Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

In recent years, the applications of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology have revolutionized genetics and molecular biology. It has expanded beyond genetic editing to include innovative cancer treatment and nanotechnology approaches as a ground-breaking genome editing tool. It has emerged as a potent tool in the battle against cancer. By targeting and modifying specific genes associated with tumor development and growth, CRISPR offers a precise means of combating this devastating disease. Researchers are increasingly utilizing CRISPR to enhance cancer therapies, from boosting the efficacy of traditional treatments to developing novel immunotherapies. Simultaneously, nanotechnology, on the other hand, has opened up new avenues in diagnosing and treating cancer. Due to their unique physical properties, nanoparticles can be engineered for targeted drug delivery and imaging and even be used as vehicles for gene-editing tools like CRISPR. These nanoparticles can navigate the intricate biological environment, targeting cancer cells while minimizing collateral damage to healthy tissue. This precision is essential in reducing side effects and enhancing the therapeutic potential of anticancer agents. In this review, we emphasize the synergistic potential of CRISPR and nanotechnology, particularly in cancer treatment, highlighting their valuable role in advancing immunotherapy approaches. This nanotechnological perspective contributes significantly to the evolving landscape of research in this field.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947290474240315062214
2024-03-26
2025-09-06
Loading full text...

Full text loading...

References

  1. LeeE.Y.H.P. MullerW.J. Oncogenes and tumor suppressor genes.Cold Spring Harb. Perspect. Biol.2010210a00323610.1101/cshperspect.a00323620719876
    [Google Scholar]
  2. PangS.S. MurphyM. MarkhamM.J. Current management of locally advanced and metastatic cervical cancer in the United States.JCO Oncol. Pract.202218641742210.1200/OP.21.0079535286157
    [Google Scholar]
  3. HannaT.P. ShafiqJ. DelaneyG.P. VinodS.K. ThompsonS.R. BartonM.B. The population benefit of evidence-based radiotherapy: 5-Year local control and overall survival benefits.Radiother. Oncol.2018126219119710.1016/j.radonc.2017.11.00429229506
    [Google Scholar]
  4. BaskarR. LeeK.A. YeoR. YeohK.W. Cancer and radiation therapy: Current advances and future directions.Int. J. Med. Sci.20129319319910.7150/ijms.363522408567
    [Google Scholar]
  5. KhanF.A. PandupuspitasariN.S. Chun-JieH. AoZ. JamalM. ZohaibA. KhanF.A. HakimM.R. ShuJunZ. CRISPR/Cas9 therapeutics: A cure for cancer and other genetic diseases.Oncotarget2016732525415255210.18632/oncotarget.964627250031
    [Google Scholar]
  6. HaruehanroengraP. ZhengY.Y. ZhouY. HuangY. ShengJ. RNA modifications and cancer.RNA Biol.202017111560157510.1080/15476286.2020.172244931994439
    [Google Scholar]
  7. KhodadadianA. DarziS. Haghi-DaredehS. sadat EshaghiF. BabakhanzadehE. MirabutalebiS.H. NazariM. Genomics and transcriptomics: The powerful technologies in precision medicine.Int. J. Gen. Med.20201362764010.2147/IJGM.S24997032982380
    [Google Scholar]
  8. RoychowdhuryS. ChinnaiyanA.M. Translating cancer genomes and transcriptomes for precision oncology.CA Cancer J. Clin.2016661758810.3322/caac.2132926528881
    [Google Scholar]
  9. RabaanA.A. AlSaihatiH. BukhamsinR. BakhrebahM.A. NassarM.S. AlsalehA.A. AlhashemY.N. BukhamseenA.Y. Al-RuhimyK. AlotaibiM. AlsubkiR.A. AlahmedH.E. Al-AbdulhadiS. AlhashemF.A. AlqatariA.A. AlsayyahA. FarahatR.A. AbdulalR.H. Al-AhmedA.H. ImranM. MohapatraR.K. Application of CRISPR/Cas9 technology in cancer treatment: A future direction.Curr. Oncol.20233021954197610.3390/curroncol3002015236826113
    [Google Scholar]
  10. HousmanG. BylerS. HeerbothS. LapinskaK. LongacreM. SnyderN. SarkarS. Drug resistance in cancer: An overview.Cancers (Basel)2014631769179210.3390/cancers603176925198391
    [Google Scholar]
  11. ZahreddineH. BordenK.L.B. Mechanisms and insights into drug resistance in cancer.Front. Pharmacol.201342810.3389/fphar.2013.0002823504227
    [Google Scholar]
  12. SampathD. CortesJ. EstrovZ. DuM. ShiZ. AndreeffM. GandhiV. PlunkettW. Pharmacodynamics of cytarabine alone and in combination with 7-hydroxystaurosporine (UCN-01) in AML blasts in vitro and during a clinical trial.Blood200610762517252410.1182/blood‑2005‑08‑335116293603
    [Google Scholar]
  13. MehtaK. FokJ. Targeting transglutaminase-2 to overcome chemoresistance in cancer cells. In: Siddi KZ, Mehta K, Eds. Resistance in cancer cellsSingaporeSpringer20099511410.1007/978‑0‑387‑89445‑4_5
    [Google Scholar]
  14. DeshpandeK. VyasA. BalakrishnanA. VyasD. Clustered regularly interspaced short palindromic repeats/Cas9 genetic engineering: robotic genetic surgery.Am. J. Robot. Surg.201521495210.1166/ajrs.2015.102327453936
    [Google Scholar]
  15. XuY. LiZ. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy.Comput. Struct. Biotechnol. J.2020182401241510.1016/j.csbj.2020.08.03133005303
    [Google Scholar]
  16. RichardsonC. KelshR.N. J RichardsonR. New advances in CRISPR/Cas-mediated precise gene-editing techniques.Dis. Model. Mech.2023162dmm04987410.1242/dmm.04987436847161
    [Google Scholar]
  17. Rydell-TörmänenK. JohnsonJ.R. The applicability of mouse models to the study of human disease.Methods Mol. Biol.2019194032210.1007/978‑1‑4939‑9086‑3_130788814
    [Google Scholar]
  18. WangL. YangY. BretonC.A. WhiteJ. ZhangJ. CheY. SavelievA. McMenaminD. HeZ. LatshawC. LiM. WilsonJ.M. CRISPR/Cas9-mediated in vivo gene targeting corrects hemostasis in newborn and adult factor IX–knockout mice.Blood2019133262745275210.1182/blood.201900079030975639
    [Google Scholar]
  19. YangS. ChangR. YangH. ZhaoT. HongY. KongH.E. SunX. QinZ. JinP. LiS. LiX.J. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease.J. Clin. Invest.201712772719272410.1172/JCI9208728628038
    [Google Scholar]
  20. SongY. SuiT. ZhangY. WangY. ChenM. DengJ. ChaiZ. LaiL. LiZ. Genetic deletion of a short fragment of glucokinase in rabbit by CRISPR/Cas9 leading to hyperglycemia and other typical features seen in MODY-2.Cell. Mol. Life Sci.202077163265327710.1007/s00018‑019‑03354‑431720743
    [Google Scholar]
  21. NiuD. WeiH.J. LinL. GeorgeH. WangT. LeeI.H. ZhaoH.Y. WangY. KanY. ShrockE. LeshaE. WangG. LuoY. QingY. JiaoD. ZhaoH. ZhouX. WangS. WeiH. GüellM. ChurchG.M. YangL. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9.Science201735763571303130710.1126/science.aan418728798043
    [Google Scholar]
  22. (a LiuW. LiL. JiangJ. WuM. LinP. Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics.Precis. Clin. Med.202143179191
    [Google Scholar]
  23. (b LuY. XueJ. DengT. Safety and feasibility of CRISPRedited T cells in patients with refractory non-small-cell lung cancer.Nat Med202026573240
    [Google Scholar]
  24. (c FrangoulH. AltshulerD. CappelliniM.D. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia.N Eng J Med2021384325260
    [Google Scholar]
  25. UddinF. RudinC.M. SenT. CRISPR gene therapy: Applications, limitations, and implications for the future.Front. Oncol.202010138710.3389/fonc.2020.0138732850447
    [Google Scholar]
  26. IshinoY. KrupovicM. ForterreP. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology.J. Bacteriol.20182007e00580-1710.1128/JB.00580‑1729358495
    [Google Scholar]
  27. HanW. SheQ. CRISPR history: Discovery, characterization, and prosperity.Prog. Mol. Biol. Transl. Sci.201715212110.1016/bs.pmbts.2017.10.00129150001
    [Google Scholar]
  28. GuzmánN.M. Esquerra-RuviraB. MojicaF.J.M. Digging into the lesser-known aspects of CRISPR biology.Int. Microbiol.202124447349810.1007/s10123‑021‑00208‑734487299
    [Google Scholar]
  29. GostimskayaI. CRISPR–Cas9: A history of its discovery and ethical considerations of its use in genome editing.Biochemistry (Mosc.)202287877778810.1134/S000629792208009036171658
    [Google Scholar]
  30. PiskunenP. LathamR. WestC.E. CastronovoM. LinkoV. Integrating CRISPR/Cas systems with programmable DNA nanostructures for delivery and beyond.iScience202225610438910.1016/j.isci.2022.10438935633938
    [Google Scholar]
  31. (a RanFA HsuPD WrightJ AgarwalaV ScottDA ZhangF. Genome engineering using the CRISPR-Cas9 system.Nat Protoc201381122812308Epub 2013 Oct 24. 10.1038/nprot.2013.14324157548PMC3969860
    [Google Scholar]
  32. (b JacintoF.V. LinkW. FerreiraB.I. CRISPR/Cas9‐mediated genome editing: From basic research to translational medicine.J. Cell. Mol. Med.20202473766377810.1111/jcmm.14916
    [Google Scholar]
  33. (c GostimskayaI. CRISPR-Cas9: A history of its discovery and ethical considerations of its use in genome editing.Biochemistry (Mosc)20228787778810.1134/s0006297922080090
    [Google Scholar]
  34. (d KozovskaZ. RajcaniovaS. MunteanuP. DzacovskaS. DemkovaL. CRISPR: History and perspectives to the future.Biomed Pharmacother202114111191710.1016/j.biopha.2021.111917
    [Google Scholar]
  35. (e GolkarZ. CRISPR: A journey of gene-editing based medicine.Gen Genom2020421213698010.1007/s13258‑020‑01002‑x
    [Google Scholar]
  36. (f AhmadHI AhmadMJ AsifAR A review of CRISPRbased genome editing: Survival, evolution and challenges.Cur Issues Mol Biol201810.21775/cimb.028.047
    [Google Scholar]
  37. ZhangL. FangB. Oncogenes, tumor suppressor genes and apoptosis-inducing genes utilized in cancer gene therapy. In: Hunt KK, Vorburger SA, Swisher SG, Eds. Gene therapy for cancerSingaporeSpringer200717318410.1007/978‑1‑59745‑222‑9_10
    [Google Scholar]
  38. WaartsM.R. StonestromA.J. ParkY.C. LevineR.L. Targeting mutations in cancer.J. Clin. Invest.20221328e15494310.1172/JCI15494335426374
    [Google Scholar]
  39. TianX. GuT. PatelS. BodeA.M. LeeM.H. DongZ. Cas9 – An evolving biological tool kit for cancer biology and oncology.NPJ Precis. Oncol.201931810.1038/s41698‑019‑0080‑730911676
    [Google Scholar]
  40. WhiteM.K. KhaliliK. CRISPR/Cas9 and cancer targets: Future possibilities and present challenges.Oncotarget2016711123051231710.18632/oncotarget.710426840090
    [Google Scholar]
  41. RocquainJ. CarbucciaN. TrouplinV. RaynaudS. MuratiA. NezriM. TadristZ. OlschwangS. VeyN. BirnbaumD. Gelsi-BoyerV. MozziconacciM.J. Combined mutations of ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias.BMC Cancer201010140110.1186/1471‑2407‑10‑40120678218
    [Google Scholar]
  42. SchnittgerS. EderC. JerominS. AlpermannT. FasanA. GrossmannV. KohlmannA. IlligT. KloppN. WichmannH-E. KreuzerK-A. SchmidC. StaibP. PecenyR. SchmitzN. KernW. HaferlachC. HaferlachT. ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome.Leukemia2013271829110.1038/leu.2012.26223018865
    [Google Scholar]
  43. MetzelerK.H. BeckerH. MaharryK. RadmacherM.D. KohlschmidtJ. MrózekK. NicoletD. WhitmanS.P. WuY.Z. SchwindS. PowellB.L. CarterT.H. WetzlerM. MooreJ.O. KolitzJ.E. BaerM.R. CarrollA.J. LarsonR.A. CaligiuriM.A. MarcucciG. BloomfieldC.D. ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category.Blood2011118266920692910.1182/blood‑2011‑08‑36822522031865
    [Google Scholar]
  44. TholF. FriesenI. DammF. YunH. WeissingerE.M. KrauterJ. WagnerK. ChaturvediA. SharmaA. WichmannM. GöhringG. SchumannC. BugG. OttmannO. HofmannW.K. SchlegelbergerB. HeuserM. GanserA. Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes.J. Clin. Oncol.201129182499250610.1200/JCO.2010.33.493821576631
    [Google Scholar]
  45. BoultwoodJ. PerryJ. PellagattiA. Fernandez-MercadoM. Fernandez-SantamariaC. CalasanzM.J. LarrayozM.J. Garcia-DelgadoM. GiagounidisA. MalcovatiL. Della PortaM.G. JäderstenM. KillickS. Hellström-LindbergE. CazzolaM. WainscoatJ.S. Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia.Leukemia20102451062106510.1038/leu.2010.2020182461
    [Google Scholar]
  46. VallettaS. DolatshadH. BartensteinM. YipB.H. BelloE. GordonS. YuY. ShawJ. RoyS. ScifoL. SchuhA. PellagattiA. FulgaT.A. VermaA. BoultwoodJ. ASXL1 mutation correction by CRISPR/Cas9 restores gene function in leukemia cells and increases survival in mouse xenografts.Oncotarget2015642440614407110.18632/oncotarget.639226623729
    [Google Scholar]
  47. StefanoudakisD. Kathuria-PrakashN. SunA.W. AbelM. DrolenC.E. AshbaughC. ZhangS. HuiG. TabatabaeiY.A. ZektserY. LopezL.P. PantuckA. DrakakiA. The potential revolution of cancer treatment with CRISPR technology.Cancers (Basel)2023156181310.3390/cancers1506181336980699
    [Google Scholar]
  48. MosesC. NugentF. WaryahC.B. Garcia-BlojB. HarveyA.R. BlancafortP. Activating PTEN tumor suppressor expression with the CRISPR/dCas9 system.Mol. Ther. Nucleic Acids20191428730010.1016/j.omtn.2018.12.00330654190
    [Google Scholar]
  49. LiW. ChoM.Y. LeeS. JangM. ParkJ. ParkR. CRISPR-Cas9 mediated CD133 knockout inhibits colon cancer invasion through reduced epithelial-mesenchymal transition.PLoS One2019148e022086010.1371/journal.pone.022086031393941
    [Google Scholar]
  50. TeraiH. KitajimaS. PotterD.S. MatsuiY. QuicenoL.G. ChenT. KimT. RusanM. ThaiT.C. PiccioniF. DonovanK.A. KwiatkowskiN. HinoharaK. WeiG. GrayN.S. FischerE.S. WongK.K. ShimamuraT. LetaiA. HammermanP.S. BarbieD.A. ER stress signaling promotes the survival of cancer “Persister Cells” tolerant to EGFR tyrosine kinase inhibitors.Cancer Res.20187841044105710.1158/0008‑5472.CAN‑17‑190429259014
    [Google Scholar]
  51. Avivar-ValderasA. McEwenR. Taheri-GhahfarokhiA. CarnevalliL.S. HardakerE.L. MarescaM. HudsonK. HarringtonE.A. CruzaleguiF. Functional significance of co-occurring mutations in PIK3CA and MAP3K1 in breast cancer.Oncotarget2018930214442145810.18632/oncotarget.2511829765551
    [Google Scholar]
  52. MundekkadD. ChoW.C. Nanoparticles in clinical translation for cancer therapy.Int. J. Mol. Sci.2022233168510.3390/ijms2303168535163607
    [Google Scholar]
  53. KumariL. MishraL. PatelP. SharmaN. GuptaG.D. KurmiB.D. Emerging targeted therapeutic strategies for the treatment of triple-negative breast cancer.J. Drug Target.202331988990710.1080/1061186X.2023.224557937539789
    [Google Scholar]
  54. LiW. CaoZ. YuL. HuangQ. ZhuD. LuC. LuA. LiuY. Hierarchical drug release designed Au @PDA-PEG-MTX NPs for targeted delivery to breast cancer with combined photothermal-chemotherapy.J. Nanobiotechnology202119114310.1186/s12951‑021‑00883‑834001161
    [Google Scholar]
  55. KhoobchandaniM. KattiK.K. KarikacheryA.R. ThipeV.C. SrisrimalD. Dhurvas MohandossD.K. DarshakumarR.D. JoshiC.M. KattiK.V. New approaches in breast cancer therapy through green nanotechnology and nano-ayurvedic medicine – pre-clinical and pilot human clinical investigations.Int. J. Nanomedicine20201518119710.2147/IJN.S21904232021173
    [Google Scholar]
  56. XuS. OlenyukB.Z. OkamotoC.T. Hamm-AlvarezS.F. Targeting receptor-mediated endocytotic pathways with nanoparticles: Rationale and advances.Adv. Drug Deliv. Rev.201365112113810.1016/j.addr.2012.09.04123026636
    [Google Scholar]
  57. JiangS. WinK.Y. LiuS. TengC.P. ZhengY. HanM.Y. Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics.Nanoscale2013583127314810.1039/c3nr34005h23478880
    [Google Scholar]
  58. FuZ. XiangJ. Aptamer-functionalized nanoparticles in targeted delivery and cancer therapy.Int. J. Mol. Sci.20202123912310.3390/ijms2123912333266216
    [Google Scholar]
  59. LiX. JianM. SunY. ZhuQ. WangZ. The peptide functionalized inorganic nanoparticles for cancer-related bioanalytical and biomedical applications.Molecules20212611322810.3390/molecules2611322834072160
    [Google Scholar]
  60. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  61. TenchovR. BirdR. CurtzeA.E. ZhouQ. Lipid nanoparticles─from liposomes to mrna vaccine delivery, a landscape of research diversity and advancement.ACS Nano20211511169821701510.1021/acsnano.1c0499634181394
    [Google Scholar]
  62. McGowanJ.V. ChungR. MaulikA. PiotrowskaI. WalkerJ.M. YellonD.M. Anthracycline chemotherapy and cardiotoxicity.Cardiovasc. Drugs Ther.2017311637510.1007/s10557‑016‑6711‑028185035
    [Google Scholar]
  63. OlusanyaT. Haj AhmadR. IbegbuD. SmithJ. ElkordyA. Liposomal drug delivery systems and anticancer drugs.Molecules201823490710.3390/molecules2304090729662019
    [Google Scholar]
  64. FultonM.D. Najahi-MissaouiW. Liposomes in cancer therapy: How did we start and where are we now.Int. J. Mol. Sci.2023247661510.3390/ijms2407661537047585
    [Google Scholar]
  65. RommasiF. EsfandiariN. Liposomal nanomedicine: Applications for drug delivery in cancer therapy.Nanoscale Res. Lett.20211619510.1186/s11671‑021‑03553‑834032937
    [Google Scholar]
  66. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. WuS. DengY. ZhangJ. ShaoA. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.0019332974385
    [Google Scholar]
  67. SousaD.A. GasparR. FerreiraC.J.O. BaltazarF. RodriguesL.R. SilvaB.F.B. In Vitro CRISPR/Cas9 transfection and gene-editing mediated by multivalent cationic Liposome–DNA complexes.Pharmaceutics2022145108710.3390/pharmaceutics1405108735631673
    [Google Scholar]
  68. QiuM. GlassZ. ChenJ. HaasM. JinX. ZhaoX. RuiX. YeZ. LiY. ZhangF. XuQ. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3.Proc. Natl. Acad. Sci. USA202111810e202040111810.1073/pnas.202040111833649229
    [Google Scholar]
  69. RyuJ.Y. WonE.J. LeeH.A.R. KimJ.H. HuiE. KimH.P. YoonT.J. Ultrasound-activated particles as CRISPR/Cas9 delivery system for androgenic alopecia therapy.Biomaterials202023211973610.1016/j.biomaterials.2019.11973631901692
    [Google Scholar]
  70. JainP.K. LoJ.H. RananawareS. DowningM. PandaA. TaiM. RaghavanS. FlemingH.E. BhatiaS.N. Non-viral delivery of CRISPR/Cas9 complex using CRISPR-GPS nanocomplexes.Nanoscale20191144213172132310.1039/C9NR01786K31670340
    [Google Scholar]
  71. ZhenS. LiX. Liposomal delivery of CRISPR/Cas9.Cancer Gene Ther.2020277-851552710.1038/s41417‑019‑0141‑731676843
    [Google Scholar]
  72. RaptopoulouC.P. Metal-organic frameworks: Synthetic methods and potential applications.Materials (Basel)202114231010.3390/ma1402031033435267
    [Google Scholar]
  73. WangZ. TanabeK.K. CohenS.M. Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity.Inorg. Chem.200948129630610.1021/ic801837t19053339
    [Google Scholar]
  74. KongX.J. LiJ.R. An overview of metal–organic frameworks for green chemical engineering.Engineering (Beijing)2021781115113910.1016/j.eng.2021.07.001
    [Google Scholar]
  75. AlsaiariS.K. PatilS. AlyamiM. AlamoudiK.O. AleisaF.A. MerzabanJ.S. LiM. KhashabN.M. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework.J. Am. Chem. Soc.2018140114314610.1021/jacs.7b1175429272114
    [Google Scholar]
  76. IllesB. HirschleP. BarnertS. CaudaV. WuttkeS. EngelkeH. Exosome-coated metal–organic framework nanoparticles: An efficient drug delivery platform.Chem. Mater.201729198042804610.1021/acs.chemmater.7b02358
    [Google Scholar]
  77. SunY. ZhengL. YangY. QianX. FuT. LiX. YangZ. YanH. CuiC. TanW. Metal–organic framework nanocarriers for drug delivery in biomedical applications.Nano-Micro Lett.202012110310.1007/s40820‑020‑00423‑334138099
    [Google Scholar]
  78. MaranescuB. VisaA. Applications of metal-organic frameworks as drug delivery systems.Int. J. Mol. Sci.2022238445810.3390/ijms2308445835457275
    [Google Scholar]
  79. CaiM. ChenG. QinL. QuC. DongX. NiJ. YinX. Metal organic frameworks as drug targeting delivery vehicles in the treatment of cancer.Pharmaceutics202012323210.3390/pharmaceutics1203023232151012
    [Google Scholar]
  80. UchegbuI.F. VyasS.P. Non-ionic surfactant based vesicles (niosomes) in drug delivery.Int. J. Pharm.19981721-2337010.1016/S0378‑5173(98)00169‑0
    [Google Scholar]
  81. KuotsuK. KarimK.M. MandalA.S. BiswasN. GuhaA. ChatterjeeS. BeheraM. Niosome: A future of targeted drug delivery systems.J. Adv. Pharm. Technol. Res.20101437438010.4103/0110‑5558.7643522247876
    [Google Scholar]
  82. GharbaviM. AmaniJ. Kheiri-ManjiliH. DanafarH. SharafiA. Niosome: A promising nanocarrier for natural drug delivery through blood-brain barrier.Adv. Pharmacol. Sci.2018201811510.1155/2018/684797130651728
    [Google Scholar]
  83. SeleciD. MaurerV. StahlF. ScheperT. GarnweitnerG. Rapid microfluidic preparation of niosomes for targeted drug delivery.Intl J Molr Sci20192019469610.1016/j.addr.2021.11389134324887
    [Google Scholar]
  84. ChenS. HanningS. FalconerJ. LockeM. WenJ. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications.Eur. J. Pharm. Biopharm.2019144183910.1016/j.ejpb.2019.08.01531446046
    [Google Scholar]
  85. MarianecciC. Di MarzioL. RinaldiF. CeliaC. PaolinoD. AlhaiqueF. EspositoS. CarafaM. Niosomes from 80s to present: The state of the art.Adv. Colloid Interface Sci.201420518720610.1016/j.cis.2013.11.01824369107
    [Google Scholar]
  86. BashkeranT KamaruddinAH NgoTX Niosomes in cancer treatment: A focus on curcumin encapsulation.Heliyon.2023 Jul 2698e1871010.1155/2021/884403033644232
    [Google Scholar]
  87. PatelP. PatelV. PatelP.M. Synthetic strategy of dendrimers: A review.J. Indian Chem. Soc.202299710051410.1016/j.jics.2022.100514
    [Google Scholar]
  88. PanditaD. MadaanK. KumarS. PooniaN. LatherV. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues.J. Pharm. Bioallied Sci.20146313915010.4103/0975‑7406.13096525035633
    [Google Scholar]
  89. ZhuY. LiuC. PangZ. Dendrimer-based drug delivery systems for brain targeting.Biomolecules201991279010.3390/biom912079031783573
    [Google Scholar]
  90. CastroR. Forero-DoriaO. GuzmánL. Perspectives of Dendrimer-based nanoparticles in cancer therapy.An. Acad. Bras. Cienc.2018902 suppl 1Suppl. 12331234610.1590/0001‑376520182017038730066746
    [Google Scholar]
  91. CruzA. BarbosaJ. AntunesP. BonifácioV.D.B. PintoS.N. A glimpse into dendrimers integration in cancer imaging and theranostics.Int. J. Mol. Sci.2023246543010.3390/ijms2406543036982503
    [Google Scholar]
  92. BoberZ. Bartusik-AebisherD. AebisherD. Application of dendrimers in anticancer diagnostics and therapy.Molecules20222710323710.3390/molecules2710323735630713
    [Google Scholar]
  93. SunQ. MaX. ZhangB. ZhouZ. JinE. ShenY. Van KirkE.A. MurdochW.J. RadoszM. SunW. Fabrication of dendrimer-releasing lipidic nanoassembly for cancer drug delivery.Biomater. Sci.20164695896910.1039/C6BM00189K27087640
    [Google Scholar]
  94. ChaiQ. JiaoY. YuX. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them.Gels201731610.3390/gels301000630920503
    [Google Scholar]
  95. ThangN.H. ChienT.B. CuongD.X. Polymer-based hydrogels applied in drug delivery: An overview.Gels20239752310.3390/gels907052337504402
    [Google Scholar]
  96. SunZ. SongC. WangC. HuY. WuJ. Hydrogel-based controlled drug delivery for cancer treatment: A review.Mol. Pharm.2020172102010.1021/acs.molpharmaceut.9b0102031877054
    [Google Scholar]
  97. JacobS. NairA.B. ShahJ. SreeharshaN. GuptaS. ShinuP. Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management.Pharmaceutics202113335710.3390/pharmaceutics1303035733800402
    [Google Scholar]
  98. LiX. XuX. XuM. GengZ. JiP. LiuY. Hydrogel systems for targeted cancer therapy.Front. Bioeng. Biotechnol.202311114043610.3389/fbioe.2023.114043636873346
    [Google Scholar]
  99. ChenZ. LiuF. ChenY. LiuJ. WangX. ChenA.T. DengG. ZhangH. LiuJ. HongZ. ZhouJ. Targeted delivery of CRISPR/Cas9‐mediated cancer gene therapy liposome‐templated hydrogel nanoparticles.Adv. Funct. Mater.20172746170303610.1002/adfm.20170303629755309
    [Google Scholar]
  100. PuriA. LoomisK. SmithB. LeeJ.H. YavlovichA. HeldmanE. BlumenthalR. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic.Crit. Rev. Ther. Drug Carrier Syst.200926652358010.1615/CritRevTherDrugCarrierSyst.v26.i6.1020402623
    [Google Scholar]
  101. YangL. GongL. WangP. ZhaoX. ZhaoF. ZhangZ. LiY. HuangW. Recent advances in lipid nanoparticles for delivery of mRNA.Pharmaceutics20221412268210.3390/pharmaceutics1412268236559175
    [Google Scholar]
  102. LeeY. JeongM. ParkJ. JungH. LeeH. Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics.Exp. Mol. Med.202355102085209610.1038/s12276‑023‑01086‑x37779140
    [Google Scholar]
  103. Hald AlbertsenC. KulkarniJ.A. WitzigmannD. LindM. PeterssonK. SimonsenJ.B. The role of lipid components in lipid nanoparticles for vaccines and gene therapy.Adv. Drug Deliv. Rev.202218811441610.1016/j.addr.2022.11441635787388
    [Google Scholar]
  104. KalitaT. DezfouliS.A. PandeyL.M. UludagH. siRNA functionalized lipid nanoparticles (LNPs) in management of diseases.Pharmaceutics20221411252010.3390/pharmaceutics1411252036432711
    [Google Scholar]
  105. ZhangX. GoelV. RobbieG.J. Pharmacokinetics of Patisiran, the first approved rna interference therapy in patients with hereditary transthyretin‐mediated amyloidosis.J. Clin. Pharmacol.202060557358510.1002/jcph.155331777097
    [Google Scholar]
  106. GolubovicA. TsaiS. LiB. Bioinspired lipid nanocarriers for RNA delivery.ACS Bio and Med Chem Au20233211413610.1021/acsbiomedchemau.2c0007337101812
    [Google Scholar]
  107. RosenblumD. GutkinA. KedmiR. RamishettiS. VeigaN. JacobiA.M. SchubertM.S. Friedmann-MorvinskiD. CohenZ.R. BehlkeM.A. LiebermanJ. PeerD. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy.Sci. Adv.2020647eabc945010.1126/sciadv.abc945033208369
    [Google Scholar]
  108. DuanL. Nanoparticle delivery of CRISPR/Cas9 for genome editing.Front Genet.20211267328610.3389/fgene.2021.673286
    [Google Scholar]
  109. DuY. LiuY. HuJ. PengX. LiuZ. CRISPR/Cas9 systems: Delivery technologies and biomedical applications.Asian J. Pharmaceut. Sci.202318610085410.1016/j.ajps.2023.10085438089835
    [Google Scholar]
  110. FarsaniA.M. MokhtariN. NooraeiS. BahrulolumH. AkbariA. FarsaniZ.M. KhatamiS. EbadiM. AhmadianG. Lipid nanoparticles: The game-changer in CRISPR-Cas9 genome editing.Heliyon2024102e2460610.1016/j.heliyon.2024.e2460638288017
    [Google Scholar]
  111. ChengQ. WeiT. FarbiakL. JohnsonL.T. DilliardS.A. SiegwartD.J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing.Nat. Nanotechnol.202015431332010.1038/s41565‑020‑0669‑632251383
    [Google Scholar]
  112. LiH. YangY. HongW. HuangM. WuM. ZhaoX. Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects.Signal Transduct. Target. Ther.202051110.1038/s41392‑019‑0089‑y32296011
    [Google Scholar]
  113. WangP. Thermo‐triggered release of CRISPR‐Cas9 system by lipid‐encapsulated gold nanoparticles for tumor therapy.Angew Chem Int Ed Engl201857614911496
    [Google Scholar]
  114. ZhangX. LiB. LuoX. ZhaoW. JiangJ. ZhangC. GaoM. ChenX. DongY. Biodegradable amino-ester nanomaterials for Cas9 mRNA delivery in vitro and in vivo.ACS Appl. Mater. Interfaces2017930254812548710.1021/acsami.7b0816328685575
    [Google Scholar]
  115. FillingimR.B. Individual differences in pain: Understanding the mosaic that makes pain personal.Pain20171581S11S1810.1097/j.pain.0000000000000775
    [Google Scholar]
  116. WeiC.G. ZhangR. WeiL.Y. PanP. ZuH. LiuY.Z. WangY. ShenJ.K. Calcium phosphate-based nanomedicine mediated CRISPR/Cas9 delivery for prostate cancer therapy.Front. Bioeng. Biotechnol.202210107834210.3389/fbioe.2022.107834236588949
    [Google Scholar]
  117. HejabiF. AbbaszadehM.S. TajiS. O’NeillA. FarjadianF. DoroudianM. Nanocarriers: A novel strategy for the delivery of CRISPR/Cas systems.Front Chem.20221095757210.3389/fchem.2022.95757236092658
    [Google Scholar]
  118. MoutR. RayM. TongaG.Y. LeeY.W. TayT. SasakiK. RotelloV.M. Direct cytosolic delivery of crispr/cas9-ribonucleoprotein for efficient gene editing.ACS Nano20171132452245810.1021/acsnano.6b0760028129503
    [Google Scholar]
  119. GivensB.E. NaguibY.W. GearyS.M. DevorE.J. SalemA.K. Nanoparticle-based delivery of CRISPR/Cas9 genome-editing therapeutics.AAPS J.201820610810.1208/s12248‑018‑0267‑930306365
    [Google Scholar]
  120. PlattR.J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing.Nature Nanotechnol.2020154313320
    [Google Scholar]
  121. TangH. ZhaoX. JiangX. Synthetic multi-layer nanoparticles for CRISPR-Cas9 genome editing.Adv. Drug Deliv. Rev.2021168557810.1016/j.addr.2020.03.00132147450
    [Google Scholar]
  122. SiosonV.A. KimM. JooJ. Challenges in delivery systems for CRISPR-based genome editing and opportunities of nanomedicine.Biomed. Eng. Lett.202111321723310.1007/s13534‑021‑00199‑434350049
    [Google Scholar]
  123. LiuC. ZhangL. LiuH. ChengK. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications.J. Control. Release2017266172610.1016/j.jconrel.2017.09.01228911805
    [Google Scholar]
  124. HorodeckaK. DüchlerM. CRISPR/Cas9: Principle, applications, and delivery through extracellular vesicles.Int. J. Mol. Sci.20212211607210.3390/ijms2211607234199901
    [Google Scholar]
  125. DubeyA.K. MostafaviE. Biomaterials-mediated CRISPR/Cas9 delivery: Recent challenges and opportunities in gene therapy.Front Chem.202311125943510.3389/fchem.2023.125943537841202
    [Google Scholar]
  126. NieD. GuoT. YueM. LiW. ZongX. ZhuY. HuangJ. LinM. Research progress on nanoparticles-based CRISPR/Cas9 system for targeted therapy of tumors.Biomolecules2022129123910.3390/biom1209123936139078
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947290474240315062214
Loading
/content/journals/cctr/10.2174/0115733947290474240315062214
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test