Skip to content
2000
image of An Insight into Synthesis and Biological Evaluation of Anti-breast Cancer Peptides

Abstract

One of the most prevalent malignancies among women worldwide is breast cancer. Due to the high cost and undesirable side effects of conventional treatments for breast cancer, as well as the growing threat of drug resistance, researchers are becoming more and more interested in developing cutting-edge therapeutic approaches for the disease. Through the studies, it was clear that the maximum mortality rate has been due to breast cancer. Therefore, ongoing efforts to design novel treatments are required. Anticancer peptides are regarded as some of the most promising potential medications for breast cancer treatment, which has been mostly treated using molecular targeted therapy. Peptides have several benefits that make them desirable therapeutic agents against solid tumors, especially breast cancer. They include selective interaction with the surface of cancer cells, tiny molecules, and little toxicity for typical cells. This article summarises recent studies on peptides that support breast cancer treatments and prevent breast cancer.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947328950241101173253
2025-04-22
2025-09-08
Loading full text...

Full text loading...

References

  1. Breastcancer.org Breast Cancer Facts and Statistics. 2024 Available From: https://www.breastcancer.org/facts-statistics
  2. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  3. Chhikara B.S. Parang K. Global Cancer Statistics 2022: The trends projection analysis. Chem. Biol. Lett. 2023 10 1 451
    [Google Scholar]
  4. International Agency for Research on Cancer Global cancer observatory. 2020 Available From: https://gco.iarc.fr/en
  5. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  6. Bellanger M. Zeinomar N. Tehranifar P. Terry M.B. Are global breast cancer incidence and mortality patterns related to country-specific economic development and prevention strategies? J. Glob. Oncol. 2018 4 4 1 16 10.1200/JGO.17.00207 30085889
    [Google Scholar]
  7. Akram M. Iqbal M. Daniyal M. Khan A.U. Awareness and current knowledge of breast cancer. Biol. Res. 2017 50 1 33 10.1186/s40659‑017‑0140‑9 28969709
    [Google Scholar]
  8. Giaquinto A.N. Sung H. Miller K.D. Kramer J.L. Newman L.A. Minihan A. Jemal A. Siegel R.L. Breast cancer statistics, 2022. CA Cancer J. Clin. 2022 72 6 524 541 10.3322/caac.21754 36190501
    [Google Scholar]
  9. Ghoncheh M. Pournamdar Z. Salehiniya H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac. J. Cancer Prev. 2016 17 sup3 43 46 10.7314/APJCP.2016.17.S3.43 27165206
    [Google Scholar]
  10. Misganaw M. Zeleke H. Mulugeta H. Assefa B. Mortality rate and predictors among patients with breast cancer at a referral hospital in northwest Ethiopia: A retrospective follow-up study. PLoS One 2023 18 1 10.1371/journal.pone.0279656 36701343
    [Google Scholar]
  11. Yedjou C. Tchounwou P. Payton M. Miele L. Fonseca D. Lowe L. Alo R. Assessing the racial and ethnic disparities in breast cancer mortality in the United States. Int. J. Environ. Res. Public Health 2017 14 5 486 10.3390/ijerph14050486 28475137
    [Google Scholar]
  12. Elbachiri M. Fatima S. Bouchbika Z. Benchekroun N. Jouhadi H. Tawfiq N. Sahraoui S. Benider A. [Breast cancer in men: About 40 cases and literature review]. Pan Afr. Med. J. 2017 28 287 29675121
    [Google Scholar]
  13. Francies F.Z. Hull R. Khanyile R. Dlamini Z. Breast cancer in low-middle income countries: Abnormality in splicing and lack of targeted treatment options. Am. J. Cancer Res. 2020 10 5 1568 1591 32509398
    [Google Scholar]
  14. da Costa Vieira R.A. Biller G. Uemura G. Ruiz C.A. Curado M.P. Breast cancer screening in developing countries. Clinics (São Paulo) 2017 72 4 244 253 10.6061/clinics/2017(04)09 28492725
    [Google Scholar]
  15. WHO WHO launches new roadmap on breast cancer. 2023 Available From: https://www.who.int/news/item/03-02-2023-who-launches-new-roadmap-on-breast-cancer
  16. WHO Breast cancer. 2024 Available From: https://www.who.int/news-room/fact-sheets/detail/breast-cancer
  17. Waks A.G. Winer E.P. Breast cancer treatment: A review. JAMA 2019 321 3 288 300 10.1001/jama.2018.19323 30667505
    [Google Scholar]
  18. Yin L. Duan J.J. Bian X.W. Yu S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020 22 1 61 10.1186/s13058‑020‑01296‑5 32517735
    [Google Scholar]
  19. Obeagu E.I. Obeagu G.U. Breast cancer: A review of risk factors and diagnosis. Medicine (Baltimore) 2024 103 3 905 10.1097/MD.0000000000036905 38241592
    [Google Scholar]
  20. Momenimovahed Z Salehiniya H Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer (Dove Med Press) 2019 11 164 10.2147/BCTT.S176070
    [Google Scholar]
  21. Escala-Garcia M. Morra A. Canisius S. Chang-Claude J. Kar S. Zheng W. Bojesen S.E. Easton D. Pharoah P.D.P. Schmidt M.K. Breast cancer risk factors and their effects on survival: A Mendelian randomisation study. BMC Med. 2020 18 1 327 10.1186/s12916‑020‑01797‑2 33198768
    [Google Scholar]
  22. Sun Y.S. Zhao Z. Yang Z.N. Xu F. Lu H.J. Zhu Z.Y. Shi W. Jiang J. Yao P.P. Zhu H.P. Risk factors and preventions of breast cancer. Int. J. Biol. Sci. 2017 13 11 1387 1397 10.7150/ijbs.21635 29209143
    [Google Scholar]
  23. Liu L. Hao X. Song Z. Zhi X. Zhang S. Zhang J. Correlation between family history and characteristics of breast cancer. Sci. Rep. 2021 11 1 6360 10.1038/s41598‑021‑85899‑8 33737705
    [Google Scholar]
  24. Marqus S. Pirogova E. Piva T.J. Evaluation of the use of therapeutic peptides for cancer treatment. J. Biomed. Sci. 2017 24 1 21 10.1186/s12929‑017‑0328‑x 28320393
    [Google Scholar]
  25. Karami Fath M. Babakhaniyan K. Zokaei M. Yaghoubian A. Akbari S. Khorsandi M. Soofi A. Nabi-Afjadi M. Zalpoor H. Jalalifar F. Azargoonjahromi A. Payandeh Z. Alagheband Bahrami A. Anti-cancer peptide-based therapeutic strategies in solid tumors. Cell. Mol. Biol. Lett. 2022 27 1 33 10.1186/s11658‑022‑00332‑w 35397496
    [Google Scholar]
  26. Keservani RK Sharma AK Jarouliya U Protein and peptide in drug targeting and its therapeutic approach. 165Ars Pharm. 2015 56 3 165 177 10.4321/S2340‑98942015000300006
    [Google Scholar]
  27. Isidro-Llobet A. Kenworthy M.N. Mukherjee S. Kopach M.E. Wegner K. Gallou F. Smith A.G. Roschangar F. Sustainability challenges in peptide synthesis and purification: From R&D to production. J. Org. Chem. 2019 84 8 4615 4628 10.1021/acs.joc.8b03001 30900880
    [Google Scholar]
  28. Sachdeva S. Peptides as ‘drugs’: The journey so far. Int. J. Pept. Res. Ther. 2017 23 1 49 60 10.1007/s10989‑016‑9534‑8
    [Google Scholar]
  29. Wegner K. Barnes D. Manzor K. Jardine A. Moran D. Evaluation of greener solvents for solid-phase peptide synthesis. Green Chem. Lett. Rev. 2021 14 1 153 164 10.1080/17518253.2021.1877363
    [Google Scholar]
  30. Varnava K.G. Sarojini V. Making solid‐phase peptide synthesis greener: A review of the literature. Chem. Asian J. 2019 14 8 1088 1097 10.1002/asia.201801807 30681290
    [Google Scholar]
  31. Ferrazzano L. Catani M. Cavazzini A. Martelli G. Corbisiero D. Cantelmi P. Fantoni T. Mattellone A. De Luca C. Felletti S. Cabri W. Tolomelli A. Sustainability in peptide chemistry: Current synthesis and purification technologies and future challenges. Green Chem. 2022 24 3 975 1020 10.1039/D1GC04387K
    [Google Scholar]
  32. Petrou C Sarigiannis Y. Peptide Applications in Biomedicine, Biotechnology and Bioengineering. Amsterdam Elsevier 2018
    [Google Scholar]
  33. Lamers C. Overcoming the shortcomings of peptide-based therapeutics. Future Drug Discov. 2022 4 2 FDD75 10.4155/fdd‑2022‑0005
    [Google Scholar]
  34. Peña N. Bland M.J. Sevillano E. Muñoz-Atienza E. Lafuente I. Bakkoury M.E. Cintas L.M. Hernández P.E. Gabant P. Borrero J. In vitro and in vivo production and split-intein mediated ligation (SIML) of circular bacteriocins. Front. Microbiol. 2022 13 10.3389/fmicb.2022.1052686 36452926
    [Google Scholar]
  35. Collins J.M. Singh S.K. White T.A. Cesta D.J. Simpson C.L. Tubb L.J. Houser C.L. Total wash elimination for solid phase peptide synthesis. Nat. Commun. 2023 14 1 8168 10.1038/s41467‑023‑44074‑5 38071224
    [Google Scholar]
  36. Lau J.L. Dunn M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem. 2018 26 10 2700 2707 10.1016/j.bmc.2017.06.052 28720325
    [Google Scholar]
  37. Xie M. Liu D. Yang Y. Anti-cancer peptides: Classification, mechanism of action, reconstruction and modification. Open Biol. 2020 10 7 10.1098/rsob.200004 32692959
    [Google Scholar]
  38. Li L. Duns G.J. Dessie W. Cao Z. Ji X. Luo X. Recent advances in peptide-based therapeutic strategies for breast cancer treatment. Front. Pharmacol. 2023 14 10.3389/fphar.2023.1052301 36794282
    [Google Scholar]
  39. Zhou M. Zou X. Cheng K. Zhong S. Su Y. Wu T. Tao Y. Cong L. Yan B. Jiang Y. The role of cell‐penetrating peptides in potential anti‐cancer therapy. Clin. Transl. Med. 2022 12 5 10.1002/ctm2.822 35593206
    [Google Scholar]
  40. Moustafa G. Therapeutic potentials of cyclic peptides as promising anticancer drugs. Egypt. J. Chem. 2021 64 4 1777 1787
    [Google Scholar]
  41. Ghaly G. Tallima H. Dabbish E. Badr ElDin N. Abd El-Rahman M.K. Ibrahim M.A.A. Shoeib T. Anti-cancer peptides: Status and future prospects. Molecules 2023 28 3 1148 10.3390/molecules28031148 36770815
    [Google Scholar]
  42. Bakare O.O. Gokul A. Wu R. Niekerk L.A. Klein A. Keyster M. Biomedical relevance of novel anticancer peptides in the sensitive treatment of cancer. Biomolecules 2021 11 8 1120 10.3390/biom11081120 34439786
    [Google Scholar]
  43. Manrique-Moreno M. Santa-González G.A. Gallego V. Bioactive cationic peptides as potential agents for breast cancer treatment. Biosci. Rep. 2021 41 12 10.1042/BSR20211218C 34874400
    [Google Scholar]
  44. Rohira H. Arora A. Kaur P. Chugh A. Peptide cargo administration: Current state and applications. Appl. Microbiol. Biotechnol. 2023 107 10 3153 3181 10.1007/s00253‑023‑12512‑5 37052636
    [Google Scholar]
  45. Wang C. Tian L.L. Li S. Li H.B. Zhou Y. Wang H. Yang Q.Z. Ma L.J. Shang D.J. Rapid cytotoxicity of antimicrobial peptide tempoprin-1CEa in breast cancer cells through membrane destruction and intracellular calcium mechanism. PLoS One 2013 8 4 10.1371/journal.pone.0060462 23577112
    [Google Scholar]
  46. Kim E.K. Kim Y.S. Hwang J.W. Lee J.S. Moon S.H. Jeon B.T. Park P.J. Purification and characterization of a novel anticancer peptide derived from Ruditapes philippinarum. Process Biochem. 2013 48 7 1086 1090 10.1016/j.procbio.2013.05.004
    [Google Scholar]
  47. Birts C.N. Nijjar S.K. Mardle C.A. Hoakwie F. Duriez P.J. Blaydes J.P. Tavassoli A. A cyclic peptide inhibitor of C-terminal binding protein dimerization links metabolism with mitotic fidelity in breast cancer cells. Chem. Sci. (Camb.) 2013 4 8 3046 3057 10.1039/c3sc50481f 30450179
    [Google Scholar]
  48. Mishra A. Gauri S.S. Mukhopadhyay S.K. Chatterjee S. Das S.S. Mandal S.M. Dey S. Identification and structural characterization of a new pro-apoptotic cyclic octapeptide cyclosaplin from somatic seedlings of Santalum album L. Peptides 2014 54 148 158 10.1016/j.peptides.2014.01.023 24503375
    [Google Scholar]
  49. Lee M.W. Bassiouni R. Sparrow N.A. Iketani A. Boohaker R.J. Moskowitz C. Vishnubhotla P. Khaled A.S. Oyer J. Copik A. Fernandez-Valle C. Perez J.M. Khaled A.R. The CT20 peptide causes detachment and death of metastatic breast cancer cells by promoting mitochondrial aggregation and cytoskeletal disruption. Cell Death Dis. 2014 5 5 10.1038/cddis.2014.225 24853427
    [Google Scholar]
  50. Hung C.C. Yang Y.H. Kuo P.F. Hsu K.C. Protein hydrolysates from tuna cooking juice inhibit cell growth and induce apoptosis of human breast cancer cell line MCF-7. J. Funct. Foods 2014 11 563 570 10.1016/j.jff.2014.08.015
    [Google Scholar]
  51. Yang L. Cui Y. Shen J. Lin F. Wang X. Long M. Wei J. Zhang H. Antitumor activity of SA12, a novel peptide, on SKBr-3 breast cancer cells via the mitochondrial apoptosis pathway. Drug Des. Devel. Ther. 2015 9 1319 1330 25767377
    [Google Scholar]
  52. Catalano S. Leggio A. Barone I. De Marco R. Gelsomino L. Campana A. Malivindi R. Panza S. Giordano C. Liguori A. Bonofiglio D. Liguori A. Andò S. A novel leptin antagonist peptide inhibits breast cancer growth in vitro and in vivo. J. Cell. Mol. Med. 2015 19 5 1122 1132 10.1111/jcmm.12517 25721149
    [Google Scholar]
  53. Peng S.B. Zhang X. Paul D. Kays L.M. Gough W. Stewart J. Uhlik M.T. Chen Q. Hui Y.H. Zamek-Gliszczynski M.J. Wijsman J.A. Credille K.M. Yan L.Z. Identification of LY2510924, a novel cyclic peptide CXCR4 antagonist that exhibits antitumor activities in solid tumor and breast cancer metastatic models. Mol. Cancer Ther. 2015 14 2 480 490 10.1158/1535‑7163.MCT‑14‑0850 25504752
    [Google Scholar]
  54. E-kobon T. Thongararm P. Roytrakul S. Meesuk L. Chumnanpuen P. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions. Comput. Struct. Biotechnol. J. 2016 14 49 57 10.1016/j.csbj.2015.11.005 26862373
    [Google Scholar]
  55. Xue Z. Wen H. Zhai L. Yu Y. Li Y. Yu W. Cheng A. Wang C. Kou X. Antioxidant activity and anti-proliferative effect of a bioactive peptide from chickpea (Cicer arietinum L.). Food Res. Int. 2015 77 75 81 10.1016/j.foodres.2015.09.027
    [Google Scholar]
  56. Li S. Hao L. Bao W. Zhang P. Su D. Cheng Y. Nie L. Wang G. Hou F. Yang Y. A novel short anionic antibacterial peptide isolated from the skin of Xenopus laevis with broad antibacterial activity and inhibitory activity against breast cancer cell. Arch. Microbiol. 2016 198 5 473 482 10.1007/s00203‑016‑1206‑8 26952034
    [Google Scholar]
  57. Arpel A. Gamper C. Spenlé C. Fernandez A. Jacob L. Baumlin N. Laquerriere P. Orend G. Crémel G. Bagnard D. Inhibition of primary breast tumor growth and metastasis using a neuropilin-1 transmembrane domain interfering peptide. Oncotarget 2016 7 34 54723 54732 10.18632/oncotarget.10101 27351129
    [Google Scholar]
  58. Wang C. Dong S. Zhang L. Zhao Y. Huang L. Gong X. Wang H. Shang D. Cell surface binding, uptaking and anticancer activity of L-K6, a lysine/leucine-rich peptide, on human breast cancer MCF-7 cells. Sci. Rep. 2017 7 1 8293 10.1038/s41598‑017‑08963‑2 28811617
    [Google Scholar]
  59. Figueira T.N. Oliveira F.D. Almeida I. Mello É.O. Gomes V.M. Castanho M.A.R.B. Gaspar D. Challenging metastatic breast cancer with the natural defensin Pv D 1. Nanoscale 2017 9 43 16887 16899 10.1039/C7NR05872A 29076508
    [Google Scholar]
  60. Lunagariya J. Liao X. Long W. Zhong S. Bhadja P. Li H. Zhao B. Xu S. Cytotoxicity study of cyclopentapeptide analogues of marine natural product galaxamide towards human breast cancer cells. Oxid. Med. Cell. Longev. 2017 2017 1 10.1155/2017/8392035 29410736
    [Google Scholar]
  61. Kostrzewa T. Sahu K.K. Gorska-Ponikowska M. Tuszynski J.A. Kuban-Jankowska A. Synthesis of small peptide compounds, molecular docking, and inhibitory activity evaluation against phosphatases PTP1B and SHP2. Drug Des. Devel. Ther. 2018 12 4139 4147 10.2147/DDDT.S186614 30584278
    [Google Scholar]
  62. Avand A. Akbari V. Shafizadegan S. In vitro cytotoxic activity of a Lactococcuslactis antimicrobial peptide against breast cancer cells. Iran. J. Biotechnol. 2018 16 3 213 220 10.21859/ijb.1867 31457026
    [Google Scholar]
  63. Guerra J.R. Cárdenas A.B. Ochoa-Zarzosa A. Meza J.L. Umaña Pérez A. Fierro-Medina R. Rivera Monroy Z.J. García Castañeda J.E. The tetrameric peptide LfcinB (20–25) 4 derived from bovine lactoferricin induces apoptosis in the MCF-7 breast cancer cell line. RSC Advances 2019 9 36 20497 20504 10.1039/C9RA04145A 35515557
    [Google Scholar]
  64. Chilewski S.D. Bhosale D. Dees S. Hutchinson I. Trimble R. Pontiggia L. Mercier I. Jasmin J.F. Development of CAPER peptides for the treatment of triple negative breast cancer. Cell Cycle 2020 19 4 432 447 10.1080/15384101.2020.1711579 31931653
    [Google Scholar]
  65. McClements L. Annett S. Yakkundi A. O’Rourke M. Valentine A. Moustafa N. Alqudah A. Simões B.M. Furlong F. Short A. McIntosh S.A. McCarthy H.O. Clarke R.B. Robson T. FKBPL and its peptide derivatives inhibit endocrine therapy resistant cancer stem cells and breast cancer metastasis by downregulating DLL4 and Notch4. BMC Cancer 2019 19 1 351 10.1186/s12885‑019‑5500‑0 30975104
    [Google Scholar]
  66. Kgk D. Kumari S. G S. Malla R.R. Marine natural compound cyclo(L-leucyl-L-prolyl) peptide inhibits migration of triple negative breast cancer cells by disrupting interaction of CD151 and EGFR signaling. Chem. Biol. Interact. 2020 315 10.1016/j.cbi.2019.108872 31669320
    [Google Scholar]
  67. Barragán-Cárdenas A. Urrea-Pelayo M. Niño-Ramírez V.A. Umaña-Pérez A. Vernot J.P. Parra-Giraldo C.M. Fierro-Medina R. Rivera-Monroy Z. García-Castañeda J. Selective cytotoxic effect against the MDA-MB-468 breast cancer cell line of the antibacterial palindromic peptide derived from bovine lactoferricin. RSC Advances 2020 10 30 17593 17601 10.1039/D0RA02688C 35515633
    [Google Scholar]
  68. Shi W. Tong Z. Qiu Q. Yue N. Guo W. Zou F. Zhou D. Li J. Huang W. Qian H. Novel HLA-A2 restricted antigenic peptide derivatives with high affinity for the treatment of breast cancer expressing NY-ESO-1. Bioorg. Chem. 2020 103 10.1016/j.bioorg.2020.104138 32745760
    [Google Scholar]
  69. Gottardo M.F. Capobianco C.S. Sidabra J.E. Garona J. Perera Y. Perea S.E. Alonso D.F. Farina H.G. Preclinical efficacy of CIGB-300, an anti-CK2 peptide, on breast cancer metastasic colonization. Sci. Rep. 2020 10 1 14689 10.1038/s41598‑020‑71854‑6 32895446
    [Google Scholar]
  70. Wargasetia T.L. Ratnawati H. Widodo N. Widyananda M.H. Bioinformatics study of sea cucumber peptides as antibreast cancer through inhibiting the activity of overexpressed protein (EGFR, PI3K, AKT1, and CDK4). Cancer Inform. 2021 20 10.1177/11769351211031864 34345161
    [Google Scholar]
  71. Najm A.A.K. Azfaralariff A. Dyari H.R.E. Othman B.A. Shahid M. Khalili N. Law D. Syed Alwi S.S. Fazry S. Anti-breast cancer synthetic peptides derived from the Anabas testudineus skin mucus fractions. Sci. Rep. 2021 11 1 23182 10.1038/s41598‑021‑02007‑6 34848729
    [Google Scholar]
  72. Hasan M.M. Shawon A.R.M. Aeyas A. Uddin M.A. Cyclic peptides as an inhibitor of metastasis in breast cancer targeting MMP-1: Computational approach. Informatics in Medicine Unlocked 2022 35 10.1016/j.imu.2022.101128
    [Google Scholar]
  73. Calvillo-Rodríguez K.M. Mendoza-Reveles R. Gómez-Morales L. Uscanga-Palomeque A.C. Karoyan P. Martínez-Torres A.C. Rodríguez-Padilla C. PKHB1, a thrombospondin-1 peptide mimic, induces anti-tumor effect through immunogenic cell death induction in breast cancer cells. OncoImmunology 2022 11 1 10.1080/2162402X.2022.2054305 35402082
    [Google Scholar]
  74. Soares S. Lopes K.S. Mortari M. Oliveira H. Bastos V. Antitumoral potential of Chartergellus-CP1 peptide from Chartergellus communis wasp venom in two different breast cancer cell lines (HR+ and triple-negative). Toxicon 2022 216 148 156 10.1016/j.toxicon.2022.07.004 35839869
    [Google Scholar]
  75. Velayutham M. Haridevamuthu B. Elsadek M.F. Rizwana H. Juliet A. Karuppiah K.M. Arockiaraj J. S-adenosylmethionine synthase-derived GR15 peptide suppresses proliferation of breast cancer cells by upregulating the caspase-mediated apoptotic pathway: In vitro and in silico analyses. J. King Saud Univ. Sci. 2022 34 8 10.1016/j.jksus.2022.102354
    [Google Scholar]
  76. Erlista G.P. Ahmed N. Swasono R.T. Raharjo S. Raharjo T.J. Proteome of monocled cobra (Naja kaouthia) venom and potent anti breast cancer peptide from trypsin hydrolyzate of the venom protein. Saudi Pharm. J. 2023 31 6 1115 1124 10.1016/j.jsps.2023.04.001 37293380
    [Google Scholar]
  77. Selvarathinam K. Subramani P. Thekkumalai M. Vilwanathan R. Selvarajan R. Abia A.L.K. Wnt signaling pathway collapse upon β-catenin destruction by a novel antimicrobial peptide SKACP003: Unveiling the molecular mechanism and genetic activities using breast cancer cell lines. Molecules 2023 28 3 930 10.3390/molecules28030930 36770598
    [Google Scholar]
  78. Li C.M. Haratipour P. Lingeman R.G. Perry J.J.P. Gu L. Hickey R.J. Malkas L.H. Novel peptide therapeutic approaches for cancer treatment. Cells 2021 10 11 2908 10.3390/cells10112908 34831131
    [Google Scholar]
  79. Wang L. Wang N. Zhang W. Cheng X. Yan Z. Shao G. Wang X. Wang R. Fu C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther. 2022 7 1 48 10.1038/s41392‑022‑00904‑4 35165272
    [Google Scholar]
  80. Gupta V. Bhavanasi S. Quadir M. Singh K. Ghosh G. Vasamreddy K. Ghosh A. Siahaan T.J. Banerjee S. Banerjee S.K. Protein PEGylation for cancer therapy: Bench to bedside. J. Cell Commun. Signal. 2019 13 3 319 330 10.1007/s12079‑018‑0492‑0 30499020
    [Google Scholar]
  81. Zhou J. Du X. Yamagata N. Xu B. Enzyme-instructed self-assembly of small D-peptides as a multiple-step process for selectively killing cancer cells. J. Am. Chem. Soc. 2016 138 11 3813 3823 10.1021/jacs.5b13541 26966844
    [Google Scholar]
  82. Brian Chia C.S. A review on the metabolism of 25 peptide drugs. Int. J. Pept. Res. Ther. 2021 27 2 1397 1418 10.1007/s10989‑021‑10177‑0
    [Google Scholar]
  83. Guan F. Fay S. Li X. You Y. Robinson M.A. Identification of ex vivo catabolites of peptides with doping potential in equine plasma by HILIC‐HRMS. Drug Test. Anal. 2020 12 6 771 784 10.1002/dta.2781 32100400
    [Google Scholar]
  84. Hung K. Harris P.W.R. Desai A. Marshall J.F. Brimble M.A. Structure-activity relationship study of the tumour-targeting peptide A20FMDV2 via modification of Lys16, Leu13, and N- and/or C-terminal functionality. Eur. J. Med. Chem. 2017 136 154 164 10.1016/j.ejmech.2017.05.008 28494253
    [Google Scholar]
  85. Tapeinou A. Matsoukas M.T. Simal C. Tselios T. Review cyclic peptides on a merry‐go‐round; towards drug design. Biopolymers 2015 104 5 453 461 10.1002/bip.22669 25968458
    [Google Scholar]
  86. Zhang Z. Lin Z. Zhou Z. Shen H.C. Yan S.F. Mayweg A.V. Xu Z. Qin N. Wong J.C. Zhang Z. Rong Y. Fry D.C. Hu T. Structure-based design and synthesis of potent cyclic peptides inhibiting the YAP–TEAD protein–protein interaction. ACS Med. Chem. Lett. 2014 5 9 993 998 10.1021/ml500160m 25221655
    [Google Scholar]
  87. Guardiola S. Seco J. Varese M. Díaz-Lobo M. García J. Teixidó M. Nevola L. Giralt E. Toward a novel drug to target the EGF–EGFR interaction: Design of metabolically stable bicyclic peptides. ChemBioChem 2018 19 1 76 84 10.1002/cbic.201700519 29105934
    [Google Scholar]
  88. Hao M. Zhang L. Chen P. Membrane internalization mechanisms and design strategies of arginine-rich cell-penetrating peptides. Int. J. Mol. Sci. 2022 23 16 9038 10.3390/ijms23169038 36012300
    [Google Scholar]
  89. Dougherty P.G. Wen J. Pan X. Koley A. Ren J.G. Sahni A. Basu R. Salim H. Appiah Kubi G. Qian Z. Pei D. Enhancing the cell permeability of stapled peptides with a cyclic cell-penetrating peptide. J. Med. Chem. 2019 62 22 10098 10107 10.1021/acs.jmedchem.9b00456 31657556
    [Google Scholar]
  90. Wang E. Sorolla A. Cunningham P.T. Bogdawa H.M. Beck S. Golden E. Dewhurst R.E. Florez L. Cruickshank M.N. Hoffmann K. Hopkins R.M. Kim J. Woo A.J. Watt P.M. Blancafort P. Tumor penetrating peptides inhibiting MYC as a potent targeted therapeutic strategy for triple-negative breast cancers. Oncogene 2019 38 1 140 150 10.1038/s41388‑018‑0421‑y 30076412
    [Google Scholar]
  91. Jwad R. Weissberger D. Hunter L. Strategies for fine-tuning the conformations of cyclic peptides. Chem. Rev. 2020 120 17 9743 9789 10.1021/acs.chemrev.0c00013 32786420
    [Google Scholar]
  92. Li Y. Li W. Xu Z. Improvement on permeability of cyclic peptide/peptidomimetic: Backbone N-methylation as a useful tool. Mar. Drugs 2021 19 6 311 10.3390/md19060311 34072121
    [Google Scholar]
  93. Lee L.L.H. Buckton L.K. McAlpine S.R. Converting polar cyclic peptides into membrane permeable molecules using N ‐methylation. Pept. Sci. (Hoboken) 2018 110 3 10.1002/pep2.24063
    [Google Scholar]
  94. Haim Zada M. Rottenberg Y. Domb A.J. Peptide loaded polymeric nanoparticles by non-aqueous nanoprecipitation. J. Colloid Interface Sci. 2022 622 904 913 10.1016/j.jcis.2022.05.007 35561610
    [Google Scholar]
  95. Watermann A. Brieger J. Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials (Basel) 2017 7 7 189 10.3390/nano7070189 28737672
    [Google Scholar]
  96. Xie J. Yang C. Liu Q. Li J. Liang R. Shen C. Zhang Y. Wang K. Liu L. Shezad K. Sullivan M. Xu Y. Shen G. Tao J. Zhu J. Zhang Z. Encapsulation of hydrophilic and hydrophobic peptides into hollow mesoporous silica nanoparticles for enhancement of antitumor immune response. Small 2017 13 40 10.1002/smll.201701741 28861951
    [Google Scholar]
  97. Wijesinghe A. Kumari S. Booth V. Conjugates for use in peptide therapeutics: A systematic review and meta-analysis. PLoS One 2022 17 3 10.1371/journal.pone.0255753 35259149
    [Google Scholar]
  98. Rizvi S.F.A. Zhang H. Fang Q. Engineering peptide drug therapeutics through chemical conjugation and implication in clinics. Med. Res. Rev. 2024 10.1002/med.22046 38704826
    [Google Scholar]
  99. Qiao Z.Y. Hou C.Y. Zhang D. Liu Y. Lin Y.X. An H.W. Li X.J. Wang H. Self-assembly of cytotoxic peptide conjugated poly(β-amino ester)s for synergistic cancer chemotherapy. J. Mater. Chem. B Mater. Biol. Med. 2015 3 15 2943 2953 10.1039/C4TB02144D 32262494
    [Google Scholar]
  100. Kapoor V. Singh A.K. Rogers B.E. Thotala D. Hallahan D.E. PEGylated peptide to TIP1 is a novel targeting agent that binds specifically to various cancers in vivo. J. Control. Release 2019 298 194 201 10.1016/j.jconrel.2019.02.008 30763622
    [Google Scholar]
  101. Liu F.H. Hou C.Y. Zhang D. Zhao W.J. Cong Y. Duan Z.Y. Qiao Z.Y. Wang H. Enzyme-sensitive cytotoxic peptide–dendrimer conjugates enhance cell apoptosis and deep tumor penetration. Biomater. Sci. 2018 6 3 604 613 10.1039/C7BM01182B 29406549
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947328950241101173253
Loading
/content/journals/cctr/10.2174/0115733947328950241101173253
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Breast cancer ; amino acids ; MCF-7 ; MDA-MB-231 ; anti-breast cancer peptides ; peptides
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test