Skip to content
2000
image of Enhancing Cancer Treatment Prognosis through AI-driven Immunotherapy Predictions

Abstract

Immune checkpoint inhibitors have become a key component of tumor immunotherapy, which has produced remarkable therapeutic results. Therefore, it is essential to precisely screen patients to understand and predict the treatment's effectiveness. In recent years, in the healthcare profession, the use of Artificial Intelligence has led to a growing body of research suggesting that Artificial Intelligence technology can enhance precision medicine by better anticipating the effectiveness of immunotherapy. This paper highlights the research developments and applications of the existing prediction models, which are based on data from histopathology slides, genomes, and proteomics. In addition, we identified the current obstacles Artificial Intelligence is facing in the field of immunotherapy as well as the future paths that still require improvement. This will serve as a guide for the early adoption of Artificial Intelligence-enabled diagnostic and management systems in the coming years.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947357258250324055738
2025-07-22
2025-08-14
Loading full text...

Full text loading...

References

  1. Nishino M. Ramaiya N.H. Hatabu H. Hodi F.S. Monitoring immune-checkpoint blockade: Response evaluation and biomarker development. Nat. Rev. Clin. Oncol. 2017 14 11 655 668 10.1038/nrclinonc.2017.88 28653677
    [Google Scholar]
  2. Anagnostou V. Landon B.V. Medina J.E. Forde P. Velculescu V.E. Translating the evolving molecular landscape of tumors to biomarkers of response for cancer immunotherapy. Sci. Transl. Med. 2022 14 670 eabo3958 10.1126/scitranslmed.abo3958 36350985
    [Google Scholar]
  3. Herbst R.S. Baas P. Kim D.W. Felip E. Pérez-Gracia J.L. Han J.Y. Molina J. Kim J.H. Arvis C.D. Ahn M.J. Majem M. Fidler M.J. Castro d.G. Jr Garrido M. Lubiniecki G.M. Shentu Y. Im E. Dolled-Filhart M. Garon E.B. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016 387 10027 1540 1550 10.1016/S0140‑6736(15)01281‑7 26712084
    [Google Scholar]
  4. Giustini N. Bazhenova L. Recognizing prognostic and predictive biomarkers in the treatment of non-small cell lung cancer (NSCLC) with immune checkpoint inhibitors (ICIs). Lung Cancer 2021 12 21 34 10.2147/LCTT.S235102 33790679
    [Google Scholar]
  5. Benjamens S. Dhunnoo P. Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: An online database. NPJ Digit. Med. 2020 3 1 118 10.1038/s41746‑020‑00324‑0 32984550
    [Google Scholar]
  6. Angell H. Galon J. From the immune contexture to the Immunoscore: The role of prognostic and predictive immune markers in cancer. Curr. Opin. Immunol. 2013 25 2 261 267 10.1016/j.coi.2013.03.004 23579076
    [Google Scholar]
  7. Kantarjian H. Yu P.P. Artificial intelligence, big data, and cancer. JAMA Oncol. 2015 1 5 573 574 10.1001/jamaoncol.2015.1203 26181906
    [Google Scholar]
  8. Hosny A. Parmar C. Quackenbush J. Schwartz L.H. Aerts H.J.W.L. Artificial intelligence in radiology. Nat. Rev. Cancer 2018 18 8 500 510 10.1038/s41568‑018‑0016‑5 29777175
    [Google Scholar]
  9. Syed M.U. Agarwal D.G. Agarwal D.S. An overview of the role of artificial intelligence and machine learning in pharmaceutical research and development. Lat. Am. J. Pharm. 2023 42 4 1 8
    [Google Scholar]
  10. van der Laak J. Litjens G. Ciompi F. Deep learning in histopathology: The path to the clinic. Nat. Med. 2021 27 5 775 784 10.1038/s41591‑021‑01343‑4 33990804
    [Google Scholar]
  11. Agarwal G. Tushir S. Arora D. Sangwan K. 2024 Artificial Intelligence in Pharmaceutical Drug Delivery. Inter. Conf. Computat. Intellig. Comput. Appl. 1 406 410 10.1109/ICCICA60014.2024.10585200
    [Google Scholar]
  12. Lancellotti C. Cancian P. Savevski V. Kotha S.R.R. Fraggetta F. Graziano P. Tommaso D.L. Artificial intelligence & tissue biomarkers: Advantages, risks and perspectives for pathology. Cells 2021 10 4 787 10.3390/cells10040787 33918173
    [Google Scholar]
  13. Sirinukunwattana K. Raza S.E.A. Tsang Y-W. Snead D.R.J. Cree I.A. Rajpoot N.M. Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 2016 35 5 1196 1206 10.1109/TMI.2016.2525803 26863654
    [Google Scholar]
  14. Martins J. Magalhães C. Rocha M. Osório N.S. Machine learning-enhanced T cell neoepitope discovery for immunotherapy design. Cancer Inform. 2019 18 1176935119852081 10.1177/1176935119852081 31205413
    [Google Scholar]
  15. Li K. Luo H. Huang L. Luo H. Zhu X. Microsatellite instability: A review of what the oncologist should know. Cancer Cell Int. 2020 20 1 16 10.1186/s12935‑019‑1091‑8 31956294
    [Google Scholar]
  16. Stanton S.E. Disis M.L. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J. Immunother. Cancer 2016 4 1 59 10.1186/s40425‑016‑0165‑6 27777769
    [Google Scholar]
  17. Kar A. Agarwal D.G. Agarwal D.S. A review on nanostructure drug carriers for treatment and management of neuroendocrine cancer. Int. J. Pharma Bio Sci. 2023 14 1 1 9 10.22376/ijpbs.2023.14.1.b1‑9
    [Google Scholar]
  18. Rosenberg J.E. Hoffman-Censits J. Powles T. van der Heijden M.S. Balar A.V. Necchi A. Dawson N. O’Donnell P.H. Balmanoukian A. Loriot Y. Srinivas S. Retz M.M. Grivas P. Joseph R.W. Galsky M.D. Fleming M.T. Petrylak D.P. Perez-Gracia J.L. Burris H.A. Castellano D. Canil C. Bellmunt J. Bajorin D. Nickles D. Bourgon R. Frampton G.M. Cui N. Mariathasan S. Abidoye O. Fine G.D. Dreicer R. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet 2016 387 10031 1909 1920 10.1016/S0140‑6736(16)00561‑4 26952546
    [Google Scholar]
  19. Devgan M Karar P.K Gaurav A.A. In silico designing of drugs for the inhibition of AMF-HER 2 complex in trastuzumab resistant breast cancer. Indian J. Biotechnol. 2016 15 292 298
    [Google Scholar]
  20. Xie F. Zhang J. Wang J. Reuben A. Xu W. Yi X. Varn F.S. Ye Y. Cheng J. Yu M. Wang Y. Liu Y. Xie M. Du P. Ma K. Ma X. Zhou P. Yang S. Chen Y. Wang G. Xia X. Liao Z. Heymach J.V. Wistuba I.I. Futreal P.A. Ye K. Cheng C. Xia T. Multifactorial deep learning reveals pan-cancer genomic tumor clusters with distinct immunogenomic landscape and response to immunotherapy. Clin. Cancer Res. 2020 26 12 2908 2920 10.1158/1078‑0432.CCR‑19‑1744 31911545
    [Google Scholar]
  21. Hugo W. Shi H. Sun L. Piva M. Song C. Kong X. Moriceau G. Hong A. Dahlman K.B. Johnson D.B. Sosman J.A. Ribas A. Lo R.S. Non-genomic and immune evolution of melanoma acquiring mapki resistance. Cell 2015 162 6 1271 1285 10.1016/j.cell.2015.07.061 26359985
    [Google Scholar]
  22. Yadav M. Jhunjhunwala S. Phung Q.T. Lupardus P. Tanguay J. Bumbaca S. Franci C. Cheung T.K. Fritsche J. Weinschenk T. Modrusan Z. Mellman I. Lill J.R. Delamarre L. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 2014 515 7528 572 576 10.1038/nature14001 25428506
    [Google Scholar]
  23. Mo X. Tang C. Niu Q. Ma T. Du Y. Fu H. HTiP: High-throughput immunomodulator phenotypic screening platform to reveal IAP antagonists as anti-cancer immune enhancers. Cell Chem. Biol. 2019 26 3 331 339.e3 10.1016/j.chembiol.2018.11.011 30639259
    [Google Scholar]
  24. Garcia-Prieto C.A. Villanueva L. Bueno-Costa A. Davalos V. González-Navarro E.A. Juan M. Urbano-Ispizua Á. Delgado J. Ortiz-Maldonado V. Bufalo d.F. Locatelli F. Quintarelli C. Sinibaldi M. Soler M. Castro de Moura M. Ferrer G. Urdinguio R.G. Fernandez A.F. Fraga M.F. Bar D. Meir A. Itzhaki O. Besser M.J. Avigdor A. Jacoby E. Esteller M. Epigenetic profiling and response to CD19 chimeric antigen receptor T-Cell therapy in B-Cell malignancies. J. Natl. Cancer Inst. 2022 114 3 436 445 10.1093/jnci/djab194 34581788
    [Google Scholar]
  25. Sharma P. Sharma S. Paliwal S. Jain S. Aminopeptidase a: A novel therapeutic target for hypertension management. Cell Biochem. Funct. 2024 42 8 e70008 10.1002/cbf.70008 39445480
    [Google Scholar]
  26. Iinuma H. Gan to kagaku ryoho. Gan To Kagaku Ryoho 2019 46 9 1361 1366 31530771
    [Google Scholar]
  27. Ko J. Baldassano S.N. Loh P.L. Kording K. Litt B. Issadore D. Machine learning to detect signatures of disease in liquid biopsies – a user’s guide. Lab Chip 2018 18 3 395 405 10.1039/C7LC00955K 29192299
    [Google Scholar]
  28. Baalann K.P. Joseph D. Bhandari A. Kulkarni P. Agarwal G. Agarwal S. Oncology nurses’ knowledge, attitudes, and factors in cancer pain – a systematic review. Malays. J. Nutr. 2024 15 4 196 212 [MJN]. 10.31674/mjn.2024.v15i04.021
    [Google Scholar]
  29. Yan Y. Chen X. Wei J. Gong Z. Xu Z. Immunotherapy combinations in patients with small cell lung cancers. J. Thorac. Oncol. 2019 14 10 e244 e245 10.1016/j.jtho.2019.05.021
    [Google Scholar]
  30. Park Y. Kim M.J. Choi Y. Kim N.H. Kim L. Hong S.P.D. Cho H.G. Yu E. Chae Y.K. Role of mass spectrometry-based serum proteomics signatures in predicting clinical outcomes and toxicity in patients with cancer treated with immunotherapy. J. Immunother. Cancer 2022 10 3 e003566 10.1136/jitc‑2021‑003566 35347071
    [Google Scholar]
  31. Bojar D. Lisacek F. Glycoinformatics in the artificial intelligence era. Chem. Rev. 2022 122 20 15971 15988 10.1021/acs.chemrev.2c00110 35961636
    [Google Scholar]
  32. Hasin Y. Seldin M. Lusis A. Multi-omics approaches to disease. Genome Biol. 2017 18 1 83 10.1186/s13059‑017‑1215‑1 28476144
    [Google Scholar]
  33. Weeber F. van de Wetering M. Hoogstraat M. Dijkstra K.K. Krijgsman O. Kuilman T. Hooijdonk G.v.C.G.M. van der Velden D.L. Peeper D.S. Cuppen E.P.J.G. Vries R.G. Clevers H. Voest E.E. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc. Natl. Acad. Sci. USA 2015 112 43 13308 13311 10.1073/pnas.1516689112 26460009
    [Google Scholar]
  34. Agarwal G. Patel M. Review on monoclonal antibodies (mAbs) as a therapeutic approach for type 1 diabetes. Curr. Diabetes Rev. 2024 20 7 e310823220578 10.2174/1573399820666230831153249 37653635
    [Google Scholar]
  35. Drost J. Clevers H. Organoids in cancer research. Nat. Rev. Cancer 2018 18 7 407 418 10.1038/s41568‑018‑0007‑6 29692415
    [Google Scholar]
  36. Xie J. Tian W. Tang Y. Zou Y. Zheng S. Wu L. Zeng Y. Wu S. Xie X. Xie X. Establishment of a cell necroptosis index to predict prognosis and drug sensitivity for patients with triple-negative breast cancer. Front. Mol. Biosci. 2022 9 834593 10.3389/fmolb.2022.834593 35601830
    [Google Scholar]
  37. Huemer F. Leisch M. Geisberger R. Melchardt T. Rinnerthaler G. Zaborsky N. Greil R. Combination strategies for immune-checkpoint blockade and response prediction by artificial intelligence. Int. J. Mol. Sci. 2020 21 8 2856 10.3390/ijms21082856 32325898
    [Google Scholar]
  38. Nagendran M. Chen Y. Lovejoy C.A. Gordon A.C. Komorowski M. Harvey H. Topol E.J. Ioannidis J.P.A. Collins G.S. Maruthappu M. Artificial intelligence versus clinicians: Systematic review of design, reporting standards, and claims of deep learning studies. BMJ 2020 368 m689 10.1136/bmj.m689 32213531
    [Google Scholar]
  39. Zou Y. Hu X. Zheng S. Yang A. Li X. Tang H. Kong Y. Xie X. Discordance of immunotherapy response predictive biomarkers between primary lesions and paired metastases in tumours: A systematic review and meta-analysis. EBioMedicine 2021 63 103137 10.1016/j.ebiom.2020.103137 33310681
    [Google Scholar]
  40. Sharma P. Paliwal S. Sharma S. Chauhan N. Jain S. Quantitative structure activity relationship studies of potent Endothelin-A receptor antagonist for the treatment of pulmonary arterial hypertension. Indian J. Chem. 2024 63 2 190 202 10.56042/ijc.v63i2.6141
    [Google Scholar]
  41. Shameer K. Johnson K.W. Glicksberg B.S. Dudley J.T. Sengupta P.P. The whole is greater than the sum of its parts: Combining classical statistical and machine intelligence methods in medicine. Heart 2018 104 14 1228 10.1136/heartjnl‑2018‑313377 29945951
    [Google Scholar]
  42. Stephansen J.B. Olesen A.N. Olsen M. Ambati A. Leary E.B. Moore H.E. Carrillo O. Lin L. Han F. Yan H. Sun Y.L. Dauvilliers Y. Scholz S. Barateau L. Hogl B. Stefani A. Hong S.C. Kim T.W. Pizza F. Plazzi G. Vandi S. Antelmi E. Perrin D. Kuna S.T. Schweitzer P.K. Kushida C. Peppard P.E. Sorensen H.B.D. Jennum P. Mignot E. Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy. Nat. Commun. 2018 9 1 5229 10.1038/s41467‑018‑07229‑3 30523329
    [Google Scholar]
  43. Esteva A. Robicquet A. Ramsundar B. Kuleshov V. DePristo M. Chou K. Cui C. Corrado G. Thrun S. Dean J. A guide to deep learning in healthcare. Nat. Med. 2019 25 1 24 29 10.1038/s41591‑018‑0316‑z 30617335
    [Google Scholar]
  44. Winfield A. F. T. Jirotka M. Ethical governance is essential to building trust in robotics and artificial intelligence systems. Philosoph. Transact. Roy. Soc. A: Mathemat. Phys. Eng. Sci. 2018 376 2133 20180085 10.1098/rsta.2018.0085
    [Google Scholar]
  45. Agarwal S Agarwal S Sharma P A review on tablet in tablet for cancer and use of artificial intelligence (AI). J Cancer Res Rev Rep 2024 6 4 1 4 10.47363/JCRR/2024(6)199
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947357258250324055738
Loading
/content/journals/cctr/10.2174/0115733947357258250324055738
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test