Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Cancer is the most significant cause of mortality worldwide. It accounted for over 10 million deaths worldwide in 2020. Patients experiencing excruciating pain from this malignant disease are worn out of using the conventional allopathic method for recovery; as a result, they opt for the non-medical, otherwise stated non-pharmaceutical approaches as an alternative pathway. This study investigates the development of these non-pharmaceutical interventions in cancer treatment, which include meditation, yoga, music therapy, acupuncture, hypnosis, massage, physical activity/exercise, and stress management to manage psych and physical symptoms. Besides, various natural products procured from the marine sources comprising marine fauna and flora are used. Additionally, multiple terrestrial plants and herbs are used as the source for many nutraceutical preparations. Due to the rise in popularity of these nonconventional methods, the world is using these extracts to treat cancer.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947268161240404084729
2024-04-26
2025-09-04
Loading full text...

Full text loading...

References

  1. CooperG.M. HausmanR. A molecular approach the cell. 2nd.Sunderland, MASinauer Associates2000https://www.ncbi.nlm.nih.gov/books/NBK9963/
    [Google Scholar]
  2. PaleyC.A. JohnsonM.I. BennettM.I. Acupuncture: A treatment for breakthrough pain in cancer?BMJ Support. Palliat. Care20111333533810.1136/bmjspcare‑2011‑000066 24653480
    [Google Scholar]
  3. WoolfCJ Central sensitization: Implications for the diagnosis and treatment of pain. pain20111523S2S1510.1016/j.pain.2010.09.030
  4. DemirY. Non-pharmacological therapies in pain management. Pain management-current issues and opinions.IntechOpen201210.5772/30050
    [Google Scholar]
  5. NewmanDJ CraggGM Drugs and drug candidates from marine sources: An assessment of the current “state of play. Planta Medica20168209/10775892689100210.1055/s‑0042‑101353
  6. NobiliS. LippiD. WitortE. Natural compounds for cancer treatment and prevention.Pharmacol. Res.200959636537810.1016/j.phrs.2009.01.017 19429468
    [Google Scholar]
  7. DyshlovoyS. HoneckerF. Marine compounds and cancer: 2017 updates.Mar. Drugs20181624110.3390/md16020041 29364147
    [Google Scholar]
  8. WalshV. GoodmanJ. Cancer chemotherapy, biodiversity, public and private property: the case of the anti-cancer drug Taxol.Soc. Sci. Med.19994991215122510.1016/S0277‑9536(99)00161‑6 10501642
    [Google Scholar]
  9. MugeraG.M. Useful drugs and cancer causing chemicals in Kenya medicinal and toxic plants.University of Nairobi Library1977
    [Google Scholar]
  10. YousafM. HammondN.L. PengJ. New manzamine alkaloids from an Indo-Pacific sponge. Pharmacokinetics, oral availability, and the significant activity of several manzamines against HIV-I, AIDS opportunistic infections, and inflammatory diseases.J. Med. Chem.200447143512351710.1021/jm030475b 15214779
    [Google Scholar]
  11. ChoudharyA. NaughtonL. MontánchezI. DobsonA. RaiD. Current status and future prospects of marine natural products (MNPs) as antimicrobials.Mar. Drugs201715927210.3390/md15090272 28846659
    [Google Scholar]
  12. PereiraF. Aires-de-SousaJ. Computational methodologies in the exploration of marine natural product leads.Mar. Drugs201816723610.3390/md16070236 30011882
    [Google Scholar]
  13. HuangC. LeungR.K.K. GuoM. Genome-guided investigation of antibiotic substances produced by Allosalinactinospora lopnorensis CA15-2T from Lop Nor region, China.Sci. Rep.2016612066710.1038/srep20667 26864220
    [Google Scholar]
  14. BourhillT. NarendranA. JohnstonR.N. Enzastaurin: A lesson in drug development.Crit. Rev. Oncol. Hematol.2017112727910.1016/j.critrevonc.2017.02.003 28325267
    [Google Scholar]
  15. WangY.Q. MiaoZ.H. Marine-derived angiogenesis inhibitors for cancer therapy.Mar. Drugs2013111290393310.3390/md11030903 23502698
    [Google Scholar]
  16. RitchieJ.W.A. WilliamsR.J. Cancer Research UK Centre for Drug Development: translating 21st-century science into the cancer medicines of tomorrow.Drug Discov. Today2015208995100310.1016/j.drudis.2015.03.006 25794601
    [Google Scholar]
  17. AhmadI. Al-KatibA.M. BeckF.W. MohammadR.M. Sequential treatment of a resistant chronic lymphocytic leukemia patient with bryostatin 1 followed by 2-chlorodeoxyadenosine: case report.Clin. Cancer Res.20006413281332 10778958
    [Google Scholar]
  18. PoncetJ. The dolastatins, a family of promising antineoplastic agents.Curr. Pharm. Des.19995313916210.2174/1381612805666230109214008 10066887
    [Google Scholar]
  19. PathakS. MultaniA.S. OzenM. RichardsonM.A. NewmanR.A. Dolastatin-10 induces polyploidy, telomeric associations and apoptosis in a murine melanoma cell line.Oncol. Rep.19985237337610.3892/or.5.2.373 9468560
    [Google Scholar]
  20. BaiR. PetitG.R. HamelE. Dolastatin 10, a powerful cytostatic peptide derived from a marine animal.Biochem. Pharmacol.199039121941194910.1016/0006‑2952(90)90613‑P 2353935
    [Google Scholar]
  21. ErbaE. BergamaschiD. BassanoL. Ecteinascidin-743 (ET-743), a natural marine compound, with a unique mechanism of action.Eur. J. Cancer20013719710510.1016/S0959‑8049(00)00357‑9 11165136
    [Google Scholar]
  22. DringM.J. DringM. The biology of marine plants.Cambridge University Press1992
    [Google Scholar]
  23. OrlikovaB. LegrandN. PanningJ. DicatoM. DiederichM. (2014). Anti-inflammatory and anticancer drugs from nature. Advances in nutrition and cancer. cancer treatment and research. Vol. 159Springer, Berlin, Heidelberg10.1007/978‑3‑642‑38007‑5_8
    [Google Scholar]
  24. BhosaleS.H. NagleV.L. JagtapT.G. Antifouling potential of some marine organisms from India against species of Bacillus and Pseudomonas.Mar. Biotechnol. (NY)20024211111810.1007/s10126‑001‑0087‑1 14961269
    [Google Scholar]
  25. AlghazwiM. KanY.Q. ZhangW. GaiW.P. GarsonM.J. SmidS. Neuroprotective activities of natural products from marine macroalgae during 1999–2015.J. Appl. Phycol.20162863599361610.1007/s10811‑016‑0908‑2
    [Google Scholar]
  26. GanesanP. KumarC.S. BhaskarN. Antioxidant properties of methanol extract and its solvent fractions obtained from selected Indian red seaweeds.Bioresour. Technol.20089982717272310.1016/j.biortech.2007.07.005 17706415
    [Google Scholar]
  27. CarmichaelW.W. Cyanobacteria secondary metabolites—the cyanotoxins.J. Appl. Bacteriol.199272644545910.1111/j.1365‑2672.1992.tb01858.x 1644701
    [Google Scholar]
  28. IbrahimE.A. AlyH.H. Abou BakerD. MahmoudK. Marine algal sterol hydrocarbon with anti-inflammatory, anticancer and anti-oxidant properties.Int J Pharm Bio Sci201673392398
    [Google Scholar]
  29. LavakumarV. AhamedK. RavichandranV. Anticancer and antioxidant effect of Acanthophora spicifera against EAC induced carcinoma in mice.J. Pharm. Res.20125315031507
    [Google Scholar]
  30. ZhuangC. ItohH. MizunoT. ItoH. Antitumor active fucoidan from the brown seaweed, umitoranoo (Sargassum thunbergii).Biosci. Biotechnol. Biochem.199559456356710.1271/bbb.59.563 7772818
    [Google Scholar]
  31. VischerP. BuddeckeE. Different action of heparin and fucoidan on arterial smooth muscle cell proliferation and thrombospondin and fibronectin metabolism.Eur. J. Cell Biol.1991562407414 1802722
    [Google Scholar]
  32. BarbierP. GuiseS. HuitorelP. Caulerpenyne from Caulerpa taxifolia has an antiproliferative activity on tumor cell line SK-N-SH and modifies the microtubule network.Life Sci.200170441542910.1016/s0024‑3205(01)01396‑0 11798011
    [Google Scholar]
  33. PalermoJ.A. FlowerP.B. SeldesA.M. Chondriamides A and B, new indolic metabolites from the red alga Chondria sp.Tetrahedron Lett.199233223097310010.1016/s0040‑4039(00)79823‑6
    [Google Scholar]
  34. Parent-MassinD. FournierV. AmadeP. Evaluation of the toxicological risk to humans of caulerpenyne using human hematopoietic progenitors, melanocytes, and keratinocytes in culture.J. Toxicol. Environ. Health1996471475910.1080/009841096161924 8568911
    [Google Scholar]
  35. UronesJ.G. AraujoM.E.M. BritoP.F.M.S. Meroterpenes from Cystoseira usneoides II.Phytochemistry19923162105210910.1016/0031‑9422(92)80372‑L
    [Google Scholar]
  36. FischelJ.L. LemeeR. FormentoP. Cell growth inhibitory effects of caulerpenyne, a sesquiterpenoid from the marine algae Caulerpa taxifolia.Anticancer Res.1995155B21552160 8572617
    [Google Scholar]
  37. AthukoralaY. JungW-K. VasanthanT. JeonY-J. An anticoagulative polysaccharide from an enzymatic hydrolysate of Ecklonia cava.Carbohydr. Polym.200666218419110.1016/j.carbpol.2006.03.002
    [Google Scholar]
  38. GerwickW.H. FenicalW. Ichthyotoxic and cytotoxic metabolites of the tropical brown alga Stypopodium zonale (Lamouroux) Papenfuss.J. Org. Chem.1981461222710.1021/jo00314a005
    [Google Scholar]
  39. EncarnaçãoT. PaisA.A.C.C. CamposM.G. BurrowsH.D. Cyanobacteria and microalgae: a renewable source of bioactive compounds and other chemicals.Sci. Prog.201598214516810.3184/003685015X14298590596266 26288917
    [Google Scholar]
  40. SithrangaB.N. KathiresanK. Anticancer drugs from marine flora: An overview.J. oncology201110.1155/2010/214186
    [Google Scholar]
  41. BachvaroffT.R. AdolfJ.E. SquierA.H. HarveyH.R. PlaceA.R. Characterization and quantification of karlotoxins by liquid chromatography–mass spectrometry.Harmful Algae20087447348410.1016/j.hal.2007.10.003
    [Google Scholar]
  42. TanL.T. Bioactive natural products from marine cyanobacteria for drug discovery.Phytochemistry200768795497910.1016/j.phytochem.2007.01.012 17336349
    [Google Scholar]
  43. RickardsR.W. RothschildJ.M. WillisA.C. Calothrixins A and B, novel pentacyclic metabolites from Calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells.Tetrahedron19995547135131352010.1016/S0040‑4020(99)00833‑9
    [Google Scholar]
  44. SchmidtE.W. NelsonJ.T. RaskoD.A. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella.Proc. Natl. Acad. Sci. USA2005102207315732010.1073/pnas.0501424102 15883371
    [Google Scholar]
  45. DoniaM.S. HathawayB.J. SudekS. Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians.Nat. Chem. Biol.200621272973510.1038/nchembio829 17086177
    [Google Scholar]
  46. DoniaM.S. RavelJ. SchmidtE.W. A global assembly line for cyanobactins.Nat. Chem. Biol.20084634134310.1038/nchembio.84 18425112
    [Google Scholar]
  47. JavedF. QadirM.I. JanbazK.H. AliM. Novel drugs from marine microorganisms.Crit. Rev. Microbiol.201137324524910.3109/1040841X.2011.576234 21599497
    [Google Scholar]
  48. PengJ. PlaceA.R. YoshidaW. AnklinC. HamannM.T. Structure and absolute configuration of karlotoxin-2, an ichthyotoxin from the marine dinoflagellate Karlodinium veneficum.J. Am. Chem. Soc.2010132103277327910.1021/ja9091853 20155901
    [Google Scholar]
  49. RomanenkoL.A. UchinoM. KalinovskayaN.I. MikhailovV.V. Isolation, phylogenetic analysis and screening of marine mollusc-associated bacteria for antimicrobial, hemolytic and surface activities.Microbiol. Res.2008163663364410.1016/j.micres.2006.10.001 19216104
    [Google Scholar]
  50. IsnansetyoA. KameiY. Bioactive substances produced by marine isolates of Pseudomonas.J. Ind. Microbiol. Biotechnol.200936101239124810.1007/s10295‑009‑0611‑2 19582493
    [Google Scholar]
  51. MalakerA. AhmadS.A.I. Therapeutic potency of anticancer peptides derived from marine organism.Int J Eng2013223058269
    [Google Scholar]
  52. CarteB.K. Biomedical potential of marine natural products.Bioscience199646427128610.2307/1312834
    [Google Scholar]
  53. GoldinB GorbachSL Alterations in fecal microflora enzymes related to diet, age, lactobacillus supplements, and dimethylhydrazine. Cancer.1977Nov405 Suppl2421610.1002/1097‑0142(197711)40:5+<2421::aid‑cncr2820400905>3.0.co;2‑i.411567
    [Google Scholar]
  54. MitallB.K. GargS.K. Anticarcinogenic, hypocholesterolemic, and antagonistic activities of Lactobacillus acidophilus.Crit. Rev. Microbiol.199521317521410.3109/10408419509113540 8845062
    [Google Scholar]
  55. WollowskiI RechkemmerG Pool-ZobelBL Protective role of probiotics and prebiotics in colon cancer.Am J Clin Nutr.2001Feb732 Suppl451S455S10.1093/ajcn/73.2.451s 11157356
    [Google Scholar]
  56. SagarS. EsauL. HoltermannK. Induction of apoptosis in cancer cell lines by the Red Sea brine pool bacterial extracts.BMC Complement. Altern. Med.201313134410.1186/1472‑6882‑13‑344 24305113
    [Google Scholar]
  57. NewmanD.J. HillR.T. New drugs from marine microbes: the tide is turning.J. Ind. Microbiol. Biotechnol.200633753954410.1007/s10295‑006‑0115‑2 16598493
    [Google Scholar]
  58. BhaduryP. MohammadB.T. WrightP.C. The current status of natural products from marine fungi and their potential as anti-infective agents.J. Ind. Microbiol. Biotechnol.200633532533710.1007/s10295‑005‑0070‑3 16429315
    [Google Scholar]
  59. GuerrieroA. D’AmbrosioM. CuomoV. PietraF. A novel, degraded polyketidic lactone, leptosphaerolide, and its likely diketone precursor, leptosphaerodione. Isolation from cultures of the marine ascomycete Leptosphaeria oraemaris (Linder).Helv. Chim. Acta19917471445145010.1002/hlca.19910740707
    [Google Scholar]
  60. PallenbergA.J. WhiteJ.D. The synthesis and absolute configuration of (+)-leptosphaerin.Tetrahedron Lett.198627465591559410.1016/S0040‑4039(00)85273‑9
    [Google Scholar]
  61. Abdel-LateffA. KönigG.M. FischK.M. HöllerU. JonesP.G. WrightA.D. New antioxidant hydroquinone derivatives from the algicolous marine fungus Acremonium sp.J. Nat. Prod.200265111605161110.1021/np020128p 12444684
    [Google Scholar]
  62. Abdel-LateffA KlemkeC KönigGM WrightAD Two new xanthone derivatives from the algicolous marine fungus Wardomyces anomalus. J Nat Prod.2003May665706810.1021/np020518b 12762814
    [Google Scholar]
  63. SujaM. VasukiS. SajithaN. Anticancer activity of compounds isolated from marine endophytic fungus Aspergillus terreus.World J. Pharm. Pharm. Sci.201436661672
    [Google Scholar]
  64. TanD.S.P. MarchiòC. Reis-FilhoJ.S. Hereditary breast cancer: from molecular pathology to tailored therapies.J. Clin. Pathol.200861101073108210.1136/jcp.2008.057950 18682420
    [Google Scholar]
  65. DuL. ZhuT. FangY. LiuH. GuQ. ZhuW. Aspergiolide A, a novel anthraquinone derivative with naphtho[1,2,3-de]chromene-2,7-dione skeleton isolated from a marine-derived fungus Aspergillus glaucus.Tetrahedron20076351085108810.1016/j.tet.2006.11.074
    [Google Scholar]
  66. DuL. FengT. ZhaoB. Alkaloids from a deep ocean sediment-derived fungus Penicillium sp. and their antitumor activities.J. Antibiot. (Tokyo)201063416517010.1038/ja.2010.11 20186171
    [Google Scholar]
  67. ZhangJ. TaoL. LiangY. Anthracenedione derivatives as anticancer agents isolated from secondary metabolites of the mangrove endophytic fungi.Mar. Drugs2010841469148110.3390/md8041469 20479985
    [Google Scholar]
  68. HanB-N. HongL.L. GuB.B. Natural products from sponges.In: Symbiotic Microbiomes of Coral Reefs Sponges and Corals201932946310.1007/978‑94‑024‑1612‑1_15 PMC7122408
    [Google Scholar]
  69. BreinbauerR. VetterI.R. WaldmannH. From protein domains to drug candidates-natural products as guiding principles in the design and synthesis of compound libraries.Angew. Chem. Int. Ed.20024116287810.1002/1521‑3773(20020816)41:16<2878:AID‑ANIE2878>3.0.CO;2‑B 12203413
    [Google Scholar]
  70. LitaudonM. HartJ.B. BluntJ.W. LakeR.J. MunroM. Isohomohalichondrin B, a new antitumour polyether macrolide from the New Zealand deep-water sponge Lissodendoryx sp.Tetrahedron Lett.199435509435943810.1016/S0040‑4039(00)78563‑7
    [Google Scholar]
  71. ZovkoA. NovakM. HåågP. Compounds from the marine sponge Cribrochalina vasculum offer a way to target IGF-1R mediated signaling in tumor cells.Oncotarget2016731502585027610.18632/oncotarget.10361 27384680
    [Google Scholar]
  72. CortesJ. O’ShaughnessyJ. LoeschD. Eribulin monotherapy versus treatment of physician’s choice in patients with metastatic breast cancer (EMBRACE): a phase 3 open-label randomised study.Lancet2011377976991492310.1016/S0140‑6736(11)60070‑6 21376385
    [Google Scholar]
  73. Ei-SeediH.R. GomaaM. SalemM.M. Cytotoxic effects of the red sea soft coral sarcophyton trocheliophorum.Acta Pol. Pharm.201673615871592 29634113
    [Google Scholar]
  74. GomaaM.N. SolimanK. AyeshA. Antibacterial effect of the red sea soft coral Sarcophyton trocheliophorum.Nat. Prod. Res.201630672973410.1080/14786419.2015.1040991 26186031
    [Google Scholar]
  75. GrossH. New cytotoxic cembrane based diterpenes from the soft corals Sarcophyton cherbonnieri and Nephthea sp.2008http://www.rsc.org/suppdata/ob/b2/b210039h76
    [Google Scholar]
  76. ChaoC-H. Cytotoxic and anti-inflammatory cembranoids from the soft coral Lobophytum crassum.Journal of natural products2008711118191824
    [Google Scholar]
  77. BandaranayakeW.M. Bioactivities, bioactive compounds and chemical constituents of mangrove plants.Wetlands Ecol. Manage.200210642145210.1023/A:1021397624349
    [Google Scholar]
  78. MansD.R. RochaA.B. SchwartsmannG. Anti-cancer drug discovery and development in Brazil: targeted plant collection as a rational strategy to acquire candidate anti-cancer compounds.Oxford University Press2000185198
    [Google Scholar]
  79. SpadaP.D.S. de SouzaG.G.N. BortoliniG.V. HenriquesJ.A.P. SalvadorM. Antioxidant, mutagenic, and antimutagenic activity of frozen fruits.J. Med. Food200811114415110.1089/jmf.2007.598 18361750
    [Google Scholar]
  80. MohsenS.M. AmmarA.S.M. Total phenolic contents and antioxidant activity of corn tassel extracts.Food Chem.2009112359559810.1016/j.foodchem.2008.06.014
    [Google Scholar]
  81. ShanX. Reversal effect of 4′-methylether-scutellarein on multidrug resistance of human choriocarcinoma JAR/VP16 cell line.Progress in Biochemistry and Biophysics200633111061107310.3872/j.issn.1007‑385X.2016.02.005
    [Google Scholar]
  82. GawronA. KrukI. Cytotoxic effect of xanthotoxol (8-hydroxypsoralen) on TCTC cells in vitro.Pol. J. Pharmacol. Pharm.19924415157 1437852
    [Google Scholar]
  83. FanG.J. Evaluation of inhibitory potentials of chinese medicinal plants on platelet-activating factor (PAF) receptor binding.Nat. Prod. Sci.2001723337
    [Google Scholar]
  84. ShahidiF. JanithaP.K. WanasundaraP.D. Phenolic antioxidants.Crit. Rev. Food Sci. Nutr.19923216710310.1080/10408399209527581 1290586
    [Google Scholar]
  85. Sánchez‐MorenoC. LarrauriJ.A. Saura‐CalixtoF. Free radical scavenging capacity of selected red, rose and white wines.J. Sci. Food Agric.199979101301130410.1002/(SICI)1097‑0010(19990715)79:10<1301:AID‑JSFA367>3.0.CO;2‑Y
    [Google Scholar]
  86. YuanY.V. CarringtonM.F. WalshN.A. Extracts from dulse (Palmaria palmata) are effective antioxidants and inhibitors of cell proliferation in vitro.Food Chem. Toxicol.20054371073108110.1016/j.fct.2005.02.012 15833383
    [Google Scholar]
  87. GorelikE. Augmentation of the antimetastatic effect of anticoagulant drugs by immunostimulation in mice.Cancer Res.1987473809815 3802083
    [Google Scholar]
  88. YimJ.H. SonE. PyoS. LeeH.K. Novel sulfated polysaccharide derived from red-tide microalga Gyrodinium impudicum strain KG03 with immunostimulating activity in vivo.Mar. Biotechnol. (NY)20057433133810.1007/s10126‑004‑0404‑6 15976942
    [Google Scholar]
  89. ZhouG. XinH. ShengW. SunY. LiZ. XuZ. In vivo growth-inhibition of S180 tumor by mixture of 5-Fu and low molecular λ-carrageenan from Chondrus ocellatus.Pharmacol. Res.200551215315710.1016/j.phrs.2004.07.003 15629261
    [Google Scholar]
  90. GorelikE. BereW.W. HerbermanR.B. Role of nk cells in the antimetastatic effect of anticoagulant drugs.Int. J. Cancer1984331879410.1002/ijc.2910330115 6363308
    [Google Scholar]
  91. DziarskiR. Synergistic enhancement of T cell responses and interleukin-1 receptor expression by interleukin-1 and heparin or dextran sulfate.Cell. Immunol.1992145110011010.1016/0008‑8749(92)90316‑H 1423638
    [Google Scholar]
  92. DziarskiR. Enhancement of mixed leukocyte reaction and cytotoxic antitumor responses by heparin.J. Immunol.1989143135636510.4049/jimmunol.143.1.356
    [Google Scholar]
  93. O’SullivanG.M. BoswellC.M. HallidayG.M. Langerhans cell migration is modulated by N‐sulfated glucosamine moieties in heparin.Exp. Dermatol.200091253310.1034/j.1600‑0625.2000.009001025.x 10688372
    [Google Scholar]
  94. MatsudaM. YamoriT. NaitohM. OkutaniK. Structural revision of sulfated polysaccharide B-1 isolated from a marine Pseudomonas species and its cytotoxic activity against human cancer cell lines.Mar. Biotechnol. (NY)200351131910.1007/s10126‑002‑0046‑5 12925914
    [Google Scholar]
  95. JoyceJ.A. FreemanC. Meyer-MorseN. ParishC.R. HanahanD. A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer.Oncogene200524254037405110.1038/sj.onc.1208602 15806157
    [Google Scholar]
  96. RamanR. SasisekharanV. SasisekharanR. Structural insights into biological roles of protein-glycosaminoglycan interactions.Chem. Biol.200512326727710.1016/j.chembiol.2004.11.020 15797210
    [Google Scholar]
  97. Boisson-VidalC. Neoangiogenesis induced by progenitor endothelial cells: Effect of fucoidan from marine algae.Cardiovasc. Hematological Agents in Medicinal Chemistry200751677710.2174/187152507779315778
    [Google Scholar]
  98. AisaY. MiyakawaY. NakazatoT. Fucoidan induces apoptosis of human HS-Sultan cells accompanied by activation of caspase-3 and down-regulation of ERK Pathways.Am. J. Hematol.200578171410.1002/ajh.20182 15609279
    [Google Scholar]
  99. GrossH. GoegerD.E. HillsP. MooberryS.L. BallantineD.L. MurrayT.F. ValerioteF.A. GerwickW.H. Mooberry SL. Ballantine DL. Murray TF. Valeriote FA. Gerwick WH.J. Nat. Prod.20066964010.1021/np050519e 16643042
    [Google Scholar]
  100. MaD. ZouB. CaiG. HuX. LiuJ.O. Total synthesis of the cyclodepsipeptide apratoxin A and its analogues and assessment of their biological activities.Chemistry200612297615762610.1002/chem.200600599 16832801
    [Google Scholar]
  101. MedinaR.A. GoegerD.E. HillsP. Coibamide A, a potent antiproliferative cyclic depsipeptide from the Panamanian marine cyanobacterium Leptolyngbya sp.J. Am. Chem. Soc.2008130206324632510.1021/ja801383f 18444611
    [Google Scholar]
  102. MarquezB.L. WattsK.S. YokochiA. Structure and absolute stereochemistry of hectochlorin, a potent stimulator of actin assembly.J. Nat. Prod.200265686687110.1021/np0106283 12088429
    [Google Scholar]
  103. YuZ. LangG. KajahnI. SchmaljohannR. ImhoffJ.F. Scopularides A and B, cyclodepsipeptides from a marine sponge-derived fungus, Scopulariopsis brevicaulis.J. Nat. Prod.20087161052105410.1021/np070580e 18412398
    [Google Scholar]
  104. VaskoR.C. RodriguezR.A. CunninghamC.N. ArdiV.C. AgardD.A. McAlpineS.R. Mechanistic studies of Sansalvamide A-amide: An allosteric modulator of Hsp90.ACS Med. Chem. Lett.2010114810.1021/ml900003t 20730035
    [Google Scholar]
  105. LongL. HuntleyA. ErnstE. Which complementary and alternative therapies benefit which conditions? A survey of the opinions of 223 professional organizations.Complement. Ther. Med.20019317818510.1054/ctim.2001.0453 11926432
    [Google Scholar]
  106. WangC. de PabloP. ChenX. SchmidC. McAlindonT. Acupuncture for pain relief in patients with rheumatoid arthritis: A systematic review.Arthritis Care Res.20085991249125610.1002/art.24009 18759255
    [Google Scholar]
  107. FellowesD BarnesK WilkinsonSS Aromatherapy and massage for symptom relief in patients with cancer. Cochrane Database of Systematic Reviews2004310.1002/14651858.CD002287.pub2
    [Google Scholar]
  108. CleelandC.S. BodyJ.J. StopeckA. Pain outcomes in patients with advanced breast cancer and bone metastases.Cancer2013119483283810.1002/cncr.27789 22951813
    [Google Scholar]
  109. MustianK.M. PaleshO.G. FlecksteinerS.A. Tai Chi Chuan for breast cancer survivors.Tai Chi Chuan.Karger Publishers200820921710.1159/000134301
    [Google Scholar]
  110. ElkinsG.R. FisherW.I. JohnsonA.K. CarpenterJ.S. KeithT.Z. Clinical hypnosis in the treatment of postmenopausal hot flashes.Menopause201320329129810.1097/gme.0b013e31826ce3ed 23435026
    [Google Scholar]
  111. NashM.R. TassoA. The effectiveness of hypnosis in reducing pain and suffering among women with metastatic breast cancer and among women with temporomandibular disorder.Int. J. Clin. Exp. Hypn.201058449750410.1080/00207144.2010.499353 20799126
    [Google Scholar]
  112. BurtonA.W. FanciulloG.J. BeasleyR.D. FischM.J. Chronic pain in the cancer survivor: a new frontier.Pain Med.20078218919810.1111/j.1526‑4637.2006.00220.x 17305690
    [Google Scholar]
  113. CarrollD MooreRA McQuayHJ FairmanF TramèrM LeijonG Transcutaneous electrical nerve stimulation (TENS) for chronic pain. Cochrane Database Syst Rev. 2001; (3): CD003222. doi: 10.1002/14651858.CD003222. Update in: Cochrane Database Syst Rev.2008Jul163CD00322210.1002/14651858.CD003222.pub2 11687055
    [Google Scholar]
  114. FishbainD.A. ChabalC. AbbottA. HeineL.W. CutlerR. Transcutaneous electrical nerve stimulation (TENS) treatment outcome in long-term users.Clin. J. Pain199612320121410.1097/00002508‑199609000‑00008 8866161
    [Google Scholar]
  115. ChouR. Clinical guidelines for the use of chronic opioid therapy in chronic noncancer pain.J. Pain200910211313010.1016/j.jpain.2008.10.008
    [Google Scholar]
  116. KeefeF.J. AbernethyAP C CampbellL. Psychological approaches to understanding and treating disease-related pain.Annu. Rev. Psychol.20055660163010.1146/annurev.psych.56.091103.070302 15709948
    [Google Scholar]
  117. OlmstedR.W. ZeltzerL. LeBaronS. Hypnosis and nonhypnotic techniques for reduction of pain and anxiety during painful procedures in children and adolescents with cancer.J. Pediatr.198210161032103510.1016/S0022‑3476(82)80040‑1 7143158
    [Google Scholar]
  118. SyrjalaK.L. DonaldsonG.W. DavisM.W. KippesM.E. CarrJ.E. Relaxation and imagery and cognitive-behavioral training reduce pain during cancer treatment: a controlled clinical trial.Pain199563218919810.1016/0304‑3959(95)00039‑U 8628584
    [Google Scholar]
  119. EmbuscadoM.E. Spices and herbs: Natural sources of antioxidants a mini review.J. Funct. Foods20151881181910.1016/j.jff.2015.03.005
    [Google Scholar]
  120. CarlsonL.E. SpecaM. PatelK.D. GoodeyE. Mindfulness-based stress reduction in relation to quality of life, mood, symptoms of stress, and immune parameters in breast and prostate cancer outpatients.Psychosom. Med.200365457158110.1097/01.PSY.0000074003.35911.41 12883107
    [Google Scholar]
  121. SpecaM. CarlsonL.E. GoodeyE. AngenM. A randomized, wait-list controlled clinical trial: the effect of a mindfulness meditation-based stress reduction program on mood and symptoms of stress in cancer outpatients.Psychosom. Med.200062561362210.1097/00006842‑200009000‑00004 11020090
    [Google Scholar]
  122. WürtzenH. DaltonS.O. ElsassP. Mindfulness significantly reduces self-reported levels of anxiety and depression: Results of a randomised controlled trial among 336 Danish women treated for stage I–III breast cancer.Eur. J. Cancer20134961365137310.1016/j.ejca.2012.10.030 23265707
    [Google Scholar]
  123. EppA.M. DobsonK.S. The evidence base for cognitive-behavioral therapy. Handbook of cognitive-behavioral therapies20103973
    [Google Scholar]
  124. AndersenB.L. YangH.C. FarrarW.B. Psychologic intervention improves survival for breast cancer patients.Cancer2008113123450345810.1002/cncr.23969 19016270
    [Google Scholar]
  125. FawzyF.I. CousinsN. FawzyN.W. KemenyM.E. ElashoffR. MortonD. A structured psychiatric intervention for cancer patients. I. Changes over time in methods of coping and affective disturbance.Arch. Gen. Psychiatry199047872072510.1001/archpsyc.1990.01810200028004 2378543
    [Google Scholar]
  126. FawzyF.I. Psychosocial interventions for patients with cancer.Eur. J. Cancer199935111559156410.1016/S0959‑8049(99)00191‑4 10673962
    [Google Scholar]
  127. DolbeaultS. CayrouS. BrédartA. The effectiveness of a psycho‐educational group after early‐stage breast cancer treatment: results of a randomized French study.Psychooncology200918664765610.1002/pon.1440 19039808
    [Google Scholar]
  128. StaglJ.M. BouchardL.C. LechnerS.C. Long‐term psychological benefits of cognitive‐behavioral stress management for women with breast cancer: 11‐year follow‐up of a randomized controlled trial.Cancer2015121111873188110.1002/cncr.29076 25809235
    [Google Scholar]
  129. ReardonM.L. CukrowiczK.C. ReevesM.D. JoinerT.E. Duration and regularity of therapy attendance as predictors of treatment outcome in an adult outpatient population.Psychother. Res.200212327328510.1080/713664390
    [Google Scholar]
  130. HowardK.I. KoptaS.M. KrauseM.S. OrlinskyD.E. The dose–effect relationship in psychotherapy.Am. Psychol.198641215916410.1037/0003‑066X.41.2.159 3516036
    [Google Scholar]
  131. HowardK.I. LuegerR.J. MalingM.S. MartinovichZ. A phase model of psychotherapy outcome: Causal mediation of change.J. Consult. Clin. Psychol.199361467868510.1037/0022‑006X.61.4.678 8370864
    [Google Scholar]
  132. AntoniM.H. LutgendorfS.K. BlombergB. Cognitive-behavioral stress management reverses anxiety-related leukocyte transcriptional dynamics.Biol. Psychiatry201271436637210.1016/j.biopsych.2011.10.007 22088795
    [Google Scholar]
  133. PhillipsK.M. AntoniM.H. CarverC.S. Stress management skills and reductions in serum cortisol across the year after surgery for non-metastatic breast cancer.Cognit. Ther. Res.201135659560010.1007/s10608‑011‑9398‑3
    [Google Scholar]
  134. GetuM.A. ChenC. PanpanW. MboinekiJ.F. DhakalK. DuR. The effect of cognitive behavioral therapy on the quality of life of breast cancer patients: a systematic review and meta-analysis of randomized controlled trials.Qual. Life Res.202130236738410.1007/s11136‑020‑02665‑5 33068239
    [Google Scholar]
  135. EdelmanS. BellD.R. KidmanA.D. A group cognitive behaviour therapy programme with metastatic breast cancer patients.Psychooncology19998429530510.1002/(SICI)1099‑1611(199907/08)8:4<295:AID‑PON386>3.0.CO;2‑Y
    [Google Scholar]
  136. MirosevicS. JoB. KraemerH.C. ErshadiM. NeriE. SpiegelD. “Not just another meta‐analysis”: Sources of heterogeneity in psychosocial treatment effect on cancer survival.Cancer Med.20198136337310.1002/cam4.1895 30600642
    [Google Scholar]
  137. MatthewsC.E. MooreS.C. AremH. Amount and intensity of leisure-time physical activity and lower cancer risk.J. Clin. Oncol.202038768669710.1200/JCO.19.02407 31877085
    [Google Scholar]
  138. Martín-RuizA. Fiuza-LucesC. Rincón-CastanedoC. Benefits of exercise and immunotherapy in a murine model of human non-small-cell lung carcinoma.Exerc. Immunol. Rev.202026100115 32139351
    [Google Scholar]
  139. WennerbergE. LhuillierC. RybsteinM.D. Exercise reduces immune suppression and breast cancer progression in a preclinical model.Oncotarget202011445246110.18632/oncotarget.27464 32064049
    [Google Scholar]
  140. PedersenL. IdornM. OlofssonG.H. Voluntary running suppresses tumor growth through epinephrine-and IL-6-dependent NK cell mobilization and redistribution.Cell Metab.201623355456210.1016/j.cmet.2016.01.011 26895752
    [Google Scholar]
  141. SchmitzK.H. CampbellA.M. StuiverM.M. Exercise is medicine in oncology: Engaging clinicians to help patients move through cancer.CA Cancer J. Clin.201969646848410.3322/caac.21579 31617590
    [Google Scholar]
  142. McTiernanA. FriedenreichC.M. KatzmarzykP.T. Physical activity in cancer prevention and survival: a systematic review.Med. Sci. Sports Exerc.20195161252126110.1249/MSS.0000000000001937 31095082
    [Google Scholar]
  143. CanniotoR.A. HutsonA. DigheS. Physical activity before, during, and after chemotherapy for high-risk breast cancer: relationships with survival.J. Natl. Cancer Inst.20211131546310.1093/jnci/djaa046 32239145
    [Google Scholar]
  144. Gomes-SantosI.L. AmoozgarZ. KumarA.S. Exercise training improves tumor control by increasing CD8+ T-cell infiltration via CXCR3 signaling and sensitizes breast cancer to immune checkpoint blockade.Cancer Immunol. Res.20219776577810.1158/2326‑6066.CIR‑20‑0499 33839688
    [Google Scholar]
  145. JolyF. Lefeuvre-PlesseC. Garnier-TixidreC. Feasibility and efficacy of a supervised home-based physical exercise program for metastatic cancer patients receiving oral targeted therapy: study protocol for the phase II/III UNICANCER SdS 01 QUALIOR trial.BMC Cancer202020197510.1186/s12885‑020‑07381‑4 33036567
    [Google Scholar]
  146. JiangT.A. Health benefits of culinary herbs and spices.J. AOAC Int.2019102239541110.5740/jaoacint.18‑0418 30651162
    [Google Scholar]
  147. WatsonR.R. PreedyV.R. Fruits, vegetables, and herbs: bioactive foods in health promotion.Academic Press2016
    [Google Scholar]
  148. ZhaoY. LiQ. WuX. ChenP. Upregulation of p27Kip1 by demethylation sensitizes cisplatin-resistant human ovarian cancer SKOV3 cells.Mol. Med. Rep.20161421659166610.3892/mmr.2016.5399 27314502
    [Google Scholar]
  149. MurthyT. ShivaM. Salai guggul from Boswellia serrata Roxb.-its exploitation and utilization.Indian For.1977103746647410.4103/0250‑474X.93507
    [Google Scholar]
  150. YueK. YeM. ZhouZ. SunW. LinX. The genus Cordyceps: a chemical and pharmacological review.J. Pharm. Pharmacol.201365447449310.1111/j.2042‑7158.2012.01601.x 23488776
    [Google Scholar]
  151. ChaubeyR. Recent advancement and the way forward for Cordyceps. Recent Advancement in White Biotechnology Through Fungi.Volume 2: Perspective for Value-Added Products and Environments201944147410.1007/978‑3‑030‑14846‑1_15
    [Google Scholar]
  152. FuH. FuW. SunM. Kinetic cellular phenotypic profiling: prediction, identification, and analysis of bioactive natural products.Anal. Chem.201183176518652610.1021/ac201670e 21793491
    [Google Scholar]
  153. ZhouY. WangM. ZhangH. HuangZ. MaJ. Comparative study of the composition of cultivated, naturally grown Cordyceps sinensis, and stiff worms across different sampling years.PLoS One20191412e022575010.1371/journal.pone.0225750 31800596
    [Google Scholar]
  154. HilfikerR. MeichtryA. EicherM. Exercise and other non-pharmaceutical interventions for cancer-related fatigue in patients during or after cancer treatment: a systematic review incorporating an indirect-comparisons meta-analysis.Br. J. Sports Med.2018521065165810.1136/bjsports‑2016‑096422 28501804
    [Google Scholar]
  155. BoeschM BatyF RassouliF Non-pharmaceutical interventions to optimize cancer immunotherapy. Oncoimmunology.2023Sep 28121225545910.1080/2162402X.2023.2255459 37791231
    [Google Scholar]
  156. PurushothamA RobertsG HaireK The impact of national non-pharmaceutical interventions (‘lockdowns’) on the presentation of cancer patients2021315118010.3332/ecancer.2021.1180 33777173PMC7987492
    [Google Scholar]
  157. JinQ LiuL ChenY YinP Non-pharmaceutical interventions in complementary and alternative medicine for insomnia in breast cancer survivors: a protocol for a systematic review and network meta-analysis.BMJ Open2023135e07178410.1136/bmjopen‑2023‑071784 37142314
    [Google Scholar]
  158. ClarkB CintronM KambojM BabadyNE Effect of nonpharmaceutical interventions on the incidence of respiratory viruses at a tertiary cancer care center.J Clin Virol202316310544210.1016/j.jcv.2023.10544237075690
    [Google Scholar]
  159. SinghP. ChaturvediA. Complementary and alternative medicine in cancer pain management: A systematic review.Indian J. Palliat. Care201521110511510.4103/0973‑1075.150202 25709198
    [Google Scholar]
  160. DuncanM. MoschopoulouE. HerringtonE. Review of systematic reviews of non-pharmacological interventions to improve quality of life in cancer survivors.BMJ Open2017711e01586010.1136/bmjopen‑2017‑015860 29187408
    [Google Scholar]
  161. HosokawaM. ItoM. KyotaA. HiraiK. YamakawaM. MiyashitaM. Non-pharmacological interventions for cancer-related fatigue in terminal cancer patients: a systematic review and meta-analysis.Ann. Palliat. Med.202211113382339310.21037/apm‑22‑655 36366898
    [Google Scholar]
  162. LiuY. XuP. SongC. JiangT. LiuJ.E. ShiT. The effectiveness of non‐pharmacological interventions on cancer related fatigue in breast cancer patients: A protocol for systematic review and network meta‐analysis.Nurs. Open20229185185510.1002/nop2.1118 34725949
    [Google Scholar]
  163. EatonL. BrantJ. McLeodK. Hsing YehC. Nonpharmacologic pain interventions: a review of evidence-based practices for reducing chronic cancer pain.Clin. J. Oncol. Nurs.2017213Suppl.547910.1188/17.CJON.S3.54‑70 28524909
    [Google Scholar]
  164. MoraD.C. KristoffersenA.E. OvervågG. Safety of complementary and alternative medicine (cam) treatment among children and young adults who suffer from adverse effects of conventional cancer treatment:a systematic review.Integr. Cancer Ther.20222110.1177/15347354221105563 35726681
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947268161240404084729
Loading
/content/journals/cctr/10.2174/0115733947268161240404084729
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): acupuncture; cancer; chemotherapy; exercise; massage; music; Non-pharmaceutical; yoga
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test