Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Cancer is a highly perilous disease that can be fatal. While chemotherapy has been introduced as a treatment for cancer, it often comes with side effects and toxicities, making it less effective against cancer cells. In recent years, there has been a growing focus on innovative drug delivery systems to enhance the effectiveness and selectivity of chemotherapeutic drugs. In this context, researchers have developed a novel delivery system involving calixarene, which allows for lower drug concentrations and reduces side effects and toxicities. Calixarene and its derivatives are capable of encapsulating anticancer drugs, thereby enhancing the efficacy of chemotherapy. This approach improves the bioavailability, stability, solubility, and potency of the drug at its target site. This review provides a summary of recent research in the field of calixarene-based drug delivery systems, aiming to increase the effectiveness of anticancer treatments. It focuses on strategies involving the encapsulation of various anticancer drugs.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947283247240314034927
2025-03-25
2025-09-05
Loading full text...

Full text loading...

References

  1. FerlayJ. ColombetM. SoerjomataramI. DybaT. RandiG. BettioM. GavinA. VisserO. BrayF. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018.Eur. J. Cancer201810335638710.1016/j.ejca.2018.07.00530100160
    [Google Scholar]
  2. Fahad UllahM. Breast cancer: Current perspectives on the disease status.Adv Exp Med Biol.20191152516410.1007/978‑3‑030‑20301‑6_431456179
    [Google Scholar]
  3. PfefferC. SinghA. Apoptosis: A target for anticancer therapy.Int. J. Mol. Sci.201819244810.3390/ijms1902044829393886
    [Google Scholar]
  4. ChabnerB.A. RobertsT.G.Jr Chemotherapy and the war on cancer.Nat. Rev. Cancer200551657210.1038/nrc152915630416
    [Google Scholar]
  5. ChenY. YaoZ. LiuP. HuQ. HuangY. PingL. ZhangF. TangH. WanT. PingY. LiB. A self-assembly nano-prodrug for triple-negative breast cancer combined treatment by ferroptosis therapy and chemotherapy.Acta Biomater.202315927528810.1016/j.actbio.2023.01.05036709836
    [Google Scholar]
  6. TaoJ.J. VisvanathanK. WolffA.C. Long term side effects of adjuvant chemotherapy in patients with early breast cancer.Breast201524S2S149S15310.1016/j.breast.2015.07.03526299406
    [Google Scholar]
  7. ChaturvediV.K. SinghA. SinghV.K. SinghM.P. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy.Curr. Drug Metab.201920641642910.2174/138920021966618091811152830227814
    [Google Scholar]
  8. FahmyS.A. PonteF. FawzyI.M. SiciliaE. AzzazyH.M.E.S. Betaine host–guest complexation with a calixarene receptor: Enhanced in vitro anticancer effect.RSC Advances20211140246732468010.1039/D1RA04614D35481025
    [Google Scholar]
  9. GuoD.S. LiuY. Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications.Acc. Chem. Res.20144771925193410.1021/ar500009g24666259
    [Google Scholar]
  10. PanY.C. TianJ.H. GuoD.S. Molecular recognition with macrocyclic receptors for application in precision medicine.Acc. Chem. Res.202356243626363910.1021/acs.accounts.3c0058538059474
    [Google Scholar]
  11. CrowleyP.B. Protein–calixarene complexation: From recognition to assembly.Acc. Chem. Res.202255152019203210.1021/acs.accounts.2c0020635666543
    [Google Scholar]
  12. EspañolE. VillamilM. Calixarenes: Generalities and their role in improving the solubility, biocompatibility, stability, bioavailability, detection, and transport of biomolecules.Biomolecules2019939010.3390/biom903009030841659
    [Google Scholar]
  13. GuoD.S. WangK. LiuY. Selective binding behaviors of p-sulfonatocalixarenes in aqueous solution.J. Incl. Phenom. Macrocycl. Chem.2008621-212110.1007/s10847‑008‑9452‑2
    [Google Scholar]
  14. SharmaV.S. VishwakarmaV.K. ShrivastavP.S. SudhakarA.A. SharmaA.S. ShahP.A. ShahP.A. Calixarene functionalized supramolecular liquid crystals and their diverse applications.ACS Omega2022750457524579610.1021/acsomega.2c0469936570265
    [Google Scholar]
  15. BuonsensoF. GhirgaF. RomeoI. SianiG. PilatoS. QuaglioD. PieriniM. BottaB. CalcaterraA. Exploring the assembly of resorc[4]arenes for the construction of supramolecular nano-aggregates.Int. J. Mol. Sci.202122211178510.3390/ijms22211178534769216
    [Google Scholar]
  16. SieffertN. ChaumontA. WipffG. Importance of the liquid−liquid interface in assisted ion extraction: New molecular dynamics studies of cesium picrate extraction by a calix[4]arene.J. Phys. Chem. C200911324106101062210.1021/jp900789v
    [Google Scholar]
  17. KarakurtS.F. KelliciT. MavromoustakosT.G. TzakosA. YilmazM. Calixarenes in lipase biocatalysis and cancer therapy.Curr. Org. Chem.201620101043105710.2174/1385272820666151211192249
    [Google Scholar]
  18. SchirrmacherV. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review).Int. J. Oncol.201854240741910.3892/ijo.2018.466130570109
    [Google Scholar]
  19. RahimiM. KarimianR. NoruziE.B. GanbarovK. ZareiM. KamounahF.S. YousefiB. BastamiM. YousefiM. Samadi KafilH. Needle-shaped amphoteric calix[4]arene as a magnetic nanocarrier for simultaneous delivery of anticancer drugs to the breast cancer cells.Int. J. Nanomedicine2019142619263610.2147/IJN.S19459631043778
    [Google Scholar]
  20. Gallego-YergaL. de la TorreC. SansoneF. CasnatiA. MelletC.O. FernándezG.J.M. CeñaV. Synthesis, self-assembly and anticancer drug encapsulation and delivery properties of cyclodextrin-based giant amphiphiles.Carbohydr. Polym.202125211713510.1016/j.carbpol.2020.11713533183594
    [Google Scholar]
  21. DawnA. YaoX. YuY. JiangJ. KumariH. Assessment of the in vitro toxicity of calixarenes and a metal-seamed calixarene: A chemical pathway for clinical application.Supramol. Chem.201931742543110.1080/10610278.2019.161673231371909
    [Google Scholar]
  22. EspanolES VillamilMM. Calixarenes: Generalities and their role in improving the solubility, biocompatibility, stability, bioavailability, detection, and transport of biomolecules.Biomolecules20199390
    [Google Scholar]
  23. WangJ. DingX. GuoX. Assembly behaviors of calixarene-based amphiphile and supra-amphiphile and the applications in drug delivery and protein recognition.Adv. Colloid Interface Sci.201926918720210.1016/j.cis.2019.04.00431082545
    [Google Scholar]
  24. ZhouJ. RaoL. YuG. CookT.R. ChenX. HuangF. Supramolecular cancer nanotheranostics.Chem. Soc. Rev.20215042839289110.1039/D0CS00011F33524093
    [Google Scholar]
  25. ParkK. Controlled drug delivery systems: Past forward and future back.J. Control. Release20141903810.1016/j.jconrel.2014.03.05424794901
    [Google Scholar]
  26. WuX. LiY. LinC. HuX.Y. WangL. GSH- and pH-responsive drug delivery system constructed by water-soluble pillar[5]arene and lysine derivative for controllable drug release.Chem. Commun.201551316832683510.1039/C5CC01393C25790033
    [Google Scholar]
  27. UnsoyG. GunduzU. Smart drug delivery systems in cancer therapy.Curr. Drug Targets201819320221227033191
    [Google Scholar]
  28. ExnerA.A. SaidelG.M. Drug-eluting polymer implants in cancer therapy.Expert Opin. Drug Deliv.20085777578810.1517/17425247.5.7.77518590462
    [Google Scholar]
  29. VogelbaumM.A. Convection enhanced delivery for treating brain tumors and selected neurological disorders: Symposium review.J. Neurooncol.20078319710910.1007/s11060‑006‑9308‑917203397
    [Google Scholar]
  30. ChuangY.H. ChengY.F. TsangL.L.C. OuH.Y. HsuH.W. LimW.X. HuangP.H. WengC.C. YuC.Y. Efficacy and safety of combined ethanol-lipiodol mixture and drug-eluting bead TACE for large HCC.J. Hepatocell. Carcinoma202310819010.2147/JHC.S39843436685112
    [Google Scholar]
  31. BiY. ShiX. RenJ. YiM. HanX. SongM. Transarterial chemoembolization with doxorubicin-loaded beads for inoperable or recurrent colorectal cancer.Abdom. Radiol.20214662833283810.1007/s00261‑020‑02877‑w33386908
    [Google Scholar]
  32. VoglT.J. ZangosS. EichlerK. YakoubD. NabilM. Colorectal liver metastases: Regional chemotherapy via transarterial chemoembolization (TACE) and hepatic chemoperfusion: an update.Eur. Radiol.20071741025103410.1007/s00330‑006‑0372‑516944163
    [Google Scholar]
  33. MarelliL. StiglianoR. TriantosC. SenzoloM. CholongitasE. DaviesN. TibballsJ. MeyerT. PatchD.W. BurroughsA.K. Transarterial therapy for hepatocellular carcinoma: Which technique is more effective? A systematic review of cohort and randomized studies.Cardiovasc. Intervent. Radiol.200730162510.1007/s00270‑006‑0062‑317103105
    [Google Scholar]
  34. MarshallH.T. DjamgozM.B.A. Immuno-oncology: Emerging targets and combination therapies.Front. Oncol.2018831510.3389/fonc.2018.0031530191140
    [Google Scholar]
  35. BaggettoL ColemanW LazarA MagnardS MichaudM Calixarene derivatives as anticancer agent.US Patent 20100056482A12010
  36. ZhangT.X. ZhangZ.Z. YueY.X. HuX.Y. HuangF. ShiL. LiuY. GuoD.S. A general hypoxia‐responsive molecular container for tumor‐targeted therapy.Adv. Mater.20203228190843510.1002/adma.20190843532459030
    [Google Scholar]
  37. YousafA. HamidS.A. BunnoriN.M. IsholaA.A. Applications of calixarenes in cancer chemotherapy: Facts and perspectives.Drug Des. Devel. Ther.201592831283826082613
    [Google Scholar]
  38. OguzM. GulA. KarakurtS. YilmazM. Synthesis and evaluation of the antitumor activity of Calix[4]arene l-proline derivatives.Bioorg. Chem.20209410320710.1016/j.bioorg.2019.10320731451296
    [Google Scholar]
  39. Nasuhi PurF. DilmaghaniK.A. Calixplatin: Novel potential anticancer agent based on the platinum complex with functionalized calixarene.J. Coord. Chem.201467344044810.1080/00958972.2014.890718
    [Google Scholar]
  40. HulíkováK. GrobárováV. KřivohlaváR. FišerováA. Antitumor activity of N-acetyl-d-glucosamine-substituted glycoconjugates and combined therapy with keyhole limpet hemocyanin in B16F10 mouse melanoma model.Folia Microbiol.201055552853210.1007/s12223‑010‑0087‑520941591
    [Google Scholar]
  41. LiuZ.L. ChenH.H. ZhengL.L. SunL.P. ShiL. Angiogenic signaling pathways and anti-angiogenic therapy for cancer.Signal Transduct. Target. Ther.20238119810.1038/s41392‑023‑01460‑137169756
    [Google Scholar]
  42. PandeyP. KhanF. UpadhyayT.K. SeungjoonM. ParkM.N. KimB. New insights about the PDGF/PDGFR signaling pathway as a promising target to develop cancer therapeutic strategies.Biomed. Pharmacother.202316111449110.1016/j.biopha.2023.11449137002577
    [Google Scholar]
  43. BlaskovichM.A. LinQ. DelarueF.L. SunJ. ParkH.S. CoppolaD. HamiltonA.D. SebtiS.M. Design of GFB-111, a platelet-derived growth factor binding molecule with antiangiogenic and anticancer activity against human tumors in mice.Nat. Biotechnol.200018101065107010.1038/8025711017044
    [Google Scholar]
  44. DingsR.P.M. ChenX. HellebrekersD.M.E.I. van EijkL.I. ZhangY. HoyeT.R. GriffioenA.W. MayoK.H. Design of nonpeptidic topomimetics of antiangiogenic proteins with antitumor activities.J. Natl. Cancer Inst.2006981393293610.1093/jnci/djj24716818857
    [Google Scholar]
  45. ViolaS. MerloS. ConsoliG.M.L. DragoF. GeraciC. SortinoM.A. Modulation of C6 glioma cell proliferation by ureido-calix [8] arenes.Pharmacology201086318218810.1159/00031751820720453
    [Google Scholar]
  46. GeraciC. ConsoliG.M.L. GalanteE. BousquetE. PappalardoM. SpadaroA. Calix[4]arene decorated with four Tn antigen glycomimetic units and P3CS immunoadjuvant: Synthesis, characterization, and anticancer immunological evaluation.Bioconjug. Chem.200819375175810.1021/bc700411w18293897
    [Google Scholar]
  47. BrownS.D. PlumbJ.A. JohnstonB.F. WheateN.J. Folding of dinuclear platinum anticancer complexes within the cavity of para-sulphonatocalix[4]arene.Inorg. Chim. Acta201239318218610.1016/j.ica.2012.04.033
    [Google Scholar]
  48. IwasakiA. MedzhitovR. Toll-like receptor control of the adaptive immune responses.Nat. Immunol.200451098799510.1038/ni111215454922
    [Google Scholar]
  49. LimK.H. StaudtL.M. Toll-like receptor signaling.Cold Spring Harb. Perspect. Biol.201351a01124710.1101/cshperspect.a01124723284045
    [Google Scholar]
  50. ChenX. ZhangY. FuY. The critical role of Toll-like receptor-mediated signaling in cancer immunotherapy.Med. Drug Discov.20221410012210.1016/j.medidd.2022.100122
    [Google Scholar]
  51. PantelA. TeixeiraA. HaddadE. WoodE.G. SteinmanR.M. LonghiM.P. Direct type I IFN but not MDA5/TLR3 activation of dendritic cells is required for maturation and metabolic shift to glycolysis after poly IC stimulation.PLoS Biol.2014121e100175910.1371/journal.pbio.100175924409099
    [Google Scholar]
  52. ShiM. ChenX. YeK. YaoY. LiY. Application potential of toll-like receptors in cancer immunotherapy.Medicine20169525e395110.1097/MD.000000000000395127336891
    [Google Scholar]
  53. AdamusT. KortylewskiM. The revival of CpG oligonucleotide-based cancer immunotherapies.Contemp. Oncol.201820181566010.5114/wo.2018.7388729628795
    [Google Scholar]
  54. DhodapkarM.V. SznolM. ZhaoB. WangD. CarvajalR.D. KeohanM.L. ChuangE. SanbornR.E. LutzkyJ. PowderlyJ. KlugerH. TejwaniS. GreenJ. RamakrishnaV. CrockerA. VitaleL. YellinM. DavisT. KelerT. Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205.Sci. Transl. Med.20146232232ra5110.1126/scitranslmed.300806824739759
    [Google Scholar]
  55. CherenokS.O. YushchenkoO.A. TanchukV.Y. MischenkoI.M. SamusN.V. RubanO.V. MatvieievY.I. KarpenkoJ.A. KukharV.P. VovkA.I. KalchenkoV.I. Calix[4]arene-α-hydroxyphosphonic acids. Synthesis, stereochemistry, and inhibition of glutathione S-transferase.ARKIVOC20122012427829810.3998/ark.5550190.0013.421
    [Google Scholar]
  56. BudanovA.V. The role of tumor suppressor p53 in the antioxidant defense and metabolism.Subcell. Biochem.20148533735810.1007/978‑94‑017‑9211‑0_1825201203
    [Google Scholar]
  57. KamadaR. YoshinoW. NomuraT. ChumanY. ImagawaT. SuzukiT. SakaguchiK. Enhancement of transcriptional activity of mutant p53 tumor suppressor protein through stabilization of tetramer formation by calix[6]arene derivatives.Bioorg. Med. Chem. Lett.201020154412441510.1016/j.bmcl.2010.06.05320605095
    [Google Scholar]
  58. Pelizzaro-RochaK.J. de JesusM.B. Ruela-de-SousaR.R. NakamuraC.V. ReisF.S. de FátimaA. HalderF.C.V. Calix[6]arene bypasses human pancreatic cancer aggressiveness: Downregulation of receptor tyrosine kinases and induction of cell death by reticulum stress and autophagy.Biochim. Biophys. Acta Mol. Cell Res.20131833122856286510.1016/j.bbamcr.2013.07.01023872419
    [Google Scholar]
  59. BritoR.K.J.P. FonsecaE.M.B. OliveiraB.G.F. FátimaÂ. HalderF.C.V. Calix[6]arene diminishes receptor tyrosine kinase lifespan in pancreatic cancer cells and inhibits their migration and invasion efficiency.Bioorg. Chem.202010010388110.1016/j.bioorg.2020.10388132388429
    [Google Scholar]
  60. DingsR.P.M. LevineJ.I. BrownS.G. Astorgues-XerriL. MacDonaldJ.R. HoyeT.R. RaymondE. MayoK.H. Polycationic calixarene PTX013, a potent cytotoxic agent against tumors and drug resistant cancer.Invest. New Drugs20133151142115010.1007/s10637‑013‑9932‑023392775
    [Google Scholar]
  61. PotęgaA. Glutathione-mediated conjugation of anticancer drugs: An overview of reaction mechanisms and biological significance for drug detoxification and bioactivation.Molecules20222716525210.3390/molecules2716525236014491
    [Google Scholar]
  62. Urban-WojciukZ. KhanM.M. OylerB.L. FåhraeusR. Marek-TrzonkowskaN. Nita-LazarA. HuppT.R. GoodlettD.R. The role of TLRs in anti-cancer immunity and tumor rejection.Front. Immunol.201910238810.3389/fimmu.2019.0238831695691
    [Google Scholar]
  63. WilsonW.R. HayM.P. Targeting hypoxia in cancer therapy.Nat. Rev. Cancer201111639341010.1038/nrc306421606941
    [Google Scholar]
  64. YilmazB. BayracA.T. BayrakciM. Evaluation of anticancer activities of novel facile synthesized calix [n] arene sulfonamide analogs.Appl. Biochem. Biotechnol.202019041484149710.1007/s12010‑019‑03184‑x31782087
    [Google Scholar]
  65. WangL. LiL. FanY. WangH. Host-guest supramolecular nanosystems for cancer diagnostics and therapeutics.Adv. Mater.201325283888389810.1002/adma.20130120224048975
    [Google Scholar]
  66. OjimaI. LichtenthalB. LeeS. WangC. WangX. Taxane anticancer agents: A patent perspective.Expert Opin Ther Pat.201626112010.1517/13543776.2016.1111872
    [Google Scholar]
  67. ZhuL. ChenL. Progress in research on paclitaxel and tumor immunotherapy.Cell. Mol. Biol. Lett.20192414010.1186/s11658‑019‑0164‑y31223315
    [Google Scholar]
  68. AlvesR.C. FernandesR.P. EloyJ.O. SalgadoH.R.N. ChorilliM. Characteristics, properties and analytical methods of paclitaxel: a review.Crit. Rev. Anal. Chem.201848211011810.1080/10408347.2017.141628329239659
    [Google Scholar]
  69. EscrichA. AlmagroL. MoyanoE. CusidoR.M. BonfillM. HosseiniB. PalazonJ. Improved biotechnological production of paclitaxel in Taxus media cell cultures by the combined action of coronatine and calix[8]arenes.Plant Physiol. Biochem.2021163687510.1016/j.plaphy.2021.03.04733819716
    [Google Scholar]
  70. LiM. MaoL. ChenM. LiM. WangK. MoJ. Characterization of an amphiphilic phosphonated calixarene carrier loaded with carboplatin and paclitaxel: A preliminary study to treat colon cancer in vitro and in vivo. Front. Bioeng. Biotechnol.2019723810.3389/fbioe.2019.0023831632958
    [Google Scholar]
  71. ChenM.X. LiT. PengS. TaoD. Supramolecular nanocapsules from the self-assembly of amphiphilic calixarene as a carrier for paclitaxel.New J. Chem.201640129923992910.1039/C6NJ01986B
    [Google Scholar]
  72. de FátimaA. FernandesS. SabinoA. Calixarenes as new platforms for drug design.Curr. Drug Discov. Technol.20096215117010.2174/15701630978848830219519339
    [Google Scholar]
  73. GhoshB. RoyN. MandalS. AliS. BomzanP. RoyD. HaydarS.M. DakuaV.K. UpadhyayA. BiswasD. PaulK.K. RoyM.N. Host–guest encapsulation of RIBO with TSC4X: Synthesis, characterization, and its application by physicochemical and computational investigations.ACS Omega2023876778679010.1021/acsomega.2c0739636844564
    [Google Scholar]
  74. IoeleG. ChieffalloM. OcchiuzziM.A. De LucaM. GarofaloA. RagnoG. GrandeF. Anticancer drugs: Recent strategies to improve stability profile, pharmacokinetic and pharmacodynamic properties.Molecules20222717543610.3390/molecules2717543636080203
    [Google Scholar]
  75. FahmyS.A. BrüßlerJ. AlawakM. El-SayedM.M.H. BakowskyU. ShoeibT. Chemotherapy based on supramolecular chemistry: A promising strategy in cancer therapy.Pharmaceutics201911629210.3390/pharmaceutics1106029231226856
    [Google Scholar]
  76. FahmyS.A. PonteF. Abd El-RahmanM.K. RussoN. SiciliaE. ShoeibT. Investigation of the host-guest complexation between 4-sulfocalix[4]arene and nedaplatin for potential use in drug delivery.Spectrochim. Acta A Mol. Biomol. Spectrosc.201819352853610.1016/j.saa.2017.12.07029306207
    [Google Scholar]
  77. TóthG JánoskaÁ VölgyiG SzabóZ-I OrgovánG MirzahosseiniA Physicochemical characterization and cyclodextrin complexation of the anticancer drug lapatinib.J Chem.2017219
    [Google Scholar]
  78. ZhangL. SuT. HeB. GuZ. Self-assembly polyrotaxanes nanoparticles as carriers for anticancer drug methotrexate delivery.Nano-Micro Lett.20146210811510.1007/BF03353774
    [Google Scholar]
  79. ZhaoZ.M. WangY. HanJ. ZhuH.D. AnL. Preparation and characterization of amphiphilic calixarene nanoparticles as delivery carriers for paclitaxel.Chem. Pharm. Bull.201563318018610.1248/cpb.c14‑0069925757488
    [Google Scholar]
  80. ZhangE. XingR. LiuS. LiP. Current advances in development of new docetaxel formulations.Expert Opin. Drug Deliv.201916330131210.1080/17425247.2019.158364430773947
    [Google Scholar]
  81. YergaG.L. PosadasI. de la TorreC. AlmansaR.J. SansoneF. MelletO.C. CasnatiA. FernándezG.J.M. CeñaV. Docetaxel-loaded nanoparticles assembled from β-cyclodextrin/calixarene giant surfactants: physicochemical properties and cytotoxic effect in prostate cancer and glioblastoma cells.Front. Pharmacol.2017824910.3389/fphar.2017.0024928533751
    [Google Scholar]
  82. KarthicA. RoyA. LakkakulaJ. AlghamdiS. ShakooriA. BabalghithA.O. EmranT.B. SharmaR. LimaC.M.G. KimB. ParkM.N. SafiS.Z. de AlmeidaR.S. CoutinhoH.D.M. Cyclodextrin nanoparticles for diagnosis and potential cancer therapy: A systematic review.Front. Cell Dev. Biol.20221098431110.3389/fcell.2022.98431136158215
    [Google Scholar]
  83. PourquierP. Agents alkylants.Bull. Cancer201198111237125110.1684/bdc.2011.147122020797
    [Google Scholar]
  84. MoJ. WangL. HuangX. LuB. ZouC. WeiL. ChuJ. EggersP.K. ChenS. RastonC.L. WuJ. LimL.Y. ZhaoW. Multifunctional nanoparticles for co-delivery of paclitaxel and carboplatin against ovarian cancer by inactivating the JMJD3-HER2 axis.Nanoscale2017935131421315210.1039/C7NR04473A28849826
    [Google Scholar]
  85. KloseR.J. KallinE.M. ZhangY. JmjC-domain-containing proteins and histone demethylation.Nat. Rev. Genet.20067971572710.1038/nrg194516983801
    [Google Scholar]
  86. SalminenA. KaarnirantaK. HiltunenM. KauppinenA. Histone demethylase Jumonji D3 (JMJD3/KDM6B) at the nexus of epigenetic regulation of inflammation and the aging process.J. Mol. Med.201492101035104310.1007/s00109‑014‑1182‑x24925089
    [Google Scholar]
  87. KatsumataN. YasudaM. TakahashiF. IsonishiS. JoboT. AokiD. TsudaH. SugiyamaT. KodamaS. KimuraE. OchiaiK. NodaK. Dose-dense paclitaxel once a week in combination with carboplatin every 3 weeks for advanced ovarian cancer: A phase 3, open-label, randomised controlled trial.Lancet200937496981331133810.1016/S0140‑6736(09)61157‑019767092
    [Google Scholar]
  88. JakupecM.A. GalanskiM.S. KepplerB.K. Tumour-inhibiting platinum complexes—state of the art and future perspectives.Rev. Physiol. Biochem. Pharmacol.200314615310.1007/s10254‑002‑0001‑x12605304
    [Google Scholar]
  89. RamalhoM.J. AndradeS. CoelhoM.Á.N. LoureiroJ.A. PereiraM.C. Biophysical interaction of temozolomide and its active metabolite with biomembrane models: The relevance of drug-membrane interaction for Glioblastoma Multiforme therapy.Eur. J. Pharm. Biopharm.201913615616310.1016/j.ejpb.2019.01.01530682492
    [Google Scholar]
  90. RenziehausenA. TsiailanisA.D. PerrymanR. StylosE.K. ChatzigiannisC. O’NeillK. CrookT. TzakosA.G. SyedN. Encapsulation of temozolomide in a calixarene nanocapsule improves its stability and enhances its therapeutic efficacy against glioblastoma.Mol. Cancer Ther.20191891497150510.1158/1535‑7163.MCT‑18‑125031213505
    [Google Scholar]
  91. Di MartinoA. KucharczykP. CapakovaZ. HumpolicekP. SedlarikV. Enhancement of temozolomide stability by loading in chitosan-carboxylated polylactide-based nanoparticles.J. Nanopart. Res.20171927110.1007/s11051‑017‑3756‑328260965
    [Google Scholar]
  92. ZhangJ. StevensM.F. BradshawT.D. Temozolomide: Mechanisms of action, repair and resistance.Curr. Mol. Pharmacol.20125110211410.2174/187446721120501010222122467
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947283247240314034927
Loading
/content/journals/cctr/10.2174/0115733947283247240314034927
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): calixarene; Cancer; chemotherapy; drug delivery system; encapsulation; novel delivery
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test