 72 10.1186/s13045‑020‑00908‑z 32513227
    [Google Scholar]
  68. Döhner H. Weisdorf D.J. Bloomfield C.D. Acute Myeloid Leukemia. N. Engl. J. Med. 2015 373 12 1136 1152 10.1056/NEJMra1406184 26376137
    [Google Scholar]
  69. Shallis R.M. Wang R. Davidoff A. Ma X. Zeidan A.M. Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges. Blood Rev. 2019 36 70 87 10.1016/j.blre.2019.04.005 31101526
    [Google Scholar]
  70. Yan H. Wang Z. Sun Y. Hu L. Bu P. Cytoplasmic NEAT1 suppresses AML stem cell self‐renewal and leukemogenesis through inactivation of Wnt signaling. Adv. Sci. 2021 8 22 2100914 10.1002/advs.202100914 34609794
    [Google Scholar]
  71. Fu L. Zhou X. Jiao Q. Chen X. The functions of TRIM56 in antiviral innate immunity and tumorigenesis. Int. J. Mol. Sci. 2023 24 5 5046 10.3390/ijms24055046 36902478
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947374534250410084854
Loading
/content/journals/cctr/10.2174/0115733947374534250410084854
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: function ; therapeutic target ; TRIM56 ; structure ; mechanism ; tumour
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test