Skip to content
2000
image of Dostarlimab Unveiled: Breakthroughs in Colorectal Cancer Related to Genomic Aberration Coupled with ncRNA Functions

Abstract

Introduction

Colorectal cancer (CRC) ranks among the most prevalent malignancies globally, driven by a complex interplay of genetic, molecular, and environmental factors. Dostarlimab, a humanized monoclonal antibody targeting the programmed cell death protein-1 (PD-1) receptor, has emerged as a breakthrough immunotherapy for CRC, particularly in mismatch repair-deficient (dMMR) subtypes. Its ability to enhance anti-tumor immune responses has positioned it as a promising therapeutic agent, with ongoing research exploring its efficacy across CRC subtypes and in combination therapies.

Methods

This study investigates the therapeutic potential of Dostarlimab in CRC management by analyzing scientific data collected from various literature databases, including Google Scholar, Scopus, and PubMed. The review encompasses the genetic and molecular underpinnings of CRC, such as mutations in APC, KRAS, and TP53, and the regulatory roles of non-coding RNAs (ncRNAs). Detailed pharmacological mechanisms, clinical trial outcomes, and comparative efficacy of Dostarlimab against other immunotherapies were evaluated to assess its biological and clinical significance. Analytical aspects of Dostarlimab’s pharmacokinetics and pharmacodynamics were also explored.

Results

Scientific data analysis underscores the pivotal role of Dostarlimab in CRC treatment, particularly for dMMR/MSI-H subtypes, where it achieved a 100% clinical complete response rate in a phase II trial for locally advanced rectal cancer. The drug’s mechanism involves PD-1 inhibition, enhancing T-cell-mediated tumor destruction. Genomic aberrations (., KRAS, BRAF, TP53 mutations) and ncRNAs (., miRNAs and lncRNAs) were identified as key influencers of CRC prognosis and potential therapeutic targets. Dostarlimab exhibits significant efficacy in dMMR/MSI-H CRC, with ongoing trials assessing its impact on mismatch repair-proficient (pMMR) subtypes. Its favorable pharmacokinetic profile (., half-life of 25.4 days) and tolerable safety profile further enhance its clinical utility. Comparative studies with pembrolizumab and nivolumab highlight Dostarlimab’s superior response rates in specific CRC cohorts.

Conclusion

The scientific data from this review affirm the transformative potential of Dostarlimab in CRC management, offering hope for improved outcomes through personalized immunotherapy. Its integration with genetic and molecular insights paves the way for targeted CRC therapies.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947364929250625060715
2025-07-15
2025-10-18
Loading full text...

Full text loading...

References

  1. Parkin D.M. Bray F. Ferlay J. Pisani P. Global cancer statistics, 2002. CA Cancer J. Clin. 2005 55 2 74 108 10.3322/canjclin.55.2.74 15761078
    [Google Scholar]
  2. Valastyan S. Weinberg R.A. Tumor metastasis: Molecular insights and evolving paradigms. Cell 2011 147 2 275 292 10.1016/j.cell.2011.09.024 22000009
    [Google Scholar]
  3. Marley A.R. Nan H. Epidemiology of colorectal cancer. Int. J. Mol. Epidemiol. Genet. 2016 7 3 105 114 27766137
    [Google Scholar]
  4. Laghi A. Computed tomography colonography in 2014: An update on technique and indications. World J. Gastroenterol. 2014 20 45 16858 16867 10.3748/wjg.v20.i45.16858 25492999
    [Google Scholar]
  5. Dacal Rivas A. Quintas Lorenzo P. Francisco González M. Cubiella Fernández J. Alonso Docampo M.N. Fernández Seara J. Effect of the implementation of a program to improve the resolution capacity of primary care on the adequacy and delay of endoscopic examinations. Gastroenterol. Hepatol. 2011 34 4 254 261 10.1016/j.gastrohep.2011.02.003 21474204
    [Google Scholar]
  6. Quintas Lorenzo P. Dacal Rivas A. González M.F. Referral to gastroenterology consultations from primary care: evaluation of two programs. Gac. Sanit. 2011 25 6 468 473 10.1016/j.gaceta.2011.04.009 21733599
    [Google Scholar]
  7. Ekbom A. Helmick C. Zack M. Adami H.O. Ulcerative colitis and colorectal cancer. A population-based study. N. Engl. J. Med. 1990 323 18 1228 1233 10.1056/NEJM199011013231802 2215606
    [Google Scholar]
  8. Eaden J.A. Abrams K.R. Mayberry J.F. The risk of colorectal cancer in ulcerative colitis: A meta-analysis. Gut 2001 48 4 526 535 10.1136/gut.48.4.526 11247898
    [Google Scholar]
  9. Lutgens M.W.M.D. van Oijen M.G.H. van der Heijden G.J.M.G. Vleggaar F.P. Siersema P.D. Oldenburg B. Declining risk of colorectal cancer in inflammatory bowel disease: An updated meta-analysis of population-based cohort studies. Inflamm. Bowel Dis. 2013 19 4 789 799 10.1097/MIB.0b013e31828029c0 23448792
    [Google Scholar]
  10. Siegel R. Ma J. Zou Z. Jemal A. Cancer statistics, 2014. CA Cancer J. Clin. 2014 64 1 9 29 10.3322/caac.21208 24399786
    [Google Scholar]
  11. Iacopetta B. Are there two sides to colorectal cancer? Int. J. Cancer 2002 101 5 403 408 10.1002/ijc.10635 12216066
    [Google Scholar]
  12. Gervaz P. Bouzourene H. Cerottini J.P. Dukes B colorectal cancer. Dis. Colon Rectum 2001 44 3 364 372 10.1007/BF02234734 11289282
    [Google Scholar]
  13. Araki K. Furuya Y. Kobayashi M. Matsuura K. Ogata T. Isozaki H. Comparison of mucosal microvasculature between the proximal and distal human colon. J. Electron Microsc 1996 45 3 202 206 10.1093/oxfordjournals.jmicro.a023433 8765715
    [Google Scholar]
  14. Yuan M. Itzkowitz S.H. Palekar A. Distribution of blood group antigens A, B, H, Lewisa, and Lewisb in human normal, fetal, and malignant colonic tissue. Cancer Res. 1985 45 9 4499 4511 4028031
    [Google Scholar]
  15. Wolf B.C. Salem R.R. Sears H.F. The expression of colorectal carcinoma-associated antigens in the normal colonic mucosa. An immunohistochemical analysis of regional distribution. Am. J. Pathol. 1989 135 1 111 119 2476033
    [Google Scholar]
  16. Mills S.J. Mathers J.C. Chapman P.D. Burn J. Gunn A. Colonic crypt cell proliferation state assessed by whole crypt microdissection in sporadic neoplasia and familial adenomatous polyposis. Gut 2001 48 1 41 46 10.1136/gut.48.1.41 11115821
    [Google Scholar]
  17. Anti M. Armuzzi A. Morini S. Severe cell proliferation and apoptosis imbalance in the left colon and the rectosigmoid tract in subjects with a history of large adenomas. Gut 2001 48 2 238 246 10.1136/gut.48.2.238 11156647
    [Google Scholar]
  18. Liu L.U. Holt P.R. Krivosheyev V. Moss S.F. Human right and left colon differ in epithelial cell apoptosis and in expression of Bak, a pro-apoptotic Bcl-2 homologue. Gut 1999 45 1 45 50 10.1136/gut.45.1.45 10369703
    [Google Scholar]
  19. Agents A. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda, MD National Institute of Diabetes and Digestive and Kidney Diseases 2017 31643176
    [Google Scholar]
  20. West D.W. Slattery M.L. Robison L.M. Dietary intake and colon cancer: Sex- and anatomic site-specific associations. Am. J. Epidemiol. 1989 130 5 883 894 10.1093/oxfordjournals.aje.a115421 2554725
    [Google Scholar]
  21. de Verdier M.G. London S. Reproductive factors, exogenous female hormones, and colorectal cancer by subsite. Cancer Causes Control 1992 3 4 355 360 10.1007/BF00146889 1617123
    [Google Scholar]
  22. Prihartono N. Palmer J.R. Louik C. Shapiro S. Rosenberg L. A case-control study of use of postmenopausal female hormone supplements in relation to the risk of large bowel cancer. Cancer Epidemiol. Biomarkers Prev. 2000 9 4 443 447 10794491
    [Google Scholar]
  23. Murphy N. Moreno V. Hughes D.J. Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol. Aspects Med. 2019 69 2 9 10.1016/j.mam.2019.06.005 31233770
    [Google Scholar]
  24. Song M. Chan A.T. Environmental factors, gut microbiota, and colorectal cancer prevention. Clin. Gastroenterol. Hepatol. 2019 17 2 275 289 10.1016/j.cgh.2018.07.012 30031175
    [Google Scholar]
  25. Bishehsari F. Mahdavinia M. Vacca M. Malekzadeh R. Mariani-Costantini R. Epidemiological transition of colorectal cancer in developing countries: Environmental factors, molecular pathways, and opportunities for prevention. World J. Gastroenterol. 2014 20 20 6055 6072 10.3748/wjg.v20.i20.6055 24876728
    [Google Scholar]
  26. Pfeifer G.P. Environmental exposures and mutational patterns of cancer genomes. Genome Med. 2010 2 8 54 10.1186/gm175 20707934
    [Google Scholar]
  27. de la Chapelle A. Genetic predisposition to colorectal cancer. Nat. Rev. Cancer 2004 4 10 769 780 10.1038/nrc1453 15510158
    [Google Scholar]
  28. Brennan P. Gene–environment interaction and aetiology of cancer: What does it mean and how can we measure it? Carcinogenesis 2002 23 3 381 387 10.1093/carcin/23.3.381 11895852
    [Google Scholar]
  29. Bufill J.A. Colorectal cancer: Evidence for distinct genetic categories based on proximal or distal tumor location. Ann. Intern. Med. 1990 113 10 779 788 10.7326/0003‑4819‑113‑10‑779 2240880
    [Google Scholar]
  30. Lynch H.T. Watson P. Lanspa S.J. Natural history of colorectal cancer in hereditary nonpolyposis colorectal cancer (Lynch syndromes I and II). Dis. Colon Rectum 1988 31 6 439 444 10.1007/BF02552613 3378468
    [Google Scholar]
  31. Kervinen K. Södervik H. Mäkelä J. Is the development of adenoma and carcinoma in proximal colon related to apolipoprotein E phenotype? Gastroenterology 1996 110 6 1785 1790 10.1053/gast.1996.v110.pm8964404 8964404
    [Google Scholar]
  32. Bara J. Nardelli J. Gadenne C. Prade M. Burtin P. Differences in the expression of mucus-associated antigens between proximal and distal human colon adenocarcinomas. Br. J. Cancer 1984 49 4 495 501 10.1038/bjc.1984.77 6324842
    [Google Scholar]
  33. Reichmann A. Levin B. Martin P. Human large‐bowel cancer: Correlation of clinical and histopathological features with banded chromosomes. Int. J. Cancer 1982 29 6 625 629 10.1002/ijc.2910290605 7107065
    [Google Scholar]
  34. Rothberg P.G. Spandorfer J.M. Erisman M.D. Evidence that c-myc expression defines two genetically distinct forms of colorectal adenocarcinoma. Br. J. Cancer 1985 52 4 629 632 10.1038/bjc.1985.237 4063140
    [Google Scholar]
  35. Messa C. Russo F. Gabriella Caruso M. Di Leo A. EGF, TGF-alpha, and EGF-R in human colorectal adenocarcinoma. Acta Oncol. 1998 37 3 285 289 10.1080/028418698429595 9677101
    [Google Scholar]
  36. Dimberg J. Samuelsson A. Hugander A. Söderkvist P. Differential expression of cyclooxygenase 2 in human colorectal cancer. Gut 1999 45 5 730 732 10.1136/gut.45.5.730 10517910
    [Google Scholar]
  37. Popivanova B.K. Kitamura K. Wu Y. Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis. J. Clin. Invest. 2008 118 2 560 570 10.1172/JCI32453 18219394
    [Google Scholar]
  38. Kim S. Keku T.O. Martin C. Circulating levels of inflammatory cytokines and risk of colorectal adenomas. Cancer Res. 2008 68 1 323 328 10.1158/0008‑5472.CAN‑07‑2924 18172326
    [Google Scholar]
  39. Ullman T.A. Itzkowitz S.H. Intestinal inflammation and cancer. Gastroenterology 2011 140 6 1807 1816.e1 10.1053/j.gastro.2011.01.057 21530747
    [Google Scholar]
  40. Triantafillidis J.K. Nasioulas G. Kosmidis P.A. Colorectal cancer and inflammatory bowel disease: Epidemiology, risk factors, mechanisms of carcinogenesis and prevention strategies. Anticancer Res. 2009 29 7 2727 2737 19596953
    [Google Scholar]
  41. Kim E.R. Chang D.K. Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis. World J. Gastroenterol. 2014 20 29 9872 9881 10.3748/wjg.v20.i29.9872 25110418
    [Google Scholar]
  42. Robles A.I. Traverso G. Zhang M. Whole-exome sequencing analyses of inflammatory bowel disease−associated colorectal cancers. Gastroenterology 2016 150 4 931 943 10.1053/j.gastro.2015.12.036 26764183
    [Google Scholar]
  43. Burmer G.C. Rabinovitch P.S. Haggitt R.C. Neoplastic progression in ulcerative colitis: Histology, DNA content, and loss of a p53 allele. Gastroenterology 1992 103 5 1602 1610 10.1016/0016‑5085(92)91184‑6 1358743
    [Google Scholar]
  44. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012 487 7407 330 337 10.1038/nature11252 22810696
    [Google Scholar]
  45. Brocardo M. Henderson B.R. APC shuttling to the membrane, nucleus and beyond. Trends Cell Biol. 2008 18 12 587 596 10.1016/j.tcb.2008.09.002 18848448
    [Google Scholar]
  46. Herzig D.O. Tsikitis V.L. Molecular markers for colon diagnosis, prognosis and targeted therapy. J. Surg. Oncol. 2015 111 1 96 102 10.1002/jso.23806 25297801
    [Google Scholar]
  47. Rennoll S. Yochum G. Regulation of MYC gene expression by aberrant Wnt/β-catenin signaling in colorectal cancer. World J. Biol. Chem. 2015 6 4 290 300 10.4331/wjbc.v6.i4.290 26629312
    [Google Scholar]
  48. Toon C.W. Chou A. Clarkson A. Immunohistochemistry for myc predicts survival in colorectal cancer. PLoS One 2014 9 2 e87456 10.1371/journal.pone.0087456 24503701
    [Google Scholar]
  49. Li W. Qiu T. Zhi W. Colorectal carcinomas with KRAS codon 12 mutation are associated with more advanced tumor stages. BMC Cancer 2015 15 1 340 10.1186/s12885‑015‑1345‑3 25929517
    [Google Scholar]
  50. Yaeger R. Cercek A. O’Reilly E.M. Pilot trial of combined BRAF and EGFR inhibition in BRAF-mutant metastatic colorectal cancer patients. Clin. Cancer Res. 2015 21 6 1313 1320 10.1158/1078‑0432.CCR‑14‑2779 25589621
    [Google Scholar]
  51. Day F. Muranyi A. Singh S. A mutant BRAF V600E-specific immunohistochemical assay: Correlation with molecular mutation status and clinical outcome in colorectal cancer. Target. Oncol. 2015 10 1 99 109 10.1007/s11523‑014‑0319‑8 24859797
    [Google Scholar]
  52. Atreya C.E. Sangale Z. Xu N. PTEN expression is consistent in colorectal cancer primaries and metastases and associates with patient survival. Cancer Med. 2013 2 4 496 506 10.1002/cam4.97 24156022
    [Google Scholar]
  53. Sarli L. Bottarelli L. Bader G. Association between recurrence of sporadic colorectal cancer, high level of microsatellite instability, and loss of heterozygosity at chromosome 18q. Dis. Colon Rectum 2004 47 9 1467 1482 10.1007/s10350‑004‑0628‑6 15486743
    [Google Scholar]
  54. Asangani I.A. Rasheed S A K. Nikolova D.A. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008 27 15 2128 2136 10.1038/sj.onc.1210856 17968323
    [Google Scholar]
  55. Song Y. Xu Y. Wang Z. MicroRNA‐148b suppresses cell growth by targeting cholecystokinin‐2 receptor in colorectal cancer. Int. J. Cancer 2012 131 5 1042 1051 10.1002/ijc.26485 22020560
    [Google Scholar]
  56. Lv H. Zhang Z. Wang Y. Li C. Gong W. Wang X. MicroRNA-92a promotes colorectal cancer cell growth and migration by inhibiting KLF4. Oncol. Res. 2016 23 6 283 290 10.3727/096504016X14562725373833 27131314
    [Google Scholar]
  57. Noguchi T. Toiyama Y. Kitajima T. miRNA-503 promotes tumor progression and is associated with early recurrence and poor prognosis in human colorectal cancer. Oncology 2016 90 4 221 231 10.1159/000444493 26999740
    [Google Scholar]
  58. Zhang F. Luo Y. Shao Z. MicroRNA-187, a downstream effector of TGFβ pathway, suppresses Smad-mediated epithelial–mesenchymal transition in colorectal cancer. Cancer Lett. 2016 373 2 203 213 10.1016/j.canlet.2016.01.037 26820227
    [Google Scholar]
  59. Wang L. Jiang C. Li D. MicroRNA-497 inhibits tumor growth and increases chemosensitivity to 5-fluorouracil treatment by targeting KSR1. Oncotarget 2016 7 3 2660 2671 10.18632/oncotarget.6545 26673620
    [Google Scholar]
  60. Zhang J. Bian Z. Zhou J. MicroRNA-638 inhibits cell proliferation by targeting phospholipase D1 in human gastric carcinoma. Protein Cell 2015 6 9 680 688 10.1007/s13238‑015‑0187‑8 26250158
    [Google Scholar]
  61. Chen M.B. Yang L. Lu P.H. MicroRNA-101 down-regulates sphingosine kinase 1 in colorectal cancer cells. Biochem. Biophys. Res. Commun. 2015 463 4 954 960 10.1016/j.bbrc.2015.06.041 26071354
    [Google Scholar]
  62. Bai R. Weng C. Dong H. Li S. Chen G. Xu Z. Micro RNA ‐409‐3p suppresses colorectal cancer invasion and metastasis partly by targeting GAB1 expression. Int. J. Cancer 2015 137 10 2310 2322 10.1002/ijc.29607 25991585
    [Google Scholar]
  63. Tsang W.P. Ng E.K.O. Ng S.S.M. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis 2010 31 3 350 358 10.1093/carcin/bgp181 19926638
    [Google Scholar]
  64. Ohana P. Schachter P. Ayesh B. Regulatory sequences of H19 and IGF2 genes in DNA‐based therapy of colorectal rat liver metastases. J. Gene Med. 2005 7 3 366 374 10.1002/jgm.670 15521051
    [Google Scholar]
  65. Matouk I.J. Abbasi I. Hochberg A. Galun E. Dweik H. Akkawi M. Highly upregulated in liver cancer noncoding RNA is overexpressed in hepatic colorectal metastasis. Eur. J. Gastroenterol. Hepatol. 2009 21 6 688 692 10.1097/MEG.0b013e328306a3a2 19445043
    [Google Scholar]
  66. Kim T. Cui R. Jeon Y.J. Long-range interaction and correlation between MYC enhancer and oncogenic long noncoding RNA CARLo-5. Proc. Natl. Acad. Sci. USA 2014 111 11 4173 4178 10.1073/pnas.1400350111 24594601
    [Google Scholar]
  67. Graham L.D. Pedersen S.K. Brown G.S. Colorectal neoplasia differentially expressed (CRNDE), a novel gene with elevated expression in colorectal adenomas and adenocarcinomas. Genes Cancer 2011 2 8 829 840 10.1177/1947601911431081 22393467
    [Google Scholar]
  68. Yang F. Zhang H. Mei Y. Wu M. Reciprocal regulation of HIF-1α and lincRNA-p21 modulates the Warburg effect. Mol. Cell 2014 53 1 88 100 10.1016/j.molcel.2013.11.004 24316222
    [Google Scholar]
  69. Popat S. Houlston R.S. A systematic review and meta-analysis of the relationship between chromosome 18q genotype, DCC status and colorectal cancer prognosis. Eur. J. Cancer 2005 41 14 2060 2070 10.1016/j.ejca.2005.04.039 16125380
    [Google Scholar]
  70. Prensner J.R. Iyer M.K. Balbin O.A. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat. Biotechnol. 2011 29 8 742 749 10.1038/nbt.1914 21804560
    [Google Scholar]
  71. Li L. Sun R. Liang Y. Association between polymorphisms in long non-coding RNA PRNCR1 in 8q24 and risk of colorectal cancer. J. Exp. Clin. Cancer Res. 2013 32 1 104 10.1186/1756‑9966‑32‑104 24330491
    [Google Scholar]
  72. Yang F. Huo X. Yuan S. Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol. Cell 2013 49 6 1083 1096 10.1016/j.molcel.2013.01.010 23395002
    [Google Scholar]
  73. Costa B. Vale N. Dostarlimab: A review. Biomolecules 2022 12 8 1031 10.3390/biom12081031 35892341
    [Google Scholar]
  74. Cicala C.M. Musacchio L. Scambia G. Lorusso D. Dostarlimab: From preclinical investigation to drug approval and future directions. Hum. Vaccin. Immunother. 2023 19 1 2178220 10.1080/21645515.2023.2178220 36762991
    [Google Scholar]
  75. Popat S. Zhao D. Chen Z. Relationship between chromosome 18q status and colorectal cancer prognosis: A prospective, blinded analysis of 280 patients. Anticancer Res. 2007 27 1B 627 633 17348452
    [Google Scholar]
  76. Munro A.J. Lain S. Lane D.P. P53 abnormalities and outcomes in colorectal cancer: A systematic review. Br. J. Cancer 2005 92 3 434 444 10.1038/sj.bjc.6602358 15668707
    [Google Scholar]
  77. Jia Z. An J. Liu Z. Zhang F. Non-coding RNAs in colorectal cancer: Their functions and mechanisms. Front. Oncol. 2022 12 783079 10.3389/fonc.2022.783079 35186731
    [Google Scholar]
  78. Kita Y. Yonemori K. Osako Y. Noncoding RNA and colorectal cancer: Its epigenetic role. J. Hum. Genet. 2017 62 1 41 47 10.1038/jhg.2016.66 27278790
    [Google Scholar]
  79. Lin Y. Zhao W. Pu R. Long non coding RNAs as diagnostic and prognostic biomarkers for colorectal cancer (Review). Oncol. Lett. 2024 28 4 486 10.3892/ol.2024.14619 39185489
    [Google Scholar]
  80. Rajtmajerová M. Trailin A. Liška V. Hemminki K. Ambrozkiewicz F. Long non-coding RNA and microRNA interplay in colorectal cancer and their effect on the tumor microenvironment. Cancers 2022 14 21 5450 10.3390/cancers14215450 36358867
    [Google Scholar]
  81. Mattick JS Makunin IV Non-coding RNA. Hum Mol Genet 2006 15 R17 29.(Suppl. 1) 10.1093/hmg/ddl046 16651366
    [Google Scholar]
  82. Morris K.V. Mattick J.S. The rise of regulatory RNA. Nat. Rev. Genet. 2014 15 6 423 437 10.1038/nrg3722 24776770
    [Google Scholar]
  83. Nie L. Wu H.J. Hsu J.M. Long non-coding RNAs: Versatile master gene expression regulators and crucial cancer players. Am. J. Transl. Res. 2012 4 2 127 150 22611467
    [Google Scholar]
  84. Hamilton M.J. Young M.D. Sauer S. Martinez E. The interplay of long non-coding RNAs and MYC in cancer. AIMS Biophys. 2015 2 4 794 809 10.3934/biophy.2015.4.794 27077133
    [Google Scholar]
  85. Gibb E.A. Brown C.J. Lam W.L. The functional role of long non-coding RNA in human carcinomas. Mol. Cancer 2011 10 1 38 10.1186/1476‑4598‑10‑38 21489289
    [Google Scholar]
  86. Ahmed F.E. Ahmed N.C. Vos P.W. Diagnostic microRNA markers to screen for sporadic human colon cancer in stool: I. Proof of principle. Cancer Genomics Proteomics 2013 10 3 93 113 23741026
    [Google Scholar]
  87. Ursell L.K. Metcalf J.L. Parfrey L.W. Knight R. Defining the human microbiome. Nutr. Rev. 2012 70 Suppl. 1 S38 S44 10.1111/j.1753‑4887.2012.00493.x 22861806
    [Google Scholar]
  88. Scarpellini E. Ianiro G. Attili F. Bassanelli C. De Santis A. Gasbarrini A. The human gut microbiota and virome: Potential therapeutic implications. Dig. Liver Dis. 2015 47 12 1007 1012 10.1016/j.dld.2015.07.008 26257129
    [Google Scholar]
  89. Stearns J.C. Lynch M.D.J. Senadheera D.B. Bacterial biogeography of the human digestive tract. Sci. Rep. 2011 1 1 170 10.1038/srep00170 22355685
    [Google Scholar]
  90. Rajilić-Stojanović M. Smidt H. De Vos W.M. Diversity of the human gastrointestinal tract microbiota revisited. Environ. Microbiol. 2007 9 9 2125 2136 10.1111/j.1462‑2920.2007.01369.x 17686012
    [Google Scholar]
  91. Yatsunenko T. Rey F.E. Manary M.J. Human gut microbiome viewed across age and geography. Nature 2012 486 7402 222 227 10.1038/nature11053 22699611
    [Google Scholar]
  92. Engen P.A. Green S.J. Voigt R.M. Forsyth C.B. Keshavarzian A. The gastrointestinal microbiome: Alcohol effects on the composition of intestinal microbiota. Alcohol Res. 2015 37 2 223 236 26695747
    [Google Scholar]
  93. Xu Z. Knight R. Dietary effects on human gut microbiome diversity. Br. J. Nutr. 2015 113 S1 S1 S5 10.1017/S0007114514004127 25498959
    [Google Scholar]
  94. Davenport E.R. Mizrahi-Man O. Michelini K. Barreiro L.B. Ober C. Gilad Y. Seasonal variation in human gut microbiome composition. PLoS One 2014 9 3 e90731 10.1371/journal.pone.0090731 24618913
    [Google Scholar]
  95. Cox M.J. Cookson W.O.C.M. Moffatt M.F. Sequencing the human microbiome in health and disease. Hum. Mol. Genet. 2013 22 R1 R88 R94 10.1093/hmg/ddt398 23943792
    [Google Scholar]
  96. Garza D.R. Dutilh B.E. From culture to uncultured genome sequences: Metagenomics and modeling microbial ecosystems. Cellular and molecular life sciences. Cell. Mol. Life Sci. 2015 72 22 4287 4308 10.1007/s00018‑015‑2004‑1 26254872
    [Google Scholar]
  97. Krishnan S. Alden N. Lee K. Pathways and functions of gut microbiota metabolism impacting host physiology. Curr. Opin. Biotechnol. 2015 36 137 145 10.1016/j.copbio.2015.08.015 26340103
    [Google Scholar]
  98. Donohoe D.R. Garge N. Zhang X. Sun W. O’Connell T.M. Bunger M.K. Bultman S.J. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metabolism 2014 13 5 517 526 10.1016/j.cmet.2011.02.018
    [Google Scholar]
  99. Okręglicka K. Health effects of changes in the structure of dietary macronutrients intake in western societies. Rocz. Panstw. Zakl. Hig. 2015 66 2 97 105 26024397
    [Google Scholar]
  100. Aykan N.F. Red meat and colorectal cancer. Oncol. Rev. 2015 9 1 288 10.4081/oncol.2015.288 26779313
    [Google Scholar]
  101. Bowers P.M. Horlick R.A. Neben T.Y. Coupling mammalian cell surface display with somatic hypermutation for the discovery and maturation of human antibodies. Proc. Natl. Acad. Sci. USA 2011 108 51 20455 20460 10.1073/pnas.1114010108 22158898
    [Google Scholar]
  102. Horlick R.A. Macomber J.L. Bowers P.M. Simultaneous surface display and secretion of proteins from mammalian cells facilitate efficient in vitro selection and maturation of antibodies. J. Biol. Chem. 2013 288 27 19861 19869 10.1074/jbc.M113.452482 23689374
    [Google Scholar]
  103. Alkholifi F.K. Alsaffar R.M. Dostarlimab an inhibitor of PD-1/PD-L1: A new paradigm for the treatment of cancer. Medicina 2022 58 11 1572 10.3390/medicina58111572
    [Google Scholar]
  104. O’Keefe S.J.D. Li J.V. Lahti L. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 2015 6 1 6342 10.1038/ncomms7342 25919227
    [Google Scholar]
  105. Hofmanova J. Hyrslova Vaculova A. Kozubik A. Regulation of the metabolism of polyunsaturated Fatty acids and butyrate in colon cancer cells. Curr. Pharm. Biotechnol. 2013 14 3 274 288 10.2174/1389201011314030004 22201596
    [Google Scholar]
  106. Fung K.Y.C. Cosgrove L. Lockett T. Head R. Topping D.L. A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br. J. Nutr. 2012 108 5 820 831 10.1017/S0007114512001948 22676885
    [Google Scholar]
  107. Li W. Chang J. Wang S. miRNA-99b-5p suppresses liver metastasis of colorectal cancer by down-regulating mTOR. Oncotarget 2015 6 27 24448 24462 10.18632/oncotarget.4423 26259252
    [Google Scholar]
  108. Donohoe D.R. Holley D. Collins L.B. A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner. Cancer Discov. 2014 4 12 1387 1397 10.1158/2159‑8290.CD‑14‑0501 25266735
    [Google Scholar]
  109. Klampfer L. Cytokines, inflammation and colon cancer. Curr. Cancer Drug Targets 2011 11 4 451 464 10.2174/156800911795538066 21247378
    [Google Scholar]
  110. Syn N.L. Teng M.W.L. Mok T.S.K. Soo R.A. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017 18 12 e731 e741 10.1016/S1470‑2045(17)30607‑1 29208439
    [Google Scholar]
  111. Kumar S. Ghosh S. Sharma G. Preclinical characterization of dostarlimab, a therapeutic anti-PD-1 antibody with potent activity to enhance immune function in in vitro cellular assays and in vivo animal models. MAbs 2021 13 1 1954136 10.1080/19420862.2021.1954136 34313545
    [Google Scholar]
  112. Bowers P.M. Neben T.Y. Tomlinson G.L. Humanization of antibodies using heavy chain complementarity-determining region 3 grafting coupled with in vitro somatic hypermutation. J. Biol. Chem. 2013 288 11 7688 7696 10.1074/jbc.M112.445502 23355464
    [Google Scholar]
  113. Yap T.A. Bessudo A. Hamilton E. IOLite: phase 1b trial of doublet/triplet combinations of dostarlimab with niraparib, carboplatin–paclitaxel, with or without bevacizumab in patients with advanced cancer. J. Immunother. Cancer 2022 10 3 e003924 10.1136/jitc‑2021‑003924 35332062
    [Google Scholar]
  114. Melhem M. Hanze E. Lu S. Alskär O. Visser S. Gandhi Y. Population pharmacokinetics and exposure–response of anti‐programmed cell death protein‐1 monoclonal antibody dostarlimab in advanced solid tumours. Br. J. Clin. Pharmacol. 2022 88 9 4142 4154 10.1111/bcp.15339 35357027
    [Google Scholar]
  115. Markham A. Dostarlimab: First approval. Drugs 2021 81 10 1213 1219 10.1007/s40265‑021‑01539‑5 34106455
    [Google Scholar]
  116. Balakrishnan P. Ajayan S. Mukkudakkattu S. Nechiyil K. Nambi N. Review of unique ophthalmic formulations in Vaidya Manorama: A traditional Kerala Ayurveda literature. J. Ayurveda Integr. Med. 2022 13 2 100576 10.1016/j.jaim.2022.100576 35661934
    [Google Scholar]
  117. Boland C.R. Goel A. Microsatellite instability in colorectal cancer. Gastroenterology 2010 138 6 2073 2087.e3 10.1053/j.gastro.2009.12.064 20420947
    [Google Scholar]
  118. Ward R. Meagher A. Tomlinson I. Microsatellite instability and the clinicopathological features of sporadic colorectal cancer. Gut 2001 48 6 821 829 10.1136/gut.48.6.821 11358903
    [Google Scholar]
  119. Sinicrope F.A. Foster N.R. Thibodeau S.N. DNA mismatch repair status and colon cancer recurrence and survival in clinical trials of 5-fluorouracil-based adjuvant therapy. J. Natl. Cancer Inst. 2011 103 11 863 875 10.1093/jnci/djr153 21597022
    [Google Scholar]
  120. Giannakis M. Mu X.J. Shukla S.A. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 2016 15 4 857 865 10.1016/j.celrep.2016.03.075 27149842
    [Google Scholar]
  121. Venderbosch S. Nagtegaal I.D. Maughan T.S. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: A pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin. Cancer Res. 2014 20 20 5322 5330 10.1158/1078‑0432.CCR‑14‑0332 25139339
    [Google Scholar]
  122. Cervantes A. Adam R. Roselló S. Metastatic colorectal cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023 34 1 10 32 10.1016/j.annonc.2022.10.003 36307056
    [Google Scholar]
  123. Lipson E.J. Sharfman W.H. Drake C.G. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin. Cancer Res. 2013 19 2 462 468 10.1158/1078‑0432.CCR‑12‑2625 23169436
    [Google Scholar]
  124. Le D.T. Durham J.N. Smith K.N. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017 357 6349 409 413 10.1126/science.aan6733 28596308
    [Google Scholar]
  125. Overman M.J. McDermott R. Leach J.L. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol. 2017 18 9 1182 1191 10.1016/S1470‑2045(17)30422‑9 28734759
    [Google Scholar]
  126. André T. Shiu K.K. Kim T.W. Pembrolizumab in microsatellite-instability–high advanced colorectal cancer. N. Engl. J. Med. 2020 383 23 2207 2218 10.1056/NEJMoa2017699 33264544
    [Google Scholar]
  127. Shuvo P.A. Tahsin A. Rahman M.M. Emran T.B. Dostarlimab: The miracle drug for the treatment of colorectal cancer. Ann. Med. Surg. 2022 81 104493 10.1016/j.amsu.2022.104493
    [Google Scholar]
  128. de Wilt J. Vermaas M. Ferenschild F. Verhoef C. Management of locally advanced primary and recurrent rectal cancer. Clin. Colon Rectal Surg. 2007 20 3 255 264 10.1055/s‑2007‑984870 20011207
    [Google Scholar]
  129. Lau D. Kalaitzaki E. Church D.N. Rationale and design of the POLEM trial: Avelumab plus fluoropyrimidine-based chemotherapy as adjuvant treatment for stage III mismatch repair deficient or POLE exonuclease domain mutant colon cancer: A phase III randomised study. ESMO Open 2020 5 1 e000638 10.1136/esmoopen‑2019‑000638 32079623
    [Google Scholar]
  130. Chalabi M. Fanchi L.F. Dijkstra K.K. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 2020 26 4 566 576 10.1038/s41591‑020‑0805‑8 32251400
    [Google Scholar]
  131. Cercek A. Lumish M. Sinopoli J. PD-1 blockade in mismatch repair–deficient, locally advanced rectal cancer. N. Engl. J. Med. 2022 386 25 2363 2376 10.1056/NEJMoa2201445 35660797
    [Google Scholar]
  132. Mulet-Margalef N. Linares J. Badia-Ramentol J. Challenges and therapeutic opportunities in the dMMR/MSI-H colorectal cancer landscape. Cancers 2023 15 4 1022 10.3390/cancers15041022 36831367
    [Google Scholar]
  133. Redondo A. Gallego A. Mendiola M. Dostarlimab for the treatment of advanced endometrial cancer. Expert Rev. Clin. Pharmacol. 2022 15 1 1 9 10.1080/17512433.2022.2044791 35184615
    [Google Scholar]
  134. Singh V. Sheikh A. Abourehab M. Kesharwani P. Dostarlimab as a miracle drug: Rising hope against cancer treatment. Biosensors 2022 12 8 617 10.3390/bios12080617 36005013
    [Google Scholar]
  135. Swaminathan S. Padmapriyadarsini C. Venkatesan P. Efficacy and safety of once-daily nevirapine- or efavirenz-based antiretroviral therapy in HIV-associated tuberculosis: A randomized clinical trial. Clin. Infect. Dis. 2011 53 7 716 724 10.1093/cid/cir447 21890776
    [Google Scholar]
  136. Passiglia F. Bironzo P. Righi L. A prospective phase II single-arm study of niraparib plus dostarlimab in patients with advanced non–small-cell lung cancer and/or malignant pleural mesothelioma, positive for PD-L1 expression and germline or somatic mutations in the DNA repair genes: Rationale and study design. Clin. Lung Cancer 2021 22 1 e63 e66 10.1016/j.cllc.2020.07.014 32917522
    [Google Scholar]
  137. Yamakuchi M. Ferlito M. Lowenstein C.J. miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl. Acad. Sci. USA 2008 105 36 13421 13426 10.1073/pnas.0801613105 18755897
    [Google Scholar]
  138. Lu G. Sun Y. An S. MicroRNA-34a targets FMNL2 and E2F5 and suppresses the progression of colorectal cancer. Exp. Mol. Pathol. 2015 99 1 173 179 10.1016/j.yexmp.2015.06.014 26103003
    [Google Scholar]
  139. Liu M. Chen H. The role of microRNAs in colorectal cancer. J. Genet. Genomics 2010 37 6 347 358 10.1016/S1673‑8527(09)60053‑9 20621017
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947364929250625060715
Loading
/content/journals/cctr/10.2174/0115733947364929250625060715
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test