Skip to content
2000
Volume 18, Issue 1
  • ISSN: 2405-5204
  • E-ISSN: 2405-5212

Abstract

Background

Centrifugal pump is widely used in industrial production as a key fluid conveying equipment. The transient characteristics during its start-up process may lead to vibration, noise and efficiency loss. Therefore, it is very important to optimize the start-up process.

Objective

Optimize the structural parameters of the centrifugal pump, with the initial pulse values of both the head and efficiency as the optimization objectives, to enhance its transient performance.

Methods

In recent years, thanks to advances in patents and technology, centrifugal pump optimization through numerical simulation and experimental comparison has become more reliable. This article selects design parameters through sensitivity analysis, and then establishes a BP neural network and optimizes it using genetic algorithm.

Results

The optimized head pulse value is reduced by 4.39 m, and the efficiency pulse value is reduced by 5.65%. Make the start-up process of centrifugal pump more stable.

Conclusion

Among the parameters that affect the stability of the centrifugal pump start-up process, it can be obtained that the three factors of impeller outlet width, blade outlet angle and blade wrap angle have the greatest influence on the fluctuating head and efficiency of the centrifugal pump.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204340331241223035902
2024-12-27
2025-12-10
Loading full text...

Full text loading...

References

  1. PanJ. LiY. GuoY. ZhouH. YangC. WangX. Study on transient characteristics of pipeline under centrifugal pump shaft stuck condition.Nucl. Eng. Des.202441711283310.1016/j.nucengdes.2023.112833
    [Google Scholar]
  2. ZhangY.L. ZhuZ.C. DouH.S. CuiB.L. LiY. Experimental and theoretical study of a prototype centrifugal pump during startup period.Int. J. Turbo Jet Engines201330217317710.1515/tjj‑2013‑0004
    [Google Scholar]
  3. ZhuZ. GuoX.M. CuB.L. LiY. External characteristics and internal flow features of a centrifugal pump during rapid startup.Chin. J. Mech. Eng.201124579880410.3901/CJME.2011.05.798
    [Google Scholar]
  4. AhmedF. EamesI. AzarbadeganA. MoeendarbaryE. Acoustics and vibrations in a complex piping network with pump startup–shutdown transients.Int. J. Mech. Sci.202222710735710.1016/j.ijmecsci.2022.107357
    [Google Scholar]
  5. ChenC. XuH. DengF. WuK. ZhangZ. SiQ. Study on the transient flow characteristics of multistage centrifugal pumps during the startup process before system operation.Water20241613187610.3390/w16131876
    [Google Scholar]
  6. ChenX. ZhangX. LiX. Evolution characteristics of energy change field in a centrifugal pump during rapid starting period.Energies20221522843310.3390/en15228433
    [Google Scholar]
  7. LiW. Vane pump transient process performance optimization design method.Patents CN 116595682 A202310.1007/s40997‑023‑00694‑2
  8. ElebiaryK. Centrifugal pump impellor with novel balancing holes that improve pump efficiency.Patent US 20161535524201810.3390/pr11082420
  9. FoxC.S. PalazzoloT. HirschhornM. Development of the centrifugal blood pump for a hybrid continuous flow pediatric total artificial heart: Model, make, measure.Front. Cardiovasc. Med.20229988687410.3389/fcvm.2022.886874
    [Google Scholar]
  10. HuJ. SuX. HuangX. Hydrodynamic behavior of a pump as turbine under transient flow conditions.Processes (Basel)202210240810.3390/pr10020408
    [Google Scholar]
  11. JiangH. DongW. LiP. ZhangH. Based on wavelet and windowed multi-resolution dynamic mode decomposition, transient axial force analysis of a centrifugal pump under variable operating conditions.Energies20231620717610.3390/en16207176
    [Google Scholar]
  12. KuangR. ChenX. ZhangZ. ZhuZ. LiY. Large eddy simulation of periodic transient pressure fluctuation in a centrifugal pump impeller at low flow rate.Symmetry (Basel)202113231110.3390/sym13020311
    [Google Scholar]
  13. LiH. LinH. HuangW. A new prediction method for the complete characteristic curves of centrifugal pumps.Energies20211424858010.3390/en14248580
    [Google Scholar]
  14. LiQ. MaX. WuP. YangS. HuangB. WuD. Study on the transient characteristics of the centrifugal pump during the startup period with assisted valve.Processes2020810124110.3390/pr8101241
    [Google Scholar]
  15. LiY. SuH. WangY. JiangW. ZhuQ. Dynamic characteristic analysis of centrifugal pump impeller based on fluid-solid coupling.J. Mar. Sci. Eng.202210788010.3390/jmse10070880
    [Google Scholar]
  16. LiuS. CaoH. ChenY. NiS. ZhaoG. JiangC. Numerical examination of the dynamic evolution of fluctuations in cavitation and pressure in a centrifugal pump during startup.Machines20231116710.3390/machines11010067
    [Google Scholar]
  17. LiuZ. ZouL. QiaoJ. ShiC. LiuX. The influence of the viscosity of crude oil on liquid-dynamic noise characteristics in the volute shell of oil transfer pump.Measurement202219711128510.1016/j.measurement.2022.111285
    [Google Scholar]
  18. LongY. LinB. FangJ. Research on the pump shaft stability analysis of multistage centrifugal pump during closed-valve start-up process.Front. Energy Res.2020818610.3389/fenrg.2020.00186
    [Google Scholar]
  19. LongY. LinB. FangJ. ZhuR. FuQ. Research on the transient hydraulic characteristics of multistage centrifugal pump during start-up process.Front. Energy Res.202087610.3389/fenrg.2020.00186
    [Google Scholar]
  20. LuL. RenZ. WangZ. A study on the transient characteristics of the power-off transition process of a double-volute centrifugal pump.Water20241612170710.3390/w16121707
    [Google Scholar]
  21. OmriF. Hadj TaiebL. ElaoudS. Numerical study on the transient behavior of a radial pump during starting time.J. Water Supply202170325727310.2166/aqua.2021.136
    [Google Scholar]
  22. ProsvirinAE AhmadZ KimJM Global and local feature extraction using a convolutional autoencoder and neural networks for diagnosing centrifugal pump mechanical faults.IEEE Access20219658386585410.1109/ACCESS.2021.3076571
    [Google Scholar]
  23. MasuzawaT. OhtaA. TanakaN. QianY. TsukiyaT. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.J. Artif. Organs200912315015910.1007/s10047‑009‑0459‑2
    [Google Scholar]
  24. WangY. ZhangH. HanZ. NiX. Optimization design of centrifugal pump flow control system based on adaptive control.Processes202199153810.3390/pr9091538
    [Google Scholar]
  25. WeiY. ShiY. ShiW. PanB. Numerical analysis and experimental study of unsteady flow characteristics in an ultra-low specific speed centrifugal pump.Sustainability202214241690910.3390/su142416909
    [Google Scholar]
  26. WeiY. ZhuH. FanQ. QiuN. WuJ. ZhangW. Numerical study of low-specific-speed centrifugal pump based on principal component analysis.Water20241613178510.3390/w16131785
    [Google Scholar]
  27. XuE. SunJ. ChenX. ZhaoR. Analysis of internal flow characteristics of the bearingless direct-drive centrifugal pump system during transient start-up.Processes20231110299610.3390/pr11102996
    [Google Scholar]
  28. YanS. YeZ. WangD. MaJ. ZhouW. Structural analysis and optimization of ultra-high-speed centrifugal pump rotor system considering fluid–structure interaction.Water20241611147110.3390/w16111471
    [Google Scholar]
  29. YeC. TangY. AnD. WangF. ZhengY. van EschB.P.M. Investigation on stall characteristics of marine centrifugal pump considering transition effect.Ocean Eng.202328011482310.1016/j.oceaneng.2023.114823
    [Google Scholar]
  30. YuJ. AkotoE. DegbedzuiD.K. HuL. Predicting centrifugal pumps’ complete characteristics using machine learning.Processes202311252410.3390/pr11020524
    [Google Scholar]
  31. WuD. JiangX. LiS. WangL. A new transient CFD method for determining the dynamic coefficients of liquid annular seals.J. Mech. Sci. Technol.20163083477348610.1007/s12206‑016‑0707‑3
    [Google Scholar]
  32. GrahnA. PescadorE.D. KliemS. SchäferF. HöhneT. Modelling of complex boron dilution transients in PWRs—Validation of CFD simulation with ANSYS CFX against the ROCOM E2.3 experiment.Nucl. Eng. Des.202137211093810.1016/j.nucengdes.2020.110938
    [Google Scholar]
  33. BashiriM. DerakhshanS. ShahrabiJ. Design optimization of a centrifugal pump using particle swarm optimization algorithm.Int J Fluid Mach Sys201912432233110.5293/IJFMS.2019.12.4.322
    [Google Scholar]
  34. YaoZ.F. YangZ.J. WangF.J. Evaluation of near-wall solution approaches for large-eddy simulations of flow in a centrifugal pump impeller.Eng. Appl. Comput. Fluid Mech.201610145246510.1080/19942060.2016.1189362
    [Google Scholar]
  35. WuB. NingX. XuG. WangZ. MeiZ. YangG. Online numerical simulation: A hybrid simulation method for incomplete boundary conditions.Earthquake Eng. Struct. Dynam.201847488990510.1002/eqe.2996
    [Google Scholar]
  36. ShrivastavaM. AgrawalA. SharmaA. A novel level set-based immersed-boundary method for CFD simulation of moving-boundary problems.Numer. Heat Transf. B201363430432610.1080/10407790.2013.756258
    [Google Scholar]
  37. LiW. YangQ. YangY. JiL. ShiW. AgarwalR. Optimization of pump transient energy characteristics based on response surface optimization model and computational fluid dynamics.Appl. Energy202436212303810.1016/j.apenergy.2024.123038
    [Google Scholar]
  38. LiuM. TanL. ZhaoX. MaC. GouJ. Theoretical model on transient performance of a centrifugal pump under start-up conditions in pumped-storage system.Energy202429913145210.1016/j.energy.2024.131452
    [Google Scholar]
  39. LeeJ.S. HongS.G. ParkI.H. Continuum sensitivity analysis for shape optimization of transient eddy current systems.IEEE Trans. Magn.20235951410.1109/TMAG.2023.3242275
    [Google Scholar]
  40. GargV.V. StognerR.H. Hierarchical latin hypercube sampling.J. Am. Stat. Assoc.201711251867368210.1080/01621459.2016.1158717
    [Google Scholar]
  41. HanM. HongK.J. ChoS.G. Weighted latin hypercube sampling to estimate clearance-to-stop for probabilistic design of seismically isolated structures in nuclear power plants.J Earthquake Engin Soc Korea2018222637510.5000/EESK.2018.22.2.063
    [Google Scholar]
  42. JaffariJ. AnisM. On efficient LHS-based yield analysis of analog circuits.IEEE Trans. Comput. Aided Des. Integrated Circ. Syst.201130115916310.1109/TCAD.2010.2070930
    [Google Scholar]
  43. LiW. LuL. XieX. YangM. A novel extension algorithm for optimized Latin hypercube sampling.J. Stat. Comput. Simul.201787132549255910.1080/00949655.2017.1340475
    [Google Scholar]
  44. PeteletM. IoossB. AsserinO. LoredoA. Latin hypercube sampling with inequality constraints.AStA Adv. Stat. Anal.201094432533910.1007/s10182‑010‑0144‑z
    [Google Scholar]
  45. YuH. ChungC.Y. WongK.P. LeeH.W. ZhangJ.H. Probabilistic load flow evaluation with hybrid latin hypercube sampling and cholesky decomposition.IEEE Trans. Power Syst.200924266166710.1109/TPWRS.2009.2016589
    [Google Scholar]
  46. WuD. WangL. HaoZ. LiZ. BaoZ. Experimental study on hydrodynamic performance of a cavitating centrifugal pump during transient operation.J. Mech. Sci. Technol.201024257558210.1007/s12206‑009‑1217‑3
    [Google Scholar]
  47. ChengP. ChenD. WangJ. Research on underwear pressure prediction based on improved GA-BP algorithm.Int. J. Cloth. Sci. Technol.202133461964210.1108/IJCST‑05‑2020‑0078
    [Google Scholar]
  48. LiW. XuG. XingQ. LyuM. Application of improved AHP-BP neural network in CSR performance evaluation model.Wirel. Pers. Commun.202011142215223010.1007/s11277‑019‑06981‑z
    [Google Scholar]
  49. ChengZ. JunchengT. Adaptive combination forecasting model for China’s logistics freight volume based on an improved PSO-BP neural network.Kybernetes201544464666610.1108/K‑09‑2014‑0201
    [Google Scholar]
  50. LiuB. DuanT. LiY. One improved agent genetic algorithm — ring-like agent genetic algorithm for global numerical optimization.Asia-Pac. J. Oper. Res.200926447950210.1142/S0217595909002316
    [Google Scholar]
  51. YanC. LiM.X. LiuW. Application of improved genetic algorithm in function optimization.J. Inf. Sci. Eng.20193561299130910.6688/JISE.201911_35(6).0008
    [Google Scholar]
  52. YuanQ. QianF. A hybrid genetic algorithm for twice continuously differentiable NLP problems.Comput. Chem. Eng.2010341364110.1016/j.compchemeng.2009.09.006
    [Google Scholar]
/content/journals/rice/10.2174/0124055204340331241223035902
Loading
/content/journals/rice/10.2174/0124055204340331241223035902
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test